Lattice-to-continuum factorization for TMDs

Stella Schindler

TMD Collaboration Meeting, Santa Fe
Thursday, June 16, 2022

Collaborators:
Yong Zhao (Argonne)
Iain Stewart (MIT) Markus Ebert (Industry)

Support:

Based on:
2004.14831
2201.08401
2205.12369

So I can breeze through the usual intro.

Introduction to lattice

Figure: Martha Stewart's website.

What "TMD" means

urban

TMD
$+84$

TMD
y f

CENSORED

in Chinese. In the phonetic system it is spelled "ta ma de". That's where the TMD comes from.

1. Aw, TMD! She didn't pickup and I have called her 5,000 times already.
2. Stop TMDing with me. It ain't cool bro.
by UrbanPerson June 13, 2015

Motivation:

Non-perturbative contributions to TMDs, from first principles

You can't put a TMD on the lattice directly

Defined by lightcone Wilson lines:
> Dependent on time variable
> Naïve discretization \rightarrow real-time "sign problem"
> Prohibitive computational cost!

Instead, calculate TMDs indirectly:

1. Projection: time-dependent \rightarrow equal-time Wilson line
2. Factorization: formula relating physical \& lattice TMDs

Three key ingredients

1. Numerically tractable "Lattice TMDs"
2. Precision lattice calculations
3. Connection to physical TMDs

TMD factorization

Experimental data (e.g. Drell-Yan process)

$$
d \sigma=H \int f \otimes f
$$

Renormalized continuum QCD

$$
f=Z_{U V} \frac{B}{\sqrt{S}}
$$

$$
f=C \times \tilde{f}_{\text {lattice }}
$$

Outline of today's lecture

	Me	You
I. Historical overview	P	0
II. New notation	(0)	,
III. Factorization	©	808
IV. Outlook	09	衰

Historical overview of lattice TMDs

2013 First lattice TMD proposed: MHENS scheme Musch, Hägler, Engelhardt, Negele, and Schäfer

2014 New lattice scheme proposed (quasi), 1-loop calculations Xiangdong Ji

Lattice calculations of MHENS beam functions MHENS and collaborators

Theory of quasi-TMDs put on firmer footing Ebert, Stewart, and Zhao

2019 Proposal for lattice calculation of quasi-soft function Ji, Liu, and Liu

First lattice results for CS kernel \& quasi-soft function MIT, LPC, ETMC, and Regensburg lattice groups

MHENS scheme

> Pioneered lattice TMDs
$>$ Focused on x-moments
$>$ Renormalization, soft function not fully known

Quasi-TMDs

$>$ Newer; fewer results for proton
$>$ Focused on full TMD
$>$ Renormalization, soft function have been proposed

MHENS on the lattice

Example: sign change of the Sivers function in SIDIS \& Drell-Yan:

[Yoon, Engelhardt, Gupta, et al. (PRD 2017).]

Many observables have been studied!

Quasi-TMDs on the lattice

Recent first calculations of all TMD components!

CS Kernel

[Shanahan, Wagman, \& Zhao (PRD 2021).]

Reduced soft function
[LPC collaboration (PRL 2020).]

Reduced soft function

[Li et al. (PRL 2022).]

Three key ingredients

1. Numerically tractable "Lattice TMDs"
2. Precision lattice calculations
3. Connection to physical TMDs?

A plethora of TMD definitions...

Modern Collins

$$
\tilde{f}_{i / p}\left(x, \mathbf{b}_{T}, \mu, \zeta\right)=\lim _{\epsilon \rightarrow 0} Z_{\mathrm{uv}}(\mu, \zeta, \epsilon) \lim _{y_{B} \rightarrow-\infty} \frac{\tilde{f}_{i / p}^{0(\mathrm{u})}\left(x, \mathbf{b}_{T}, \epsilon, y_{B}, x P^{+}\right)}{\sqrt{\tilde{S}_{n_{A}(y}^{0}}}
$$

Echevarria, Idilbi, Scimemi

Chiu, Jain, Neill, Rothstein

$$
\tilde{f}_{i / p}\left(x, \mathbf{b}_{T}, \mu, \zeta\right)=\lim _{\epsilon \rightarrow 0} Z_{\mathrm{uv}}^{i}(\mu, \zeta, \epsilon) \frac{\tilde{f}_{i / p}^{0(u)}\left(x, \mathbf{b}_{T}, \epsilon, \delta^{+} /\left(x P^{+}\right)\right)}{\sqrt{\tilde{S}_{\mathrm{EIS}}^{0}\left(b_{T}, \epsilon, \delta^{+} e^{-y_{n}}\right)}}
$$

Ji, Ma, Yuan

$$
\lim _{\substack{\epsilon \rightarrow 0 \\ \alpha \rightarrow 0}}\left[\tilde{f}_{i / p}^{0(\mathrm{u}), \mathrm{BN}}\left(x_{1}, \mathbf{b}_{T}, \epsilon, \alpha, x_{a} P_{A}^{+}\right) \tilde{f}_{j / p}^{0(\mathrm{u}), \mathrm{BN}}\left(x_{2}, \mathbf{b}_{T}, \epsilon, \alpha, x_{b} P_{B}^{-}\right)\right]
$$

$$
\tilde{f}_{i / p}\left(x_{a}, \mathbf{b}_{T}, \mu, x_{a} \tilde{\zeta}_{a} ; \rho\right)=\lim _{\epsilon \rightarrow 0} Z_{\mathrm{uv}}^{i}(\mu, \rho, \epsilon) \frac{\tilde{f}_{i / p}^{0(u)}\left(x_{a}, \mathbf{b}_{T}, \epsilon, v, x P^{+}\right)}{\sqrt{\tilde{S}_{v \bar{v}}^{0}\left(b_{T}, \epsilon, \rho\right)}}+O\left(v^{+}, \bar{v}^{-}\right)
$$

$$
\left.\left(x_{2}, \mathbf{b}_{T}, \mu, \zeta=b_{0}^{2} / b_{T}^{2}\right)\right]
$$

Etc!

Let's sort this all out!

General structure of a TMD

$f=\lim _{\text {lightcone },} Z_{U V} \frac{B_{q_{i} / H}^{[\Gamma]}}{\sqrt{S^{R}}}$ renormalization

Beam function:

Soft factor:

Unifying notation in the literature

Can describe lattice \& continuum off-lightcone schemes using the same generic beam function \& soft factor

Each scheme is characterized by a distinct set of arguments \& limits

Structure of the correlators

$$
\text { Beam }=\langle P| \bar{q}_{i} \frac{\Gamma}{2} W_{\sqsupset}^{F}(\boldsymbol{b}, \eta v, \delta) q_{i}|P\rangle
$$

$$
\text { Soft }=\frac{1}{d_{R}}\langle 0| \operatorname{Tr}\left[S_{⿱ 丶 万-}^{R}(b, \eta v, \bar{\eta} \bar{v})\right]|0\rangle
$$

$>\mathbf{b}^{\mu}, \eta \mathbf{v}^{\mu}, \delta^{\mu}$ ： parametrize Wilson lines
$>$ Length η ：finite（lattice）or infinite（physical TMD）

$$
\begin{aligned}
>\delta^{\mu} & =\left(0,0,0, \tilde{b}^{z}\right) \text { for quasi } \\
& =(0,0,0,0) \text { for MHENS }
\end{aligned}
$$

Neat \& tidy charts!

	Collins TMD (continuum)	Quasi-TMD (lattice)
TMD	$\lim _{\epsilon \rightarrow 0} Z_{\mathrm{UV}}^{\kappa_{i}} \lim _{y_{B} \rightarrow-\infty} \frac{\Omega_{i / h}}{\sqrt{\Lambda^{\kappa_{i}}}}$	$\lim _{a \rightarrow 0} Z_{\mathrm{UV}}^{\kappa_{i}} \frac{B_{i / h}}{\sqrt{\tilde{S}^{\kappa_{i}}}}$
Beam function	$\Omega_{i / h}\left[b, P, \epsilon,-\infty n_{B}\left(y_{B}\right), b^{-} n_{b}\right]$	$\Omega_{i / h}\left(\tilde{b}, \tilde{P}, a, \tilde{\eta} \hat{z}, \tilde{b}^{z} \hat{z}\right)$
Soft function	$S^{\kappa_{i}}\left[b_{\perp}, \epsilon,-\infty n_{A}\left(y_{A}\right),-\infty n_{B}\left(y_{B}\right)\right]$	$S^{\kappa_{i}}\left[b_{\perp}, a,-\tilde{\eta} \frac{n_{A}\left(y_{A}\right)}{\left.n_{A}\left(y_{A}\right)\right]},-\tilde{\eta} \frac{n_{A}\left(y_{A}\right)}{\left.\mid n_{A}\left(y_{A}\right)\right]}\right]$
b^{μ}	$\left(0, b^{-}, b_{\perp}\right)$	$\left(0, b_{T}^{x}, b_{T}^{y}, \tilde{b}^{z}\right)$
v^{μ}	$\left(-e^{2 y_{B}}, 1,0_{\perp}\right)$	$(0,0,0,-1)$
δ^{μ}	$\left(0, b^{-}, 0_{\perp}\right)$	$\left(0,0,0, \tilde{b}^{z}\right)$
P^{μ}	$\frac{m_{h}}{\sqrt{2}}\left(e^{y_{P}}, e^{-y_{P}}, 0_{\perp}\right)$	$m_{h}\left(\cosh y_{\tilde{P}}, 0,0, \sinh y_{\tilde{P}}\right)$

Outline of today's lecture

	Me	You
Historical overview	9	(-)
II. New notation	(0)	-
III. Factorization	0	Sor
IV. Outlook	09	3

Unified notation \rightarrow straightforward to see relationships

Lattice schemes

Continuum schemes

Our target

Lattice schemes

Continuum schemes

Factorization derivation steps

Lattice

Step 1: same at large rapidity $\mathrm{P}^{\mathrm{z}} \gg \Lambda_{\mathrm{QCD}}$
$>$ Expand \& relate their variables
$>$ Take Wilson line length $|\eta| \rightarrow \infty$

Step 2: need a matching coefficient
$>$ Different UV renormalizations
> Nontrivial relationship

Continuum

Focus on beams: quasi-soft function is chosen to reproduce the Collins soft function

Step 1: Quasi to Large Rapidity

Compare Lorentz invariants formed from beam function arguments $\mathrm{b}^{\mu}, \mathrm{P}^{\mu}, \delta^{\mu}, \eta \mathrm{v}^{\mu}$

Use boosts to show quasi $=\mathrm{LR}$ as $|\boldsymbol{\eta}| \rightarrow \infty \boldsymbol{\&} \mathbf{P}^{\mathbf{z}} \gg \boldsymbol{\Lambda}_{\mathbf{Q C D}}$

	Quasi	LR
b^{2}	$-b_{T}^{2}-\left(\tilde{b}^{z}\right)^{2}$	$-b_{T}^{2}$
$(\eta v)^{2}$	$-\tilde{\eta}^{2}$	$-2 \eta^{2} e^{2 y_{B}}$
$P \cdot b$	$-m_{h} \tilde{b}^{z} \sinh y_{\tilde{P}}$	$\frac{m_{h}}{\sqrt{2}} b^{-} e^{y_{P}}$
$\frac{b \cdot(\eta v)}{\sqrt{\left\|(\eta v)^{2} b^{2}\right\|}}$	$\frac{\tilde{b}^{z}}{\sqrt{\left(\tilde{b}^{z}\right)^{2}+b_{T}^{2}}} \operatorname{sgn}(\eta)$	$-\frac{b^{-} e^{y_{B}}}{\sqrt{2} b_{T}} \operatorname{sgn}(\eta)$
$\frac{P \cdot(\eta v)}{\sqrt{P^{2}\|\eta v\|^{2}}}$	$\sinh y_{\tilde{P}} \operatorname{sgn}(\eta)$	$\sinh \left(y_{P}-y_{B}\right) \operatorname{sgn}(\eta)$
$\frac{\delta^{2}}{b^{2}}$	$\frac{\left(\tilde{b}^{z}\right)^{2}}{b_{T}^{2}+\left(\tilde{b}^{z}\right)^{2}}$	0
$\frac{b \cdot \delta}{b^{2}}$	$\frac{\left(\tilde{b}^{z}\right)^{2}}{b_{T}^{2}+\left(\tilde{b}^{z}\right)^{2}}$	0
$\frac{P \cdot \delta}{P \cdot b}$	1	1
$\frac{\delta \cdot(\eta v)}{b \cdot(\eta v)}$	1	1
P^{2}	m_{h}^{2}	m_{h}^{2}

Step 1: Quasi to Large Rapidity

Examine all 10 Lorentz invariants:

Need $\widetilde{\boldsymbol{\eta}}=\sqrt{2} e^{y_{B}} \boldsymbol{\eta}$

Need $y_{P}-y_{B}=y_{\widetilde{P}}$

	Quasi	LR
b^{2}	$-b_{T}^{2}-\left(\tilde{b}^{z}\right)^{2}$	$-b_{T}^{2}$
$(\eta v)^{2}$	$-\tilde{\eta}^{2}$	$-2 \eta^{2} e^{2 y_{B}}$
$P \cdot b$	$-m_{h} \tilde{b}^{z} \sinh y_{\tilde{P}}$	$\frac{m_{h}}{\sqrt{2}} b^{-} e^{y_{P}}$
$\frac{b \cdot(\eta v)}{\sqrt{\left\|(\eta v)^{2} b^{2}\right\|}}$	$\frac{\tilde{b}^{z}}{\sqrt{\left(\tilde{b}^{z}\right)^{2}+b_{T}^{2}}} \operatorname{sgn}(\eta)$	$-\frac{b^{-} e^{y_{B}}}{\sqrt{2} b_{T}} \operatorname{sgn}(\eta)$
$\frac{P \cdot(\eta v)}{\sqrt{P^{2}\|n v\|^{2}}}$	$\sinh y_{\tilde{P}} \operatorname{sgn}(\eta)$	$\sinh \left(y_{P}-y_{B}\right) \operatorname{sgn}(\eta)$
$\frac{\delta^{2}}{b^{2}}$	$\frac{\left(\tilde{b}^{z}\right)^{2}}{b^{2}+\left(\tilde{h}^{z}\right)^{2}}$	0
$\frac{b \cdot \delta}{b^{2}}$	$\frac{\left(\tilde{b}^{z}\right)^{2}}{b_{T}^{2}+\left(\tilde{b}^{z}\right)^{2}}$	0
$\frac{P \cdot \delta}{P \cdot b}$	1	1
$\frac{\delta \cdot(\eta v)}{b \cdot(\eta v)}$	1	1
P^{2}	m_{h}^{2}	m_{h}^{2}

Step 2: Large Rapidity to Collins

	TMD	Beam function	Soft function
Collins	$\lim _{\epsilon \rightarrow 0} \lim _{y_{B} \rightarrow-\infty} Z_{U V}^{R} \frac{\Omega_{i / h}}{\sqrt{S^{R}}}$	$\Omega_{q / h}^{\left[\gamma^{+}\right]}\left[b, P, \epsilon,-\infty n_{B}\left(y_{B}\right), b^{-} n_{b}\right]$	$S^{R}\left[b_{\perp}, \epsilon,-\infty n_{A}\left(y_{A}\right),-\infty n_{B}\left(y_{B}\right)\right]$
LR	$\lim _{-y_{B} \gg 1} \lim _{\epsilon \rightarrow 0} Z_{U V}^{R} \frac{\Omega_{i / h}}{\sqrt{S^{R}}}$	$\Omega_{q / h}^{\left[\gamma^{+}\right]}\left[b, P, \epsilon,-\infty n_{B}\left(y_{B}\right), b^{-} n_{b}\right]$	$S^{R}\left[b_{\perp}, \epsilon,-\infty n_{A}\left(y_{A}\right),-\infty n_{B}\left(y_{B}\right)\right]$

Fundamental principle of EFT (here, LaMET):
$>$ Flipping an order of UV limits does not affect IR physics
> However, it can induce a perturbative matching coefficient

$$
\boldsymbol{f}_{\boldsymbol{L R}}=C_{i}\left(x \tilde{P}^{z}, \mu\right) \boldsymbol{f}_{\text {Collins }}
$$

Steps $1+2 \rightarrow$ Factorization

Quasi-TMD (lattice)

Collins TMD (continuum)

$$
\tilde{\boldsymbol{f}}_{i / H}^{[s]}\left(x, \overrightarrow{\boldsymbol{b}}_{T}, \boldsymbol{\mu}, \tilde{\zeta}, \mathrm{x} \widetilde{P}^{z}\right)=C_{i}\left(x \tilde{P}^{z}, \mu\right) \exp \left[\frac{1}{2} \gamma_{\zeta}^{i}\left(\mu, b_{T}\right) \ln \frac{\tilde{\zeta}}{\zeta}\right] \boldsymbol{f}_{i / H}^{[s]}\left(x, \overrightarrow{\boldsymbol{b}}_{T}, \boldsymbol{\mu}, \zeta\right)
$$

$$
\tilde{\zeta}=\left(2 x \tilde{P}^{z}\right)^{2} e^{2\left(y_{B}-y_{n}\right)}
$$

Power corrections

$$
\times\left\{1+0\left[\frac{1}{\left(x \tilde{P}^{z} b_{T}\right)^{2}}, \frac{\Lambda_{Q C D}^{2}}{\left(x \tilde{P}^{z}\right)^{2}}\right]\right\}
$$

RGE for ζ

Note that this formula connects physical continuum TMDs to the renormalized continuum limit of lattice calculations.

Matching coefficient?

$$
\tilde{f}_{i / H}^{[s]}\left(x, \vec{b}_{T}, \mu, \tilde{\zeta}, x \widetilde{P}^{z}\right)=C_{i}\left(x \widetilde{P}^{z}, \boldsymbol{\mu}\right) \exp \left[\frac{1}{2} \gamma_{\zeta}^{i}\left(\mu, b_{T}\right) \ln \frac{\tilde{\zeta}}{\zeta}\right] f_{i / H}^{[s]}\left(x, \vec{b}_{T}, \mu, \zeta\right)
$$

NLO:

$$
C_{i}\left(\mu, x \tilde{P}^{z}\right)=1+\frac{\alpha_{s} C_{R}}{4 \pi}\left[-\ln ^{2} \frac{\left(2 x P^{z}\right)^{2}}{\mu^{2}}+\frac{2 \ln \left(2 x P^{z}\right)^{2}}{\mu^{2}}-4+\frac{\pi^{2}}{6}\right]+O\left(\alpha_{s}^{2}\right)
$$

$\mathbf{N}^{n} \mathbf{L L}$:

$$
C_{i}\left(x \tilde{P}^{z}, \mu\right)=C_{i}\left[\alpha_{S}(\mu)\right] \exp \left[\int_{\alpha_{S}(\mu)}^{\alpha_{S}\left(2 x \tilde{P}^{z}\right)} \frac{d \alpha}{\beta[\alpha]} \int_{\alpha}^{\alpha_{S}(\mu)} \frac{d \alpha^{\prime}}{\beta\left[\alpha^{\prime}\right]}\left(2 \Gamma_{c u s p}^{i}\left[\alpha^{\prime}\right]+\gamma_{C}^{i}[\alpha]\right)\right]
$$

Etc.

Focus on general features, not calculations...

Gluon matching coefficient at NLO

Focus on general features, not calculations...

(d)
$G_{b}^{\sigma \nu}\left(-\frac{b}{2}\right) G_{a}^{\rho \mu}\left(\frac{b}{2}\right) \quad G_{b}^{\sigma \nu}\left(-\frac{b}{2}\right) G_{a}^{\rho \mu}\left(\frac{b}{2}\right)$

${ }^{\frac{1}{2}}{ }^{p}$

(e)

(f)

(g)

(h)
(Key simplification: only rapidity-divergent pieces can contribute.)
NLO: Casimir scaling for quarks and gluons

$$
C_{i}\left(\mu, x \tilde{P}^{z}\right)=1+\frac{\alpha_{s} C_{R}}{4 \pi}\left[-\ln ^{2} \frac{\left(2 x P^{z}\right)^{2}}{\mu^{2}}+\frac{2 \ln \left(2 x P^{z}\right)^{2}}{\mu^{2}}-4+\frac{\pi^{2}}{6}\right]+O\left(\alpha_{S}^{2}\right)
$$

Matching coefficient

C_{i} is independent of
spin and quark flavor

		Quark polarization		
		U	L	T
	U	$\begin{gathered} f_{1} \\ \text { unpolarized } \end{gathered}$		h_{1}^{\perp} Boer-Mulders
	L		$g_{1 L}$ helicity	$h_{1 L}^{\perp}$ worm-gear
	T	$f_{1 T}^{\perp}$ Sivers	$\begin{gathered} g_{1 T} \\ \text { worm-gear } \end{gathered}$	$h_{1}, h_{1 T}^{\perp}$ transversity, pretzelosity

Two coefficients $\boldsymbol{C}_{\boldsymbol{q}} \& \boldsymbol{C}_{\boldsymbol{g}}$: no quark-gluon mixing

Can extract TMD spin/flavor/hadron ratios from lattice beam functions:

$$
\lim _{\widetilde{\eta} \rightarrow \infty} \frac{\boldsymbol{f}_{q_{i} / h}^{\left[\widetilde{\Gamma}_{1}\right]}}{\boldsymbol{f}_{q_{j} / h^{\prime}}^{\left[\widetilde{\Gamma}_{2}\right]}}=\lim _{\tilde{\eta} \rightarrow \infty} \frac{\widetilde{\boldsymbol{B}}_{q_{i} / h}^{\left[\widetilde{\boldsymbol{T}}_{1}\right]}}{\widetilde{\boldsymbol{B}}_{q_{j} / h^{\prime}}^{\left[\widetilde{\Gamma}_{2}\right]}}
$$

Can see from factorization formulas:

MHENS-to-Collins factorization

Lattice schemes

Continuum schemes

MHENS-to-Collins at $P \cdot b=0$

This case was the focus of the MHENS authors. Equivalent soft function, renormalization, etc. as quasi-TMDs:

$$
\int \mathrm{d} x \tilde{f}_{q_{i} / h}^{[\Gamma]}\left(x, \vec{b}_{T}, \mu, \tilde{\zeta}, x \tilde{P}^{z}, \tilde{\eta}\right)=f_{q_{i} / h}^{[\Gamma] \text { MHENS }}\left(b^{z}=0, \vec{b}_{T}, \mu, \tilde{P}^{z}, y_{n}-y_{B}, \tilde{\eta}\right)
$$

So, factorization is straightforward, involves a convolution:

$$
\lim _{\tilde{\eta} \rightarrow \infty} \tilde{f}_{q_{i} / h}^{[\Gamma] \text { MHENS }}\left(b^{z}=0, \vec{b}_{T}, \mu, \tilde{P}, y_{n}-y_{B}, \tilde{\eta}\right)=\int \mathrm{d} x C_{q}\left(x \tilde{P}^{z}, \mu\right) f_{q_{i} / h}^{[\Gamma]}\left(x, \vec{b}_{T}, \mu, \zeta\right)
$$

Thus, our factorization derivation implies that all MHENS scheme calculations carried out so far have a rigorous connection to physical TMDs.

MHENS at $P \cdot b \neq 0$ (x dependence)

b^{z}-dependent Wilson line length:

$$
L_{\text {staple }}^{\text {MHENS }}=2|\tilde{\eta} v|+|b|
$$

Nontrivial cusp angles, even as $\eta \rightarrow \infty$:

$$
\cosh [\gamma(v, b)]= \pm \frac{v \cdot b}{|v||b|}
$$

Length of a four-vector: $|X|=\sqrt{\left|X^{2}\right|}$
Complications:
$>$ Renormalization \& soft function would be $\mathrm{b}^{\text {z}}$-dependent
$>$ These won't cancel out in ratios at finite η

Summary of results

1. New unified notation
2. New scheme (LR)
3. Continuum-to-lattice factorization
4. Matching coefficient: convenient!

Take-home messages

When constructing a lattice observable, it is helpful to consider the full phase space of options.

Balancing analytic \& numerical challenges...
$>$ Computational cost
$>$ Relationship with physical observable
$>$ Proper definition (renormalization, soft function, finiteness)

There is much to pursue on the lattice!

Proposal to rebrand quasi-TMDs

Lattice TMDs: MHENS and LADIEZ

LaMET
Approach
Developed (in part) by
Iain,
Ebert, and

Zhao

