Gauge action:

- Closed paths of gauge links (Wilson loops) can be vied to construct all gavge-invariant quantities inudving only gauge fields
- As for fermions, precise construction of gauge action is irrelevant if it has the correct continum limit (will have different dissectisation artefacts, some setter than others...)
- Simplest closed loop is the $|x|$ plaquette:

$$
P_{\mu v}(n)=\operatorname{Re} \operatorname{Tr}\left[u_{\mu}(n) u_{v}(n+\hat{\mu}) u_{\mu}^{+}(n+\hat{v}) u_{v}{ }^{+}(n)\right]
$$

Tayler-expand path-ordered expressions for U_{μ} in terms of A_{μ} to identify

$$
P_{\mu v}(n)=1-\frac{1}{2} g^{2} \operatorname{Tr}\left[F_{\mu v}(n)^{2}\right]+\theta\left(g^{2} a^{2}, a^{4}, g^{4} a^{2}\right)
$$

\Rightarrow "Wilson" gauge action

$$
S_{G}^{\omega}[u]=\frac{2}{g^{2}} \sum_{n \in n} \sum_{\mu L v}\left[1-P_{\mu v}(n)\right] \underset{a \rightarrow 0}{\longrightarrow} \frac{1}{2 g^{2}} \sum_{n \in n} \sum_{\mu L v} \operatorname{Tr}\left[F_{\mu v}(n)^{2}\right]
$$

- Can "improve" the gauge action by including additional loops (e.s. 1×2 rectangles) weffivients tuned to remove leading discretisation artefacts names like "Iwaralii gauge action", "tree-level improved" gauge action etc.

Now the total lati action is $S_{\text {cess }}=S_{G}[u]+S_{F}[u, \psi, \bar{\psi}]$ With some choice fo each piece.

Check in about symmetries:

- Su(3) gauge - preserved by lattice actions
-Loventz \rightarrow broken down to hypercubic $H(4) \Rightarrow$ induces operator mixing
- chiral. - depends on action

4. Observables

What can be computed in LeAD are Euclidean n-point correlation functions \rightarrow relate physics of interest to matrix elements of local cor non-local, see quasi/presds PDF/TMDS) operators.

Example \#1: Mass of the pion from apt corelation flu Consider two equivalent expressions for hadron 2-point correlator

$$
\begin{aligned}
C_{\pi}(\vec{x}, t) & \equiv\left\langle\theta_{\pi}(\vec{x}, t) \theta_{\pi}^{+}(\overrightarrow{0}, 0)\right\rangle \\
& =\frac{1}{z} \operatorname{Tr}\left[e^{-\hat{H}(T-t)} \hat{\theta}_{\pi}(\vec{r}) e^{-\hat{H} t} \hat{\theta}_{\pi}^{+}(\overrightarrow{0})\right] \\
& =\int \Delta u \Delta+\Delta \bar{\psi} e^{-S_{g} \mid v e t \int \bar{\psi} \mu \psi} \theta_{\pi}(\vec{x}, t) \theta_{\pi}^{+}(\overrightarrow{0}, 0)
\end{aligned}
$$

Trace in Hilbert space (transfer matrix)
(2) Path integral

The operator $\theta_{\pi}[u, \psi, \bar{\psi}]$ is an "interpolating operator" with the quantum numbers of the state of interest
e.g. for pion $\quad \theta_{\pi}(x)=\bar{u}(x) \gamma_{5} d(x)$
or e.g $\tilde{\theta}_{\pi}(x)=\overline{\tilde{u}}(x) \gamma_{4} \gamma_{5} \tilde{d}(x)$ i.e. "smeared" quark field with some with $\tilde{q}(x)=\sum_{y} f(x, y) q(y)$ smearing function $f(x, y)$

Starting from (1), rearrange to solve for t-dep of $C_{\pi}(\vec{x}, t)$

$$
\begin{align*}
C_{\pi}(\vec{x}, t) & =\frac{1}{z} \operatorname{Tr}\left[e^{-\hat{H}(T-t)} \hat{\theta}_{\pi}(\vec{r}) e^{-\hat{H} t} \hat{\theta}_{\pi}^{+}(\overrightarrow{0})\right] \\
& =\frac{1}{z} \sum_{\rho}\langle p| e^{-H(T-t)} \hat{\theta}_{\pi}(\vec{x}) e^{-H t} \hat{\theta}_{\pi}^{+}(\overrightarrow{0})|\rho\rangle \quad \text { (sum over all states in Hilbert space) } \\
& =\frac{1}{z} \sum_{\rho, \sigma}\langle p| e^{-\hat{H}(T-t)} \hat{\theta}_{\pi}(\vec{n})|\sigma\rangle\langle\sigma| e^{-H t} \hat{\theta}_{\pi}^{+}(\overrightarrow{0})|e\rangle \quad \text { (insert compute st t) } \\
& =\frac{1}{z} \sum_{p, \sigma} e^{-E_{e}(T-t)} e^{-E_{\sigma} t}\langle p| \hat{\theta}_{\pi}(\vec{x})|\sigma\rangle\langle\sigma| \hat{\theta}_{\pi}^{+}(\overrightarrow{0})|l\rangle \quad \text { (*) } \tag{*}
\end{align*}
$$

Similarly $z=\sum_{p}\langle p| e^{-\hat{H} T}|p\rangle=\sum_{p} e^{-E_{p} T}=e^{-E_{0} T}\left(1+e^{-\Delta E_{1} T}+e^{-\Delta E_{2} T}+\cdots \cdot\right)$
where $\Delta E_{n}=E_{n}-E_{0}, E_{0}$ the vacuum energy

Taking T large, only $|p\rangle=|0\rangle$ contributes to (*)

$$
\Rightarrow \quad C_{\pi}\left(\overrightarrow{x_{1}}, t\right) \underset{T \rightarrow \infty}{\longrightarrow} \sum_{\sigma}\langle 0| \hat{\theta}_{\pi}|\sigma\rangle\langle\sigma| \hat{\theta}_{\pi}{ }^{+}|0\rangle e^{-\Delta E_{\sigma} t}
$$

Project to zero three-momentum by taking $\sum_{\vec{x}}$

$$
\Rightarrow \quad C_{\pi}(t)=\sum_{\vec{x}} C_{\pi}(\vec{x}, t)=\sum_{\sigma(\vec{p}=0)}\left|z_{\sigma}\right|^{2} e^{-m_{\sigma} t}
$$

ie depends on energies of all states for which $z_{\sigma} \neq 0$ i.e. those that con be created from the vacum by the creation op $\theta^{+}(x, t)$
in general, a creation operator creates a state that is a linear combination of all possible e-states of H that have the same quantum \#s as the pion e.g., pion, excitations of the pion, three pions in $J=0$ state, etc, but a particular interpolator will have "stronger" overlap onto some states than others

Starting from (2) we see how to compute $C_{\pi}(t)$ in LeeCD:

$$
\begin{aligned}
& C_{\pi}(\vec{x}, t)=\int \Delta u \Delta \psi D \bar{\psi} e^{-S_{g} \operatorname{luce}+\int \bar{\psi} \mu \psi} \bar{\psi}_{u}(\vec{x}, t) \gamma_{5} \psi_{\alpha}(\vec{x}, t) \Psi_{d}(\overrightarrow{0}, 0) \gamma_{5} \psi_{u}(\overrightarrow{0}, 0) \\
& =\int D u \operatorname{det} M_{u} \operatorname{det} \mu_{d} e^{-S g l v e} \operatorname{Tr}\left[\mu_{u}^{-1}(\vec{x}, \overrightarrow{0}) \gamma_{5} \mu_{d}^{-1}(\overrightarrow{0}, \vec{l}) \gamma_{5}\right] \\
& \rightarrow \frac{1}{N_{c t g}} \sum_{i=1}^{N_{c t g}} \operatorname{Tr}\left[\mu_{u}^{-1}\left[u_{i}\right] \gamma_{s} \mu_{d}^{-1}\left[u_{i}\right] \gamma_{s}\right] \quad \uparrow
\end{aligned}
$$

where the ensemble is $\left\{u_{1}, \ldots, u_{\text {Nett }}\right\}$ computed by matrix inversion
\rightarrow sum over positions \vec{x} to compute $G_{\pi}(t)$

- Haring computed $C_{\pi}(t)$ numerically, fit to functional form (\#) to determine mass of lightest state with the given quantum \#s

To be concrete about fits:

$$
C_{\pi}(t)=\left|z_{0}\right| e^{2}-m_{0} t+\mid z_{1} e^{-m_{1} t}+\cdots
$$

constant
energy gap.
Effective mass: $m_{\text {eff }}(t)=\frac{1}{d} \ln \left(\frac{C_{\pi}(t)}{C_{\pi}(t+d)}\right)=m_{0}+A e^{-\Delta \sin t}+\ldots$.

typically computed with bootstrap or jaclenife resampling

I Growth of noise is exponential with t - come bach to this later
-estimate m_{0} as the average of points in the "plateau" region

- More sophisticated: fit to (multi)-exponential functioned form ($x^{2}-\min$) (must take care to take correlations into account)
- Can determine excited states by fitting multi-exponential form to $C_{T}(t)$, but it is difficult. More typical: choose set of intupolating ops with same quantum \#s $\left\{\theta_{1}, \theta_{2}, \ldots, \theta_{w}\right\}$ and form $N \times N$ matrix of comelators, $\quad C_{i j}(t)=\frac{1}{z} \operatorname{Tr}\left[e^{-\hat{H}(T-t)} \hat{\theta}_{i} e^{-H t} \hat{\theta}_{j}^{\dagger}\right] \xrightarrow[T \rightarrow \infty]{\longrightarrow} \sum_{\sigma} Z_{i j}^{(\sigma)} e^{-E_{\sigma} t}$ ie. same energies but dittarent overlaps \rightarrow solve eigenvalue problem for E_{σ}

Example \#2: Matrix elements: g_{A}
I sovector axial coupling of the nucleon is defined by the matrix element

Relate desired matrix element to 3 ot function

$$
\text { egg } \theta_{N, \alpha} \sim \varepsilon^{a b c}\left(u^{a} c_{\gamma_{5}} d^{b}\right) u_{\alpha}^{c}{ }_{\text {cospin }}^{c}
$$

$$
\begin{aligned}
C_{3}^{\mu}(t, \tau) & =\frac{1}{z} \sum_{x, y} \kappa^{m+m \cdot o} \operatorname{Tr}\left[e^{-\hat{H}(T-t)} \theta_{N}(\vec{x}) e^{-\hat{H}(t-\tau)} J_{\mu s}^{3}(\vec{y}) e^{-\hat{H} \tau} \theta_{N}^{+}\binom{-1}{0}\right] \\
& \underset{T \rightarrow \infty}{\longrightarrow} \sum_{x, y} \sum_{n, m}\langle 0| \hat{\theta}_{N}|n\rangle\langle n| e^{-\hat{H}(t-\tau)} J_{\mu s}^{3} e^{-\hat{H} \tau}|m\rangle\langle m| \hat{\theta}_{N}^{+}|0\rangle \\
& =\sum_{x, y} \sum_{n, m} Z_{n} z_{m}^{1} e^{-E_{n}(t-\tau)} e^{-E_{m} \tau}\langle n| J_{\mu s}^{3}|m\rangle
\end{aligned}
$$

- Use 2pt function with same θ_{N} to determine $Z_{n} E_{n}$ Copter useful to use ratios of 3pt/2pt to eliminate leading time-dep before fitting)

Compute supt function in terms of quark propagators: "skeleton diagram"
 illustrate different contractions

What hinds of correlation functions are calculated?
Dpt functions: spectroscopy...
3 pt functions - matrix elements of local operators

- GA, nucleon electromagnetic form factors, moments of parton distribution f f^{n}, $B-T$ decay form factor to constrain Clem matrix elements...
Set function - matrix elements of non-local operators
- quasi/psevdo PDF, TMDS...

Apt functions

- double-B decay matrix elements, $k-\bar{u}$ mass difference...

Workflow of LCeCD calculation
(1) Generate ensemble of field configwations by Hamiltanian/ttybrid Monte carlo ~ 1004 cores or 1000 opus
(2) Compute propagators: $\operatorname{det}(m), m^{-1}$ expensive - use iterative method e.5. conjugate graclient ~few 100s oPUs, but many per config
(3) contract into correlation functions
~ few opus / apus
(4) Fits, analysis \sim local cluster scale
5. Building intuition

Uncertainties

- Statistical ~ $1 / \sqrt{N}_{\text {meas }}$ scaling
- fits to correlation functions - systematics on fit forms, range,...
- $a \rightarrow 0\}$ calculations on several ensembles \rightarrow extrapolate
- m_{π}, CSV, CED, chiral sym,\} ~ p o s s i b l y ~ n e g l e c t e d . . . ~

What is hard/expenjive

- light quarle masses
computing propagators is move expensive for lighter masses:
requires inverting (Dirac) matrices which get closer to singular
[instead of conjugate gradient, algorithms such as adaptive multigrid]
Also, finile-wolume effects ret by longest correlation length (i.e. π)
\rightarrow lighter quark masses \Rightarrow larger lattice wlumes needed
- large lattice volumes

Large number of degrees of freedom for each configuration / propagator ete \rightarrow just computationally expensive! [Also. Divas op has mare low modes...]

- fine lattice spacings

Hybrid Monte Carlo (HMC) algorithm used to generate gauge fields involves dose-to-local updates \rightarrow more steps needed to update at scale of relevent correlation length as $a \rightarrow 0$ i.e. "Critical slowing-down" and cost of ensemble generation increases as $a \rightarrow 0$

- large Euclidean times

Euclidean time-evolution dampens excited states, but sighal/noise degrades with t : apt function for proton:

$$
\begin{aligned}
& C(t)=\left\langle\sum_{\bar{x}} 999(\vec{x}, t) \bar{q} \bar{q} \bar{q}(\overrightarrow{0}, 0)\right\rangle \underset{\text { out quacks }}{\text { integrate }} \\
& \rightarrow z e^{-m_{N} t}
\end{aligned}
$$

variance given by $\left.\operatorname{var}(c)=\left.\langle | c\right|^{2}\right\rangle-|\langle c\rangle|^{2}$ and $\left.\left.\langle | C\right|^{2}\right\rangle=\left\langle\sum_{\vec{x}} 999(\vec{x}) \sum_{\vec{j}} \bar{q} \overline{9} \bar{q}(\vec{j}) 99 q(\overrightarrow{0}) \bar{q} \bar{q} \bar{g}(0)\right\rangle$

States that propagate are $N+\bar{N}$ but also 3π :

$$
\begin{aligned}
& \left.\left.\langle | c\right|^{2}\right\rangle \sim \tilde{z} e^{-3 m_{\pi} t}+\hat{z} e^{-2 m_{N} t}+\cdots \quad 3 m_{\pi}\left\langle 2 m_{N} \rightarrow 1^{1+}\right. \text { term dominant. } \\
\Rightarrow & \text { signal/noise } \sim\langle c\rangle / \sqrt{v a r(c)} \sim \exp \left(-\left(m_{N}-3 / 2 m_{\pi}\right)\right) t
\end{aligned}
$$

- excitecel states

Damped out exponentially by Euclidean time-erolution Variational method is expensive - need whole matrix of covelators $\left[\begin{array}{l}\text { Also, need interpolating ops with good overlap onto states -perhaps less } \\ \text { intuitive than for ground states }\end{array}\right]$

- Large momenta

For non-zes hadron momenta, signal $\sim \exp (-E(p) t)$
but in variance the quork/artiquach have opposite momenta: $p+(-p)=0$
\Rightarrow variance is still $\exp \left(-3 m_{\pi} t\right)$
\Rightarrow signal/noise $\sim \exp (-(E(p)-3 / 2 m \pi)) t$ ie. worse with increasing p.
[Also, a move dense excited state spectrum]

- nuder

Sighal-to-noise issues like for large momenta, but also factorial growth in \# contractions with atomic number A.
"Typical" scales:

- latlice spacing - $a \sim 0.04-0.12 \mathrm{fm}$
- lattice volume - $L^{3} \times T \sim 24^{3} \times 48$ - $128^{3} \times 256$
[ie. $128^{3} \times 256 \times 4 \times \mathrm{Nc}^{2} \times 2^{\text {drelim }} \sim 4 \times 10^{10}$ i.e. 320 GB per sample]
- Number el configs - 100-10,000
- Number of meaurements - 100 - 100 K
- quarle masses - $m_{\pi} \sim 140 \mathrm{meV}-800 \mathrm{meV}$, sometimes lighter
- $N_{f}-N_{f}=0,2,2+1,3,2+1+1,2+1+1+1$
- computing resources - small calculations ~few m cove-hours
state-of-the-ort ~ multi-year, loos m cove-hours

Usefu references
Creutz: Quorks, glows and laltices
Montvay + Münster: Quartum fields on the lattice
Debrand + Detar: Lattive methods for quantum chromodynamics
battvinger + Lang: Quantum chwomodynamics on the lattice
Luscher: Computational strategies in Leecd arxiv:1002.4232.

