Lattice-to-continuum factorization for TMDs

Stella Schindler

TMD Collaboration Meeting, Santa Fe Thursday, June 16, 2022

<u>Collaborators:</u> Yong Zhao (Argonne) Iain Stewart (MIT) Markus Ebert (Industry)

Based on: 2004.14831 2201.08401 2205.12369

You've already seen many TMD talks...

So I can breeze through the usual intro.

The parton model...

Figure: People magazine.

Introduction to lattice

Figure: Martha Stewart's website.

What "TMD" means

Figure: Urban Dictionary.

Motivation:

Non-perturbative contributions to TMDs, from first principles

You can't put a TMD on the lattice directly

Defined by **lightcone Wilson lines**:

- > Dependent on time variable
- ➢ Naïve discretization → real-time "sign problem"
- > Prohibitive computational cost!

Instead, calculate TMDs indirectly:

- **1.** Projection: time-dependent → equal-time Wilson line
- 2. Factorization: formula relating physical & lattice TMDs

Three key ingredients

- 1. Numerically tractable "Lattice TMDs"
- 2. Precision lattice calculations
- **3. Connection to physical TMDs**

TMD factorization

Collins, Foundations of Perturbative QCD. Ebert, Schindler, Stewart, and Zhao (JHEP 2022).

Outline of today's lecture

Historical overview of lattice TMDs

- 2013 **First lattice TMD proposed: MHENS scheme** Musch, Hägler, Engelhardt, Negele, and Schäfer
- 2014 New lattice scheme proposed (quasi), 1-loop calculations Xiangdong Ji
 - **Lattice calculations of MHENS beam functions** MHENS and collaborators
 - **Theory of quasi-TMDs put on firmer footing** Ebert, Stewart, and Zhao

2019

2018

Proposal for lattice calculation of quasi-soft function Ji, Liu, and Liu

2020-22

First lattice results for CS kernel & quasi-soft function MIT, LPC, ETMC, and Regensburg lattice groups

Two main lattice approaches

MHENS scheme

- Pioneered lattice TMDs
- \succ Focused on *x*-moments
- Renormalization, soft function not fully known

Quasi-TMDs

- > Newer; fewer results for proton
- Focused on full TMD
- Renormalization, soft function have been proposed

MHENS on the lattice

Example: sign change of the Sivers function in SIDIS & Drell-Yan:

[Yoon, Engelhardt, Gupta, et al. (PRD 2017).]

Many observables have been studied!

Quasi-TMDs on the lattice

Recent first calculations of <u>all</u> TMD components!

CS Kernel

[Shanahan, Wagman, & Zhao (PRD 2021).]

Reduced soft function

[LPC collaboration (PRL 2020).]

Reduced soft function

[Li et al. (PRL 2022).]

Three key ingredients

- 1. Numerically tractable "Lattice TMDs" 🔽
- 2. Precision lattice calculations $\overline{\mathbb{Z}}$
- 3. Connection to physical TMDs?

A plethora of TMD definitions...

Modern Collins

$$\begin{aligned}
\tilde{f}_{i/p}(x, \mathbf{b}_{T}, \mu, \zeta) &= \lim_{e \to 0} Z_{uv}(\mu, \zeta, e) \lim_{y_{B} \to -\infty} \frac{\tilde{f}_{i/p}^{0(u)}(x, \mathbf{b}_{T}, e, y_{B}, x^{P^{+}})}{\sqrt{\tilde{S}_{n_{A}(j)}^{0}}} \quad \text{Echevarria, Idilbi, Scimemi} \\
\text{Chiu, Jain, Neill, Rothstein} \quad \tilde{f}_{i/p}(x, \mathbf{b}_{T}, \mu, \zeta) &= \lim_{e \to 0} Z_{uv}^{i}(\mu, \zeta, e) \frac{\tilde{f}_{i/p}^{0(u)}(x, \mathbf{b}_{T}, e, \delta^{+}/(x^{P^{+}}))}{\sqrt{\tilde{S}_{CJNR}^{0}(b_{T}, e, \eta)}} \\
\tilde{f}_{i/p}(x, \mathbf{b}_{T}, \mu, \zeta) &= \lim_{e \to 0} Z_{uv}^{i}(\mu, \zeta, e) \tilde{f}_{i/p}^{0(u)}(x, \mathbf{b}_{T}, e, \eta, x^{P^{+}}) \sqrt{\tilde{S}_{CJNR}^{0}(b_{T}, e, \eta)} \\
\tilde{f}_{i/p}(x, \mathbf{b}_{T}, \mu, \chi_{a}^{\zeta}, \rho) &= \lim_{e \to 0} Z_{uv}^{i}(\mu, \rho, e) \frac{\tilde{f}_{i/p}^{0(u)}(x, \mathbf{b}_{T}, e, \alpha, x_{a}P_{A}^{+})\tilde{f}_{j/p}^{0(u),BN}(x_{2}, \mathbf{b}_{T}, e, \alpha, x_{b}P_{B}^{-})] \\
\text{Ji, Ma, Yuan} \quad I_{k^{2}C^{2}\lambda^{-}\gamma_{*}^{g}(\mu, b_{T})} \\
\tilde{f}_{i/p}(x_{a}, \mathbf{b}_{T}, \mu, x_{a}^{\zeta}, \zeta_{a}; \rho) &= \lim_{e \to 0} Z_{uv}^{i}(\mu, \rho, e) \frac{\tilde{f}_{i/p}^{0(u)}(x_{a}, \mathbf{b}_{T}, e, \gamma, x^{P^{+}})}{\sqrt{\tilde{S}_{v\bar{v}}^{0}(b_{T}, e, \rho)}} + O(v^{+}, \bar{v}^{-}). \\
\text{Etc!}
\end{aligned}$$

Let's sort this all out!

TMD Handbook Ch. 2.

General structure of a TMD

Soft factor:

Unifying notation in the literature

Can describe lattice & continuum off-lightcone schemes using <u>the same</u> generic **beam function** & **soft factor**

Each scheme is characterized by a distinct set of arguments & limits

Ebert, Schindler, Stewart, and Zhao (JHEP 2022).

Structure of the correlators

Beam =
$$\left\langle P \left| \overline{q}_i \frac{\Gamma}{2} \boldsymbol{W}_{\exists}^{\boldsymbol{F}}(\boldsymbol{b}, \boldsymbol{\eta}\boldsymbol{\nu}, \boldsymbol{\delta}) q_i \right| P \right\rangle$$

Soft =
$$\frac{1}{d_R} \langle 0 | \text{Tr}[\underline{S_{\geq}^R(b, \eta \nu, \overline{\eta \nu})}] | 0 \rangle$$

b^μ, ηv^μ, δ^μ: parametrize Wilson lines

Length η: finite (lattice) or infinite (physical TMD)

> $\delta^{\mu} = (0,0,0,\tilde{b}^z)$ for quasi = (0,0,0,0) for MHENS

Ebert, Schindler, Stewart, and Zhao (JHEP 2022).

Neat & tidy charts!

	Collins TMD (continuum)	Quasi-TMD (lattice)
TMD	$\lim_{\epsilon \to 0} Z_{\mathrm{UV}}^{\kappa_i} \lim_{y_B \to -\infty} \frac{\Omega_{i/h}}{\sqrt{S^{\kappa_i}}}$	$\lim_{a \to 0} Z_{\rm UV}^{\kappa_i} \frac{B_{i/h}}{\sqrt{\tilde{S}^{\kappa_i}}}$
Beam function	$\Omega_{i/h}\left[b,P,\epsilon,-\infty n_B(y_B),b^-n_b ight]$	$\Omega_{i/h}(ilde{b}, ilde{P},a, ilde{\eta}\hat{z}, ilde{b}^z\hat{z})$
Soft function	$S^{\kappa_i}\left[b_{\perp},\epsilon,-\infty n_A(y_A),-\infty n_B(y_B) ight]$	$S^{\kappa_i}\left[b_{ot},a,- ilde\etarac{n_A(y_A)}{ n_A(y_A) },- ilde\etarac{n_A(y_A)}{ n_A(y_A) } ight]$
b^{μ}	$(0,b^-,b_\perp)$	$(0,b_T^x,b_T^y, ilde{b}^z)$
v^{μ}	$(-e^{2y_B},1,0_\perp)$	(0,0,0,-1)
δ^{μ}	$(0,b^-,0_\perp)$	$(0,0,0, ilde{b}^z)$
P^{μ}	${{m_h}\over{\sqrt{2}}}(e^{y_P},e^{-y_P},0_ot)$	$m_h(\cosh y_{ ilde{P}},0,0,\sinh y_{ ilde{P}})$

Outline of today's lecture

Unified notation \rightarrow straightforward to see relationships²²

Continuum schemes

Ebert, Schindler, Stewart, and Zhao (JHEP 2022).

Our target

Continuum schemes

Ebert, Schindler, Stewart, and Zhao (JHEP 2022).

Factorization derivation steps

Lattice

Continuum

Step 1: same at large rapidity $P^z >> \Lambda_{QCD}$

- Expand & relate their variables
- ➤ Take Wilson line length |η| → ∞

Step 2: need a matching coefficient

- Different UV renormalizations
- Nontrivial relationship

Focus on beams: quasi-soft function is chosen to reproduce the Collins soft function

Step 1: Quasi to Large Rapidity

		$\mathbf{Q}\mathbf{u}\mathbf{a}\mathbf{s}\mathbf{i}$	\mathbf{LR}
Compare Lorentz invariants	b^2	$-b_T^2-(ilde{b}^z)^2$	$-b_T^2$
arguments b^{μ} , P^{μ} , δ^{μ} , ηv^{μ}	$(\eta v)^2$	$- ilde\eta^2$	$-2\eta^2 e^{2y_B}$
	$P \cdot b$	$-m_h ilde{b}^z \sinh y_{ ilde{P}}$	${m_h\over\sqrt{2}}b^-e^{y_P}$
	$\frac{b\cdot(\eta v)}{\sqrt{ (\eta v)^2 b^2 }}$	$egin{array}{c} rac{ ilde{b}^z}{\sqrt{(ilde{b}^z)^2+b_T^2}}\mathrm{sgn}(\eta) \end{array}$	$-rac{b^-e^{y_B}}{\sqrt{2}b_T}{ m sgn}(\eta)$
Ise boosts to show quasi = $I R$	$\frac{P\cdot(\eta v)}{\sqrt{P^2 \eta v ^2}}$	$\sinh y_{ ilde{P}} { m sgn}(\eta)$	$\sinh(y_P\!-\!y_B){ m sgn}(\eta)$
as $ \eta \rightarrow \infty \& P^z \gg \Lambda_{QCD}$	$\frac{\delta^2}{b^2}$	$\frac{(\tilde{b}^z)^2}{b_T^2+(\tilde{b}^z)^2}$	0
	$\frac{b\cdot\delta}{b^2}$	$\frac{(\tilde{b}^z)^2}{b_T^2+(\tilde{b}^z)^2}$	0
	$\frac{P\cdot\delta}{P\cdot b}$	1	1
	$\frac{\delta \cdot (\eta v)}{b \cdot (\eta v)}$	1	1
	P^2	m_h^2	m_h^2

Use

0----

Step 1: Quasi to Large Rapidity

Examine all 10 Lorentz invariants:

Need $\widetilde{\eta} = \sqrt{2} e^{y_B} \eta$ Need $y_P - y_B = y_{\widetilde{P}}$ As $y_{\widetilde{P}} \to -\infty, b_T \gg \widetilde{b}_Z$

Quasi = LR after large rapidity expansion \checkmark

	Quasi	LR
b^2	$-b_T^2-(ilde{b}^z)^2$	$-b_T^2$
$(\eta v)^2$	$- ilde{\eta}^2$	$-2\eta^2 e^{2y_B}$
$P \cdot b$	$-m_h ilde{b}^z \sinh y_{ ilde{P}}$	${m_h\over\sqrt{2}}b^-e^{y_P}$
$\frac{b\cdot(\eta v)}{\sqrt{ (\eta v)^2 b^2 }}$	$igg rac{ ilde{b}^z}{\sqrt{(ilde{b}^z)^2+b_T^2}} \operatorname{sgn}(\eta)$	$-rac{b^-e^{y_B}}{\sqrt{2}b_T}{ m sgn}(\eta)$
$\frac{P\cdot(\eta v)}{\sqrt{P^2 nv ^2}}$	$\sinh y_{ ilde{P}} { m sgn}(\eta)$	$\sinh(y_P\!-\!y_B){ m sgn}(\eta)$
$\frac{\delta^2}{b^2}$	$\frac{(\tilde{b}^z)^2}{b^2 + (\tilde{b}^z)^2}$	0
$\frac{b\cdot\delta}{b^2}$	$\frac{(\tilde{b}^z)^2}{b_T^2+(\tilde{b}^z)^2}$	0
$\frac{P \cdot \delta}{P \cdot b}$	1	1
$\frac{\delta \cdot (\eta v)}{b \cdot (\eta v)}$	1	1
P^2	m_h^2	m_h^2

Step 2: Large Rapidity to Collins

	TMD	Beam function	Soft function
Collins	$\lim_{\epsilon \to 0} \lim_{y_B \to -\infty} Z_{UV}^R \frac{\Omega_{i/h}}{\sqrt{S_i^R}}$	$\Omega_{q/h}^{[\gamma^+]}\left[b,P,\epsilon,-\infty n_B(y_B),b^-n_b ight]$	$S^R\left[b_{\perp},\epsilon,-\infty n_A(y_A),-\infty n_B(y_B) ight]$
LR	$\lim_{-y_B \gg 1} \lim_{\epsilon \to 0} Z_{UV}^R \frac{\Omega_{i/h}}{\sqrt{S^R}}$	$\Omega_{q/h}^{[\gamma^+]}\left[b,P,\epsilon,-\infty n_B(y_B),b^-n_b ight]$	$S^{R}\left[b_{\perp},\epsilon,-\infty n_{A}(y_{A}),-\infty n_{B}(y_{B}) ight]$

Fundamental principle of EFT (here, LaMET):

- > Flipping an order of UV limits does not affect IR physics
- > However, it can induce a perturbative matching coefficient

$$\boldsymbol{f}_{LR} = C_i(x\tilde{P}^z,\mu) \boldsymbol{f}_{Collins}$$

Steps $1 + 2 \rightarrow$ Factorization

Note that this formula connects physical continuum TMDs to the renormalized *continuum limit* of lattice calculations.

Ebert, Schindler, Stewart, and Zhao (JHEP 2022).

Matching coefficient?

$$\tilde{f}_{i/H}^{[s]}\left(x,\vec{b}_{T},\mu,\tilde{\zeta},x\tilde{P}^{z}\right) = \boldsymbol{C_{i}}\left(x\tilde{P}^{z},\mu\right) \exp\left[\frac{1}{2}\gamma_{\zeta}^{i}(\mu,b_{T})\ln\frac{\tilde{\zeta}}{\zeta}\right] f_{i/H}^{[s]}\left(x,\vec{b}_{T},\mu,\zeta\right)$$

NLO:

$$C_i(\mu, x\tilde{P}^z) = 1 + \frac{\alpha_s C_R}{4\pi} \left[-\ln^2 \frac{(2xP^z)^2}{\mu^2} + \frac{2\ln(2xP^z)^2}{\mu^2} - 4 + \frac{\pi^2}{6} \right] + O(\alpha_s^2)$$

NⁿLL:

$$C_{i}(x\tilde{P}^{z},\mu) = C_{i}[\alpha_{s}(\mu)] \exp\left[\int_{\alpha_{s}(\mu)}^{\alpha_{s}(2x\tilde{P}^{z})} \frac{d\alpha}{\beta[\alpha]} \int_{\alpha}^{\alpha_{s}(\mu)} \frac{d\alpha'}{\beta[\alpha']} (2\Gamma_{cusp}^{i}[\alpha'] + \gamma_{c}^{i}[\alpha])\right]$$

Etc.

Focus on general features, not calculations...

Ebert, Schindler, Stewart, and Zhao (JHEP 2022). Schindler, Stewart, and Zhao (2022).

Gluon matching coefficient at NLO

Focus on general features, not calculations...

(Key simplification: only rapidity-divergent pieces can contribute.)

NLO: Casimir scaling for quarks and gluons

$$C_i(\mu, x\tilde{P}^Z) = 1 + \frac{\alpha_s C_R}{4\pi} \left[-\ln^2 \frac{(2xP^Z)^2}{\mu^2} + \frac{2\ln(2xP^Z)^2}{\mu^2} - 4 + \frac{\pi^2}{6} \right] + O(\alpha_s^2)$$

Schindler, Stewart, and Zhao (2022).

Matching coefficient

C_i is independent of spin and quark flavor

		Quark polarization		
		U	L	Т
ion	U	f_1		h_1^\perp
izat		unpolarized		Boer-Mulders
olari	L		g_{1L}	h_{1L}^{\perp}
u p			helicity	worm-gear
Idro	Т	f_{1T}^{\perp}	g_{1T}	h_1,h_{1T}^\perp
Ha		Sivers	worm-gear	transversity, pretzelosity

Two coefficients $C_q \& C_g$: no quark-gluon mixing

Ebert, Schindler, Stewart, and Zhao (JHEP 2020, JHEP 2022).

TMD ratios

Can extract TMD spin/flavor/hadron ratios from lattice beam functions:

$$\lim_{\widetilde{\eta}\to\infty}\frac{f_{q_i/h}^{[\widetilde{\Gamma}_1]}}{f_{q_j/h'}^{[\widetilde{\Gamma}_2]}} = \lim_{\widetilde{\eta}\to\infty}\frac{\widetilde{B}_{q_i/h}^{[\widetilde{\Gamma}_1]}}{\widetilde{B}_{q_j/h'}^{[\widetilde{\Gamma}_2]}}$$

Can see from factorization formulas:

$$C_{i} \exp\left[\frac{1}{2}\gamma_{\zeta}^{i}\ln\frac{\tilde{\zeta}}{\zeta}\right] f_{q_{i}/H}^{[\Gamma]} = \tilde{f}_{q_{i}/H}^{[\Gamma]} = \lim Z_{UV} \frac{\widetilde{B}_{q_{i}/H}^{[\Gamma]}}{\sqrt{S^{R}}}$$

Lattice-to-continuum TMD factorization

Factorization of a lattice TMD into matrix elements

MHENS-to-Collins factorization

Continuum schemes

Ebert, Schindler, Stewart, and Zhao (JHEP 2022).

This case was the focus of the MHENS authors. Equivalent soft function, renormalization, etc. as quasi-TMDs:

$$\int \mathrm{d}x \; \tilde{f}_{q_i/h}^{[\Gamma]}(x, \vec{b}_T, \mu, \tilde{\zeta}, x\tilde{P}^z, \tilde{\eta}) = \; f_{q_i/h}^{[\Gamma]\mathrm{MHENS}}(b^z = 0, \vec{b}_T, \mu, \tilde{P}^z, y_n - y_B, \tilde{\eta})$$

So, factorization is straightforward, involves a convolution: $\lim_{\tilde{\eta}\to\infty} \tilde{f}_{q_i/h}^{[\Gamma]\text{MHENS}}(b^z = 0, \vec{b}_T, \mu, \tilde{P}, y_n - y_B, \tilde{\eta}) = \int dx \ C_q(x\tilde{P}^z, \mu) \ f_{q_i/h}^{[\Gamma]}(x, \vec{b}_T, \mu, \zeta)$

Thus, our factorization derivation implies that all MHENS scheme calculations carried out so far have a rigorous connection to physical TMDs.

MHENS at $P \cdot b \neq 0$ (x dependence)

b^z-dependent Wilson line length:

 $L_{
m staple}^{
m MHENS} = 2|\tilde{\eta}v| + |b|$

Nontrivial **cusp angles**, even as $\eta \rightarrow \infty$:

$$\cosh[\gamma(v,b)] = \pm \frac{v \cdot b}{|v||b|}$$

Length of a four-vector: $|X| = \sqrt{|X^2|}$

Complications:

Renormalization & soft function would be b^z-dependent

> These won't cancel out in ratios at finite η

Summary of results

1. New unified notation

2. New scheme (LR)

3. Continuum-to-lattice factorization

4. Matching coefficient: convenient!

Take-home messages

When constructing a lattice observable, it is helpful to consider the full phase space of options.

Balancing analytic & numerical challenges...

- Computational cost
- Relationship with physical observable
- Proper definition (renormalization, soft function, finiteness)

There is much to pursue on the lattice!

Proposal to rebrand quasi-TMDs

Lattice TMDs: MHENS and LADIEZ

LaMET

Approach

Developed (in part) by

- Iain,
- Ebert, and

Zhao