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¡ Process dependence of TMD 
physics in nuclear matter

¡ Scattering in dense matter

¡ Radiation in dense matter

¡ Observables in dense matter

¡ Conclusions



§ We have different forms of 
dense matter – cold nuclear 
matter, quark-gluon plasma, 
hadron gas, neutron stars, …   

§ A+A collisions
§ p+A collisions (fixed target, RHIC, LHC)
§ e+A collisions  (HERMES, EIC)



§ Original measurement Jim Cronin – enhancement of particle 
production at intermediate pT in p+A vs p+p collisions 

( ) T,   = (p )coll
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§ Soft physics, 
with nuclear 
enhancement 
A1/3 manifest 
at ~few GeV

p A

bJ. Cronin et al. (1975)



¡ Reminder about the geometry 
in heavy ion collisions

Number of 
binary 
collisions 

N1 x N2

Number of 
participants

N1 + N2

Peripheral

Central

¡ The broadening effects are 
different for different nuclei 

¡ They are different for different 
impact parameters – if you 
want to parameterize 
becomes a 4D problem

PHENIX Collab. (1975)



§ Final state parton
broadening in semi-
inclusive DIS.  

§ Formulation of a transport coefficient as a Wilson line 

F. D’Eramo et al. (2010)q̂ = q⊥
2 / λg

We already have 2 dimensions



Transverse momentum of 
partons in matter
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§ Focus on the significant degrees 
of freedom [DOF]. Manifest 
power counting

Non-Relativistic QCD (NRQCD) mQ p/mQ



¡ QCD in the medium remains a 
multi-scale  problem. I will focus 
on x+A reactions

¡ Factorization, with modified J 
(jet), B (beam), S (soft) functions 

Ovanesyan et al.  (2011)

Idilbi et al.  (2008)

RHIC (though not the first HI 
machine) has played a very 
important role in truly 
developing a new field –
interaction of hard probes in 
matter 

M. Gyulassy et al.  (1993)

B. Zakharov (1995)

R. Baier et al.  (1997)

M. Gyulassy et al.  (2000)

X. Guo et al. (2001)

P. Arnold et al. (2003)

Energy loss approach

EFT approach

Z. Kang et al.  (2016)



§ What is missing in the YM Lagrangian is the interaction 
between the jet and the medium 

§ Kinematics and channels
t – jet broadening and energy loss
s– isotropisation
u – backward hard scattering

G. Ovanesyan et al. (2011)

§ Fully dynamic medium recoil,
cross section reduction (5% –
15%). Completely dominated 
by forward scattering  



§ Glauber gluons (transverse) A. Idilbi et al. (2008)

§ Feynman rules for different sources and gauges

G. Ovanesyan et al. (2011)

𝐴"
#



¡ What I described is the background field method. I did not dwell too much on the 
microscopic physics of the Glauber gluon field - lots of non-perturbative physics in 
matter

Glauber field for collinear source

Coulomb field for soft source

Y. Makris et al. (2019)

Glauber field for collinear source

Coulomb field for soft source

The field is a expansion of gauge invariant operator

I. Rothstein et al. (2015)

¡ Consider the target as active 
degrees of freedom



§ Need two Glauber gluon 
exchanges to build 1 power of 
the scattering cross section in 
matter

M. Gyulassy et al. (2001)

Classes of diagrams (single Born, 
double Born). Reaction Operator

Any momentum dependence we put in 
J(p). E.g. I can choose unit strength and 
the quark not having transverse 
momentum initially 

There is a phase – our 
propagating particle is a 
plane wave. Here is notion of 
coherence and interference.



§ Need two Glauber gluon exchanges to 
build 1 power of the scattering cross 
section in matter

Have to integrate over the phase space
Important part of the propagator

Contour integration

Can take the phases to 1 (momentum highly suppressed)



§ Need to keep track of the 
momentum shift in the initial 
distribution

We are left with the transverse integrals
The two transverse 
momenta become equal

The two transverse 
momenta add to 0

This is the effect of one 
scattering (averaged over 
the transverse plane)

Average over 
scattering centers 
positions



§ We can also consider many scatterings along the path of propagation

§ In special cases such as constant density 
and the Gaussian approximation – carry out 
resummation in impact parameter space

M. Gyulassy et al. (2002)

𝜒 =
𝐿
λ

We obtained Gaussian distribution   (in reality has a 
power law tail beyond the mean width)



§ What are the values of the transport parameter q-hat  in 
nuclear matter

§ Broadening of lepton jet 
correlations   

𝑝$% =
2𝜇%

𝜆
𝐿𝜉 +𝑞 =

2𝜇%

𝜆 = 0.05 − 0.1 𝐺𝑒𝑉%/𝑓𝑚

For quarks. For gluons it is 2.25 times larger

The reason we see the Cronin effect extend to a 
few GeV is steeply falling spectra.  Generally 
limited to small transverse momenta

I. Vitev et al. (2002)

Rather small effect. Perhaps twice smaller 
as indicated

M. Arratia et al. (2019)



Medium-induced radiative 
corrections



G. Altarelli et al. (1977)
¡ In the vacuum we have the DGLAP splitting 

kernels that factorize from the hard scattering 
cross section and are process independentY. Dokshitzer (1977)

Gribov et al. (1972)

1. Incoming hadron   (gray bubbles)

➡ Parton distribution function

2. Hard part of the process 

➡ Matrix element calculation at LO, 
NLO, ... level

3. Radiation  (red graphs)

➡ Parton shower calculation

➡ Matching to the hard part

4. Underlying event   (blue graphs)

➡ Models based on multiple 
interaction

5. Hardonization  (green bubbles)

➡ Universal models 

H

The description of an event is a bit tricky...

H

¡ Splitting functions are 
related to beam (B) and jet 
(J) functions in SCET 



¡ We can read off the splitting 
kernel (continuous part of it)

Chose physical 
polarization, 
lightcone gauge 

¡ Note: relative to standard notation  x <-> 
1-x

¡ This was done to make connection with 
the traditional energy loss approaches. 

0

𝑘&

𝑝&

x

1-x

Supplementing the 2 body phase space in the final state we can identify

Diagonal splitting functions have singular 
contributions



¡ Explicitly verified the 
gauge invariance and 
factorization in QCD

2

matter:

LSCETG
(ξn, An, AG) = LSCET(ξn, An) + LG (ξn, An, AG) ,

LG (ξn, An, AG) =
∑

p,p′

e−i(p−p′)x
(

ξ̄n,p′Γµ,a
qqAG

n̄/

2
ξn,p

−iΓµνλ,abc
ggAG

(

Ab
n,p′

)

ν

(

Ac
n,p

)

λ

)

AGµ,a(x) .

(1)

In Ref. [40] the vertexes Γµ,a
qqAG

,Γµνλ,abc
ggAG

have been de-
rived for three types of gauge-fixing conditions: covari-
ant, light-cone and hybrid gauges. In the first case we
gauge-fix both the physical collinear gluons as well as
the Glauber gluons in the covariant gauge. The second
choice corresponds to gauge-fixing both fields using the
light-cone gauge. The third choice, which appears to be
the most convenient from the practical point of view, cor-
responds to a light-cone gauge for collinear gluons and a
covariant gauge for the Glauber gluons. This is a legit-
imate choice from effective theory point of view, since
we are allowed to gauge-fix separate gauge sectors inde-
pendently. Another way of justifying this gauge choice is
factorization between the splitting and the elastic scat-
tering. In this hybrid case both the collinear Wilson line
W and the transverse gauge link T [42–44] vanish. Gauge
invariance of the physics results for the in-medium elas-
tic scattering and radiative energy loss was demonstrated
in [40], providing a cross-check on the approach and the
newly-derived Feynman rules. It is interesting to note
that the same effective theory SCETG is relevant for de-
scribing the Drell-Yan process, as shown in Ref. [45].
We start from amplitudes for the parton splitting pro-

cesses:

Aq→qg = 〈q(p)g(k)|T eiS χ̄n(x0) |q(p0)〉 , (2)

Ag→gg = 〈g(p)g(k)|T eiS Bλc(x0) |g(p0)〉 , (3)

Ag→qq̄ = 〈q(p)q̄(k)|T eiS Bλc(x0) |g(p0)〉 , (4)

Aq→gq = 〈g(p)q(k)|T eiS χ̄n(x0) |q(p0)〉 , (5)

where χ,B are collinear gauge invariant SCET fields [46,
47] and the momentum four-vectors, such as p0 = p+ k,
are parametrized in the standard way, consistent with en-
ergy momentum conservation and the on-shell condition
p2 = k2 = 0:

p0 =

[

p+0 ,
k2
⊥

x(1 − x)p+0
,0⊥

]

, (6)

p =

[

(1− x)p+0 ,
k2
⊥

(1− x)p+0
,−k⊥

]

, (7)

k =

[

xp+0 ,
k2
⊥

xp+0
,k⊥

]

. (8)

We use square brackets to indicate the light-cone nota-
tion, which we define for arbitrary four-vector q in the
following way: q ≡ [q+, q−, q⊥] = [n̄·q, n·q, q⊥] and

nµ = (1, 0, 0, 1) , n̄µ = (1, 0, 0,−1). The action in Eq. (2)-
Eq. (5) is given by Lagrangian of SCETG :

S = i

∫

d4xLSCETG
. (9)

Lagrangian of SCETG [36, 40] is given in Eq. (1) and it
evolves the created jet and describes the parton splitting
processes and the interaction of the parton shower in the
medium. The amplitude with qq̄ ↔ q̄q is not shown
explicitly.
Restricting ourselves to the SCET Lagrangian with-

out Glauber gluons, we first verify that at tree level we
recover the Altarelli-Parisi splitting kernels [48], which
have been originally calculated in full QCD:

(

dN

dxd2k⊥

)

q→qg

=
αs

2π2
CF

1 + (1− x)2

x

1

k2
⊥

, (10)

(

dN

dxd2k⊥

)

g→gg

=
αs

2π2
2CA

(1− x

x
+

x

1− x

+x(1− x)
) 1

k2
⊥

, (11)

(

dN

dxd2k⊥

)

g→qq̄

=
αs

2π2
TR

(

x2 + (1 − x)2
) 1

k2
⊥

,(12)

(

dN

dxd2k⊥

)

q→gq

=

(

dN

dxd2k⊥

)

q→qg

(x → 1− x).

(13)

We note that we are interested in real splitting pro-
cesses away from the singular end points x = 0 and
x = 1. In all expressions above the transverse mo-
mentum k⊥ and the lightcone momentum fraction x =
k+/p+0 = k+/(p+ + k+) are for the second final-state
parton. The parent parton has no net transverse momen-
tum and k⊥ = −p⊥. Note that Eq. (10) and Eq. (13)
are interchangeable under x → 1 − x, whereas Eq. (11)
and Eq. (12) are symmetric under this substitution. The
same symmetries hold for the medium-induced splittings
that we derive in section III.
In this paper we use the following terminology: the

double differential distribution dN/dxd2k⊥ we call a
splitting kernel, xdN/dx we call a splitting intensity and
dN/dx we call differential emitted parton number distri-
bution. This terminology applies to both vacuum and
medium-induced splittings. The x−dependent part of
the vacuum splitting kernel we call a splitting function.
Since the medium-induced kernel has a more complicated
k⊥, x correlation structure compared to the simple fac-
torized form in Eq. (10) – Eq. (13) we avoid definition
of a similar term in the medium.

III. MEDIUM-INDUCED PARTON
SPLITTINGS

To describe the collisional and radiative processes
for partons propagating in QCD matter, both single
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(... |+ +Aδ (x))

� 

(... |+ +Bδ(x))

¡ The singular pieces A, B can 
be obtained form flavor 
and momentum 
conservation sum rules

x

1-x

Reversed convention What we want to compute is that



§ The importance of formation time

• First we note that the topology of all 
splittings is same 

Momenta in the propagators

Interference phases or inverse formation times

§ What this tells us is that 
processes take time  - the 
splitting is not instantaneous.   
If the time for the splitting is 
comparable  to the distance 
between the scattering 
centers we have interference 
– Landu –Pomeranchink-
Migdal effect in QCD

M. Gyulassy et al. (1993)



§ Note that a collinear Wilson
line appears in the Rξ gauge

In a moment we will discuss subtleties 
of the calculation 

For the physical polarization vector 
The contribution for the last two 
diagrams vanishes



G. Ovanesyan et al. (2011)

Double Born 
diagrams

A. Majumder et al.  (2009)

A. Idilbi et al.  (2010)
¡ New Feynman 

rule

¡ The lightcone
gauge



§ Properties 
of in-
medium 
splittings

G. Ovanesyan et al. ,  (2011)
G. Ovanesyan et al. ,  (2012)

Rξ A+ Hyb.

W+ ✔ ✖ ✖

Tn ✖ ✔ ✖

§ The two sectors – the collinear and 
Glauber – decouple. One can simplify 
the calculations considerably by using 
the  hybrid gauge

• Proportional to the vacuum splitting
• Depend on the medium properties
• Vanish if there is no medium 
• Explicitly have the LPM effect differentially
• Kinematics x, k d not decouple
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Evolution of T in Au+Au ¡ Refactoring
Ø Code is restructured (in C++) and 

shortened (24K → 8K lines). 20x speed                                      
improvement

¡ Effective incorporation of                                                       
simulated QGP medium
Ø Reduced overhead for calling QGP                                                                

medium grid function. 2x speed                                                         
improvement

¡ Efficient on-node parallelization

Ø New parallelization shows much better                                                          
scaling  10x speed improvement 

¡ Overall improvement:     
18 days → 1 hour

C. Shen et al . (2014)



¡ Porting to code
Ø Results are directly 

exported from 
Mathematica to C++

¡ Challenges 
Ø Arise from larger 

number of 
evaluations

27

Energy loss – not a well defined concept for parton
shower processes  - define splitting intensity

§ The main result is a change in the energy dependence of the splitting 
intensity – smother, or more slowly varying with E (understand jet 
modification with pT)



¡ Reduction of 
small-x and 
large-x 
probabilities 
(assymptotic
s modulated  
by thermal 
mass)

¡ Enhancemen
t of 
democratic 
branching 
(x~0.5)

28

Parton showers in matter are softer than 
the ones in the vacuum 



29

¡ Broder angular 
enhancement 
region

¡ Oscillating 
series – the 
average of 1st

and 1st+2nd

order-
candidate for 
pheno.

Parton showers in matter are broader than the ones in the 
vacuum 



Applications



The evolution equations are given by standard Altarelli-Parisi equations:

dDq(z,Q)

d lnQ
=

↵s(Q2)

⇡

Z 1

z

dz0

z0

n
Pq!qg(z

0
, Q)Dq

⇣
z

z0
, Q

⌘
+ Pq!gq(z

0
, Q)Dg

⇣
z

z0
, Q

⌘o
, (45)

dDq̄(z,Q)

d lnQ
=

↵s(Q2)

⇡

Z 1

z

dz0

z0

n
Pq!qg(z

0
, Q)Dq̄

⇣
z

z0
, Q

⌘
+ Pq!gq(z

0
, Q)Dg

⇣
z

z0
, Q

⌘o
, (46)

dDg(z,Q)

d lnQ
=

↵s(Q2)

⇡

Z 1

z

dz0

z0

(
Pg!gg(z

0
, Q)Dg

⇣
z

z0
, Q

⌘

+Pg!qq̄(z
0
, Q)

⇣
Dq

⇣
z

z0
, Q

⌘
+ fq̄

⇣
z

z0
, Q

⌘⌘)
. (47)

The complete medium-induced splitting functions look like:

P
(1)
i (z,Q) = P

vac
i (z) [1 + gi(x,Q,L, µ)] , (48)

where the individual terms with all the plus prescriptions and virtual pieces are summarized in
sections 2, 3. These evolution equations have to be solved with initial conditions for parton densities
for quarks, anti-quarks and gluons to equal �(1� z) at some infrared scale ⇠ fewGeV. The resulting
so-called PDF’s at the hard scattering scale Q = pT look like fi/j(z, pT ), and have an intuitive
interpretation: probability of the parton i to be found in the parton j at the momentum transfer
scale Q = pT . For example fg/q(z, pT ) is the solution for the gluon density from the evolution
equations with the initial conditions fq(z, µIR) = �(1� z), fq̄(z, µIR) = fg(z, µIR) = 0, and so forth.

As a result of solving the A-P evolution equations we get the full LL series resummed by:

�
(i)(pT ) =

X

j=q,q̄,g

Z 1

0
dz �(j)

⇣
pT

z

⌘
fi/j(z, pT ), (49)

where i = q, q̄, g. It is straightforward to check, that by plugging in the lowest order solutions of
the evolution equations, into the equations above, we reproduce Eq. (42), a nice sanity check. In
addition, the equation above when combined properly with the evolution equations contains all the
leading order logarithms resummed. This should be more relevant for the LHC phenomenology where
the energies are higher than RHIC.

TODO: Check if there are additional factors from reversing A-P equations and the

cross section formulas from initial state to the final state.

The soft gluon approximation

The coupled Altarelli-Parisi evolution equations Eq. (45)-Eq. (47) simplify tremendously for x ⌘

1� z ! 0. In this small x approximation the equations decouple and reduce to describe the e↵ect of
leading patrons that shower soft gluons.

To see this we present the small x approximation of medium-induced splitting functions:

Pq!qg =
2CF

x+
+

✓
2CF

x
g[x,Q,L, µ]

◆

+

, (50)

7

Implement medium –induced 
splittings as corrections to 
vacuum evolution

Predictions - very good 
description of data at 2.76 TeV

+ q  term

Y.T-Chien et al.  (2015)

Medium induced 
scaling violations

The equation above can be easily solved exactly

Dh/c(z,Q) = e
�2CR

↵s
⇡

h
ln Q

Q0

i
{[n(z)�1](1�z)�1�ln(1�z)}

Dh/c(z,Q0). (71)

—–
Using the same technique and approximations it is straightforward to generalize to the case

when Pc!cg(z0, Q) contains both vacuum [· · · ]vac. and medium-induced parts. Note that our running
Q ⌘ k?, for example dN/dz

0
d
2
Q = dN(z0 ⌘ x,k? ⌘ Q)/dxd2k?. Without writing explicitly the

vacuum evolution part above, we find

dDmed.
h/c (z,Q)

d lnQ
= [· · · ]vac. +

↵s

⇡

⇢Z 1

z
dz0

2⇡2

↵s
Q

2 dN

dz0d2Q
(1� z

0
, Q)


1

z0
D

med.
h/c (z/z0, Q)�D

med.
h/c (z,Q)

�

�

Z z

0
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Eq. (78) integrates as follows

D
med.
h/c (z,Q) = e

�2CR
↵s
⇡

h
ln Q

Q0

i
{[n(z)�1](1�z)�ln(1�z)}

Dh/c(z,Q0)

⇥e
�[n(z)�1]

nR 1�z
0 dz0 z0

RQ
Q0

dQ0 dN
dz0dQ0 (z

0,Q0)
o
�
R 1
1�z dz

0 RQ
Q0

dQ0 dN
dz0dQ0 (z

0,Q0)

= Dh/c(z,Q)e�[n(z)�1] ˜
h
�E
E i

z
� ˜hNgiz . (74)

Here, we have chosen Q0 and Q cover all relevant phase space for medium-induced gluon emission
and defined
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Note that it is in opposite limits that Eqs. (75) and (76) reduce to the mean fractional energy loss and
the mean gluon emission number. It should be noted that for final state interactions in the coherent
LPM limit both hN

g
i and h�E/Ei are dominated by small z gluon emission for very energetic

jets. This, most of the time the modification is primarily driven by the full fractional energy loss.
However, at the kinematic bound the energy loss component vanishes and the suppression is given
by the probability not to radiate gluons, exp(�hNgi).

ALTERNATIVE
Using the same technique and approximations it is straightforward to generalize to the case when
Pc!cg(z0, Q) contains both vacuum [· · · ]vac. and medium-induced parts. Note that our running Q ⌘
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Vacuum splitting functions provide correction to vacuum showers 
and correspondingly modification to DGLAP evolution for FFs 

Transport properties – q-hat  
= 0.05 GeV2/fm
Still significant effects
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A useful modern way (though not unique) 
to calculate jet  cross sections

Z. Kang et al. (2016) L. Dai et al. (2016)

Factorization formula

H. Li et al.  (2019)

Large factor of 2 suppression for jets. 
Light jets and heavy jets



§Can we formulate the evaluation of 
the jet function in a way suitable for 
numerical implementation

Z. Kang et al. (2017)

(A) (B) (C) (E)(D)

Sum 
rules

Can be combined. 

NB has to be understood in 
the sense of convolution 

§ Stable in numerical implementation

§ Similarly for gluon jets



§ The physics of reconstructed 
jet modification

Two types of nuclear effect play a role

- Initial-state effects parametrized in nuclear 
parton distribution functions or nPDFs

- Final-state effects from the interaction of 
the jet and the nuclear medium – in-
medium parton showers and jet energy loss

H. Li et al. (2020)

§ Net modification 20-30% even at 
the highest CM energy

§ E-loss has larger role at lower pT.
The EMC effect at larger pT

5 10 15 20 25
 (GeV)

T
Jet p

0.7

0.8

0.9

1

1.1

 
eA

 R

<4  R=0.5  h  2<T 275 GeV   e+Au  Anti-k´18 GeV 

PDF: nCTEQ15

Full
Initial only
Final only

5 10 15 20 25
 (GeV)

T
Jet p

0.7

0.8

0.9

1

1.1

 
eA

 R

Full nCTEQ15
Full EPPS16 



§ Jet energy loss effects are larger at 
smaller center of mass energies 
(electron-nuclear beam combinations)

§ Effects can be almost a factor of 2 for 
small radii. Remarkable as it approaches 
magnitudes observed in heavy ion 
collisions (QGP)

A key question – will benefit both nPDF
extraction and understanding 
hadronization / nuclear matter transport 
properties  - how to separate initial-state 
and final-state effects?

H. Li et al. (2020)

Initial-state  effects are successfully 
eliminated

Define the ratio of modifications for 2 radii 
(it is a double ratio)

𝑅𝑅 = 𝑅!"(𝑅)/ 𝑅!"(𝑅 = 1)
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I. Vitev et al. (2008)

r

R

• Jet shapes reflect the 
energy density inside the jet 
and the structure of the 
parton shower

• First proposed as an observable that
can test the understanding of the quenching of 
reconstructed jets and the 

• Predicted in the energy loss approach ~5 years 
before measurement 
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¡ One can evaluate the jet energy 
functions from the splitting functions

Measurement operator – tells us 
how the above configurations 
contribute energy to J (jet function)

CMS
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¡ First quantitative pQCD/SCET description of jet shapes in HI



Y. T. Chien et al . (2016)

• Groomed jet distribution  
using “soft drop”

rg = ΔR12

The great utility of these new 
distributions: probe the early 
time dynamics / splitting 

pT1

pT2

A. Larkoski et al . (2014)

zg =

Typical situation: E=200 GeV, rg = 0.1      

Branching time  < 2 fm for  zg studied  

Directly proportional to the splitting 
functions, + resummation for small angles



A unique inversion of the mass hierarchy of jet quenching effects, 
Can be used to constrain the still not well understood dead cone effect in matter

Analytic predictions for low jet 
momenta

H. Li et al. (2018)



¡ Learned about dense matter. The need to include a new 
mode in SCET to describe parton/jet interactions in matter

¡ Learned about transverse momentum broadening in dense 
matter. Broader transverse momentum distributions in 
reactions with nuclei. Effects limited to low transverse 
momenta 

¡ Learned about medium induced radiative corrections. 
Characteristics of parton shower – broader and softer than 
the ones in the vacuum

¡ Learned about phenomenological applications –
suppression of hadron and jet cross sections. Modification of 
jet substructure observables – jet shapes, jet splitting 
functions, jet fragmentation functions, jet charge



¡ Jets: collimated showers of energetic particles that carry a 
large fraction of the energy available in the collisions

R = (h -h jet )
2 + (f - f jet )

2

ET = E
T , i

iÎjet
å

h = hiET , i
iÎjet
å / ET

f = fiET , i
iÎjet
å / ET

R { , , }i Ti i iEa h f=

n Jet finding algorithms [have to satisfy 
collinear and infrared safety]:

1) Successive recombination algorithms
a) kt algorithm        
b) anti-kt algorithm 

2) Iterative cone algorithms:
a) cone algorithm with “seed”: CDF, D0 
b) “seedless” cone algorithm
c)  midpoint cone algorithm

G. Salam et al. (2007)

G. Sterman, S. Weinberg (1977)

S. Ellis et al. (1993)



§ The first, probably best known, effective 
theory is the Fermi interaction

E. Fermi
(Nobel Prize)p ⌧ M

⇠ 1

p2 �M2

§ First direct observation of the 
neutrino, Nov. 1970



§ Effective theories are ubiquitous. The Standard Model is likely 
a low energy EFT of a theory at a much higher scale

§ Powerful framework based on 
exploiting symmetries and 
controlled expansions for 
problems with a natural 
separation of energy/momentum 
or distance scales.

§ Particularly well suited to QCD 
and nuclear physics


