## Lattice QCD Determination of the $x$-dependence of PDFs at NNLO

TMD Collaboration Meeting
Hilton Santa Fe Historic Plaza
June 15-17, 2022

## YONG ZHAO

JUN 16, 2022

Based on work with Xiang Gao, Andrew Hanlon, Swagato Mukherjee, Peter Petreczky, Philipp Scior, Sergey Syritsyn, PRL 128 (2022), 142003.

## 3D Tomography of the Proton (Hadrons)



Hard Scattering


Jefferson Lab 12 GeV


The Electron-Ion Collider

## Large-Momentum Effective Theory (LaMET)

Infinite momentum frame $\Leftrightarrow$ light front

$$
z+c t=0, \quad z-c t \neq 0
$$



PDF $f(x)$ :
Cannot be calculated on the lattice

$$
\begin{aligned}
f(x)=\int \frac{d b^{-}}{2 \pi} & e^{-i b^{-}\left(x P^{+}\right)}\langle P| \bar{\psi}\left(b^{-}\right) \\
& \times \frac{\gamma^{+}}{2} W\left[b^{-}, 0\right] \psi(0)|P\rangle
\end{aligned}
$$

X. Ji, PRL 110 (2013)

$$
t=0, \quad z \neq 0
$$



Quasi-PDF $\tilde{f}\left(x, P^{z}\right)$ :
Directly calculable on the lattice

$$
\begin{aligned}
\tilde{f}\left(x, P^{z}\right)=\int & \frac{d z}{2 \pi} e^{i b^{z}\left(x P^{z}\right)}\langle P| \bar{\psi}\left(b^{z}\right) \\
& \times \frac{\gamma^{z}}{2} W\left[b^{z}, 0\right] \psi(0)|P\rangle
\end{aligned}
$$

## Large-Momentum Effective Theory (LaMET)

Infinite momentum frame $\Leftrightarrow$ light front
Related by Lorentz boost
X. Ji, PRL 110 (2013)

$$
z+c t=0, \quad z-c t \neq 0
$$



PDF $f(x)$ :
ot be calcula
ne lattice
Cannot be calculated
PDF $f(x)$ :
on the calticula


$$
\begin{aligned}
f(x)=\int \frac{d b^{-}}{2 \pi} & e^{-i b^{-}\left(x P^{+}\right)}\langle P| \bar{\psi}\left(b^{-}\right) \\
& \times \frac{\gamma^{+}}{2} W\left[b^{-}, 0\right] \psi(0)|P\rangle
\end{aligned}
$$

$$
t=0, \quad z \neq 0
$$



Quasi-PDF $\tilde{f}\left(x, P^{z}\right)$ :
Directly calculable on the lattice

$$
\begin{aligned}
\tilde{f}\left(x, P^{z}\right)=\int & \frac{d z}{2 \pi} e^{i b^{z}\left(x P^{z}\right)}\langle P| \bar{\psi}\left(b^{z}\right) \\
& \times \frac{\gamma^{z}}{2} W\left[b^{z}, 0\right] \psi(0)|P\rangle
\end{aligned}
$$

## Large-Momentum Effective Theory (LaMET)

Infinite momentum frame $\Leftrightarrow$ light front

$$
z+c t=0, \quad z-c t \neq 0
$$



PDF $f(x)$ :
Cannot be calculated on the lattice

Related by Lorentz boost

$\lim _{P^{2}} \tilde{f}\left(x, P^{z}\right) \stackrel{?}{=} f(x)$
X. Ji, PRL 110 (2013)

$$
t=0, \quad z \neq 0
$$



Quasi-PDF $\tilde{f}\left(x, P^{z}\right)$ :
Directly calculable on the lattice

$$
\begin{aligned}
& \tilde{f}\left(x, P^{z}\right)=\int \frac{d z}{2 \pi} e^{i b^{z}\left(x P^{z}\right)}\langle P| \bar{\psi}\left(b^{z}\right) \\
& \times \frac{\gamma^{z}}{2} W\left[b^{z}, 0\right] \psi(0)|P\rangle
\end{aligned}
$$

## Large-Momentum Effective Theory (LaMET)

- Quasi-PDF: $P^{z} \ll \Lambda$;


## $\Lambda$ : the ultraviolet cutoff, $\sim 1 / a$

- PDF: $P^{z}=\infty$, implying $P^{z} \gg \Lambda$.
- The limits $P^{z} \ll \Lambda$ and $P^{z} \gg \Lambda$ are not usually exchangeable;
- For $P^{z} \gg \Lambda_{\mathrm{QCD}}$, the infrared (nonperturbative) physics is not affected, which allows for an EFT matching.


## Large-Momentum Effective Theory (LaMET)

- Large-momentum expansion and perturbative matching:

$$
f(x, \mu)=\int_{-\infty}^{\infty} \frac{d y}{|y|} \bar{C}\left(\frac{x}{y}, \frac{\mu}{y P^{z}}, \frac{\tilde{\mu}}{\mu}\right) \tilde{f}\left(y, P^{z}, \tilde{\mu}\right)+\mathcal{O}\left(\frac{\Lambda_{\mathrm{QCD}}^{2}}{\left(x P^{z z}\right)^{2}}, \frac{\Lambda_{\mathrm{QCD}}^{2}}{\left((1-x) P^{z}\right)^{2}}\right)
$$

## Systematics:

- Lattice: excited states, spacing $a \rightarrow 0$ (renormalization), physical $m_{\pi}$, lattice size $L \rightarrow \infty$, etc.;
- Perturbative matching: currently available at NNLO; resummation at small and large $x$. Only NLO has been used in calculations so far;

> - L.-B. Chen, R.-L. Zhu and W. Wang, PRL126 (2021);
> - Z.-Y. Li, Y.-Q. Ma and J.-W. Qiu, PRL126 (2021);
> - X. Gao, K. Lee, S. Mukherjee, C. Shugert and YZ, PRD103 (2021).

- Power corrections, controllable within $\left[x_{\min }, x_{\max }\right]$ at a given finite $P^{z}$.


## Systematic procedure in lattice calculation



## Encouraging results have been obtained:

For example, the isovector (u-d) PDFs of the proton, with RI/ MOM lattice renormalization and NLO matching:

Helicity PDF

H.W. Lin, YZ, et al. (LP3 Collaboration), PRL 121 (2018)

C. Alexandrou, et al. (ETM), PRD 98 (2018).

## Encouraging results have been obtained:

For example, the isovector (u-d) PDFs of the proton, with RI/ MOM lattice renormalization and NLO matching:

Helicity PDF

H.W. Lin, YZ, et al. (LP3 Collaboration), PRL 121 (2018)

Transversity PDF


## Lattice renormalization

$$
\begin{aligned}
& \underbrace{}_{z}=\delta m(a)|z| \propto \frac{|z|}{a} \\
& \tilde{f}_{X}\left(x, P^{z}, \tilde{\mu}\right)=\int_{0}^{\infty} \frac{d z}{2 \pi} e^{i z\left(x P^{z}\right)} \tilde{h}_{X}(z, a)=\bar{\psi}_{0}(z) \Gamma W_{0}[z, 0] \psi_{0}(0)=e^{-\delta m(a)|z|} Z_{O}(a) O_{R}^{\Gamma}(z) \\
& \begin{array}{l}
\text { - Ji, Zhang and Yz, PRL 120 (2018); } \\
\text { •Green, Jansen and Steffens, PRL 121 (2018). }
\end{array} \\
&=\int_{-\infty}^{\infty} \frac{d z}{2 \pi} e^{i z\left(x P^{z}\right)} \lim _{a \rightarrow 0} \frac{\tilde{h}\left(z, P^{z}, a\right)}{Z_{X}(z, \tilde{\mu}, a)}
\end{aligned}
$$

## Lattice renormalization

$$
\begin{aligned}
& O_{B}^{\Gamma}(z, a)=\bar{\psi}_{0}(z) \Gamma W_{0}[z, 0] \psi_{0}(0)=e^{-\delta m(a)|z|} Z_{O}(a) O_{R}^{\Gamma}(z) \\
& \text { • Ji, Zhang and YZ, PRL } 120 \text { (2018); } \\
& \text { - Ishikawa, Ma, Qiu and Yoshida, PRD } 96 \text { (2017); } \\
& \text { - Green, Jansen and Steffens, PRL } 121 \text { (2018). } \\
& \tilde{f}_{X}\left(x, P^{z}, \tilde{\mu}\right)=\int_{-\infty}^{\infty} \frac{d z}{2 \pi} e^{i z\left(x P^{z}\right)} \tilde{h}_{X}\left(z, P^{z}, \tilde{\mu}\right) \\
& =\int_{-\infty}^{\infty} \frac{d z}{2 \pi} e^{i z\left(x P^{z}\right)} \lim _{a \rightarrow 0} \frac{\tilde{h}\left(z, P^{z}, a\right)}{Z_{X}(z, \tilde{\mu}, a)} \\
& \text { Ratio-type schemes: } \\
& \text { - RIMOM } \\
& Z_{X}=\langle q| O^{\Gamma}(z)|q\rangle \\
& \text { - Hadron matrix } \\
& \text { elements } \\
& Z_{X}=\left\langle P_{0}^{z}\right| O^{\Gamma}(z)\left|P_{0}^{z}\right\rangle \\
& \text { - Vacuum expectation } \\
& \text { value } \\
& Z_{X}=\langle\Omega| O^{\Gamma}(z)|\Omega\rangle
\end{aligned}
$$

See X. Ji, YZ, et al., NPB 964 (2021) and references therein.

## Lattice renormalization

$$
\xlongequal[z]{O_{0}^{O_{B}^{\Gamma}(z, a)=} \bar{\psi}_{0}(z) \Gamma W_{0}[z, 0] \psi_{0}(0)=e^{-\delta m(a)|z|} Z_{O}(a) O_{R}^{\Gamma}(z)} \begin{aligned}
& \begin{array}{l}
\text { - Ji, Zhang and YZ, PRL 120 (2018); } \\
\text { - shikawa, Ma, Qiu and Yoshida, PRD } 96 \text { (2017); } \\
\text {-Green, Jansen and Steffens, PRL 121 (2018). }
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
\tilde{f}_{X}\left(x, P^{z}, \tilde{\mu}\right) & =\int_{-\infty}^{\infty} \frac{d z}{2 \pi} e^{i z\left(x P^{z}\right)} \tilde{h}_{X}\left(z, P^{z}, \tilde{\mu}\right) \\
& =\int_{-\infty}^{\infty} \frac{d z}{2 \pi} e^{i z\left(x P^{z}\right)} \lim _{a \rightarrow 0} \frac{\tilde{h}\left(z, P^{z}, a\right)}{Z_{X}(z, \tilde{\mu}, a)}
\end{aligned}
$$

- For $z \sim a$, ratio-type schemes cancel cutoff effects;
- But for $z \sim \Lambda_{\mathrm{QCD}}^{-1}$, ratio-type schemes introduce uncontrolled nonperturbative effects. $\qquad$

Ratio-type schemes:

- RIMOM

$$
Z_{X}=\langle q| O^{\Gamma}(z)|q\rangle
$$

- Hadron matrix elements

$$
Z_{X}=\left\langle P_{0}^{z}\right| O^{\Gamma}(z)\left|P_{0}^{z}\right\rangle
$$

- Vacuum expectation value

$$
Z_{X}=\langle\Omega| O^{\Gamma}(z)|\Omega\rangle
$$

See X. Ji, YZ, et al., NPB 964 (2021) and references therein.

## Hybrid renormalization scheme

$$
O_{B}^{\Gamma}(z, a)=\bar{\psi}_{0}(z) \Gamma W_{0}[z, 0] \psi_{0}(0)=e^{-\delta m(a)|z|} Z_{O}(a) O_{R}^{\Gamma}(z)
$$

X. Ji, YZ, et al., NPB 964 (2021).

$$
\tilde{h}\left(z, P^{z}\right)_{\uparrow} \quad \text { A "minimal" subtraction: }
$$

Ratio schemes, e.g.,

$$
\frac{\tilde{h}\left(z, P^{z}, a\right)}{\tilde{h}(z, 0, a)}
$$

Orginos et al., PRD 96 (2017).


## Lattice data for the pion valence PDF

- Wilson-clover fermion on 2+1 flavor HISQ configurations.

| $n_{z}$ | $P_{z}(\mathrm{GeV})$ |  | $\zeta$ |
| :---: | :---: | :---: | :---: |
|  | $a=0.06 \mathrm{fm}$ | $a=0.04 \mathrm{fm}$ |  |
| 0 | 0 | 0 | 0 |
| 1 | 0.43 | 0.48 | 0 |
| 2 | 0.86 | 0.97 | 1 |
| 3 | 1.29 | 1.45 | $2 / 3$ |
| 4 | 1.72 | 1.93 | $3 / 4$ |
| 5 | 2.15 | 2.42 | $3 / 5$ |
| $48^{3} \times 64$ |  | $64^{3} \times 64$ |  |
| $m_{\pi}=300 \mathrm{MeV}$ |  |  |  |

- X. Gao, YZ, et al., PRD102 (2020).
- X. Gao, YZ, et al., PRD103 (2021).


## Why studying the pion?

- Pseudo Nambu-Goldstone boson of QCD
- First excited state $\pi(1300)$ much higher than ground state $\pi(\sim 140)$, good for control of excited-state contamination


## Hybrid scheme renormalization

- Wilson-line mass renormalization

Normalization scheme for the static quark-antiquark potential $V^{\text {lat }}(r, a)$ :

$$
\begin{aligned}
\left.V^{\mathrm{lat}}(r, a)\right|_{r=r_{0}}+2 \delta m(a) & =0.95 / r_{0} \\
r_{0} & =0.469 \mathrm{fm}
\end{aligned}
$$


$|\Omega\rangle \propto \exp [-V(R) T]$

$$
\begin{aligned}
& a \delta m(a=0.04 \mathrm{fm})=0.1508(12) \\
& a \delta m(a=0.06 \mathrm{fm})=0.1586(8)
\end{aligned}
$$

$$
\begin{aligned}
& \delta m(a)=\frac{1}{a} \sum_{n} c_{n} \alpha_{s}^{n}(1 / a)+m_{0}^{\text {lat }} \\
& m_{0}^{\text {lat }} \sim \frac{1}{a}\left(a \Lambda_{\mathrm{QCD}}\right)+\text { scheme dependent constant } \\
& \text { C. Bauer, G. Bali and A. Pineda, PRL108 (2012). }
\end{aligned}
$$

## Wilson-line mass renormalization

- Check of continuum limit

$$
O_{B}^{\Gamma}(z, a)=e^{-\delta m|z|} Z_{O}(a) O_{R}^{\Gamma}(z)
$$

Renormalization-group invariant

$$
\lim _{a \rightarrow 0} e^{\delta m\left(z-z_{0}\right)} \frac{\tilde{h}\left(z, a, P^{z}=0\right)}{\tilde{h}\left(z_{0}, a, P^{z}=0\right)}=\text { finite } \quad z, z_{0} \gg a
$$

Before mass subtraction


After mass subtraction


Sub-precent level agreement!

## Matching the Wilson-line mass to MSbar

- OPE of MSbar matrix element

$$
\tilde{h}^{\overline{\mathrm{MS}}}\left(z, P^{z}=0, \mu\right)=e^{-m_{0}^{\overline{\mathrm{S}}}|z|} \tilde{h}_{0}^{\overline{\mathrm{MS}}}(z, 0, \mu)
$$

$$
\stackrel{z<1 / \Lambda \Lambda_{\mathrm{OCD}}}{=} e^{-m_{0}^{\overline{\mathrm{Is}}}\left(z-z_{0}\right)}\left[C_{0}\left(\alpha_{s}(\mu), z^{2} \mu^{2}\right)+\mathcal{O}\left(z^{2} \Lambda_{\mathrm{CCD}}^{2}\right)\right]
$$

## Matching the Wilson-line mass to MSbar

- OPE of MSbar matrix element

$$
\tilde{h}^{\overline{\mathrm{MS}}}\left(z, P^{z}=0, \mu\right)=e^{-m_{0}^{\mathrm{MS}}|z|} \tilde{h}_{0}^{\overline{\mathrm{MS}}}(z, 0, \mu)
$$

$$
\stackrel{z \ll 1 / \Lambda_{\mathrm{QCD}}}{=} e^{-m_{0}^{\overline{\mathrm{MS}}}\left(z-z_{0}\right)}\left[C_{0}\left(\alpha_{S}(\mu), z^{2} \mu^{2}\right)+\sigma\left(z^{2} \Lambda_{\mathrm{QCD}}^{2}\right)\right]
$$

## Wilson coefficient:

## Known to NNLO with 3-loop anomalous dimension

- L.-B. Chen, R.-L. Zhu and W. Wang, PRL126 (2021);
- Z.-Y. Li, Y.-Q. Ma and J.-W. Qiu, PRL126 (2021);
- V. Braun and K. G. Chetyrkin, JHEP 07 (2020).


## Matching the Wilson-line mass to MSbar

- OPE of MSbar matrix element

$$
\tilde{h}^{\overline{\mathrm{MS}}}\left(z, P^{z}=0, \mu\right)=e^{-m_{0}^{\mathrm{MS}}|z|} \tilde{h}_{0}^{\overline{\mathrm{MS}}}(z, 0, \mu)
$$

$$
\stackrel{z \ll 1 / \Lambda_{\mathrm{QCD}}}{=} e^{-m_{0}^{\overline{\mathrm{MS}}}\left(z-z_{0}\right)}\left[C_{0}\left(\alpha_{s}(\mu), z^{2} \mu^{2}\right)+\mathcal{O}\left(z^{2} \Lambda_{\mathrm{QCD}}^{2}\right)\right]
$$

## Wilson coefficient:

## Known to NNLO with 3-loop anomalous dimension

IR renormalon
V. Braun, A. Vladimirov and J.-H. Zhang, PRD99 (2019).

- L.-B. Chen, R.-L. Zhu and W. Wang, PRL126 (2021);
- Z.-Y. Li, Y.-Q. Ma and J.-W. Qiu, PRL126 (2021);
- V. Braun and K. G. Chetyrkin, JHEP 07 (2020).


## Matching the Wilson-line mass to MSbar

- OPE of MSbar matrix element $\tilde{h}^{\overline{\mathrm{MS}}}\left(z, P^{z}=0, \mu\right)=e^{-m_{0}^{\overline{\mathrm{MS}}}|z|} \tilde{h}_{0}^{\overline{\mathrm{MS}}}(z, 0, \mu)$


UV renormalon, similar to HQET
M. Beneke and V. Braun, NPB 426 (1994).

## Wilson coefficient:

## Known to NNLO with 3-loop anomalous dimension

- L.-B. Chen, R.-L. Zhu and W. Wang, PRL126 (2021);
- Z.-Y. Li, Y.-Q. Ma and J.-W. Qiu, PRL126 (2021);
- V. Braun and K. G. Chetyrkin, JHEP 07 (2020).


## Matching the Wilson-line mass to MSbar

- OPE of MSbar matrix element

$$
\begin{aligned}
\tilde{h}^{\overline{\mathrm{MS}}}\left(z, P^{z}=0, \mu\right) & =e^{-m_{0}^{\overline{\mathrm{Ms}}} z|l|} \tilde{h}_{0}^{\overline{\mathrm{SI}}} \\
& \stackrel{z \ll 1 / \Lambda_{\mathrm{OCD}}}{=} e^{-m_{0}^{\mathrm{IS}}\left(z-z_{0}\right)}\left[C_{0}\left(\alpha_{s}(\mu), z^{2} \mu^{2}\right)+\mathcal{O}\left(z^{2} \Lambda_{\mathrm{QCD}}^{2}\right)\right]
\end{aligned}
$$

- Matching to the MSbar OPE ratio

$$
\begin{gathered}
\bar{m}_{0}=-m_{0}^{\text {hat }}+m_{0}^{\text {ज̄ }} \\
\lim _{a \rightarrow 0} e^{\delta m\left(z-z_{0}\right)} \frac{\tilde{h}\left(z, a, P^{z}=0\right)}{\tilde{h}\left(z_{0}, a, P^{z}=0\right)}=e^{-\bar{m}_{0}\left(z-z_{0}\right)} \frac{C_{0}\left(\alpha_{s}(\mu), z^{2} \mu^{2}\right)+\Lambda z^{2}}{C_{0}\left(\alpha_{s}(\mu), z_{0}^{2} \mu^{2}\right)+\Lambda z_{0}^{2}}
\end{gathered}
$$

$$
a \ll z, z_{0} \ll 1 / \Lambda_{\mathrm{CCD}}^{-1}
$$

For related methods, see

- J. Green, K. Jansen, and F. Steffans, PRD 101 (2020);
- Y. Huo et al. (LPC), NPB 969 (2021).


## Renormalized and matched matrix elements


$z_{\max }=1.0 \mathrm{fm}$

## Renormalized and matched matrix elements

At small $\lambda$ (small z), the perturbative region, the matrix elements have mild $P^{z}$ dependence due to slow QCD evolution.

$z_{\max }=1.0 \mathrm{fm}$

## Renormalized and matched matrix elements


$z_{\max }=1.0 \mathrm{fm}$

## Renormalized and matched matrix elements



## Renormalized and matched matrix elements


$z_{\max }=1.0 \mathrm{fm}$

## Asymptotic behavior at large $z$

$\tilde{h}\left(\lambda=z P^{z}, P^{z}\right) \xrightarrow{|z| \rightarrow \infty} \propto g(p \cdot z) e^{-\frac{\bar{\lambda}}{P_{z} \mid}|\lambda|}$
$\xi_{1} \sim P^{z} / \Lambda_{\mathrm{QCD}}, \quad 0<P_{1}^{z}<P_{2}^{z}<P_{3}^{z}$


Correlation length $\quad \xi_{\lambda} \equiv P^{z} / \bar{\Lambda}$
Fourier transform converges fast in $z(o r \lambda)$


## Physical extrapolation and Fourier transform (FT)

## Extrapolation

- Removes unphysical oscillation;
- Moderate to large $x$ regions are insensitive to the extrapolation form.


## Extrapolation forms :

Discrete FT (DFT)

$$
\begin{aligned}
\exp : & \frac{A e^{-m_{\text {eff }}|z|}}{\lambda^{d}} \quad \text { pow : } \quad \frac{A}{\lambda^{d}} \\
2 \mathrm{p}-\exp : & A \operatorname{Re}\left[\frac{\Gamma(1+a)}{(-i|\lambda|)^{a+1}}+e^{i \lambda} \frac{\Gamma(1+b)}{(i|\lambda|)^{b+1}}\right] e^{-m_{\text {eff }}|z|} \\
2 \mathrm{p}: & A \operatorname{Re}\left[\frac{\Gamma(1+a)}{(-i|\lambda|)^{a+1}}+e^{i \lambda} \frac{\Gamma(1+b)}{(i|\lambda|)^{b+1}}\right]
\end{aligned}
$$



$$
\begin{gathered}
a=0.04 \mathrm{fm}, P^{z}=1.94 \mathrm{GeV}, \mu=2.0 \mathrm{GeV} \\
-\mathrm{DFT} \\
-\exp , m_{\mathrm{eff}}>0.2 \mathrm{GeV}-2 \mathrm{p}-\exp \\
-\exp , m_{\mathrm{eff}}>0.1 \mathrm{GeV}-2 \mathrm{p} \\
-\exp , m_{\mathrm{eff}}>0
\end{gathered}
$$

## Perturbative matching at NNLO




- Matching drives the quasi-PDF to smaller $x$;
- Good convergence at moderate $x$;
- Large corrections in end-point regions, need resummation;
- Surprisingly small corrections at $x$ as small as 0.05 .

$$
\int_{x}^{1} \frac{d y}{|y|} C\left(\frac{x}{y}, \frac{\mu}{y P^{z}}\right) \tilde{f}\left(y, P^{z}, \mu\right) \xrightarrow{x \rightarrow 0} \alpha_{s} \int_{x}^{1} \frac{d y}{|y|}\left[P_{q q}\left(\frac{x}{y}\right) \ln \frac{\mu^{2}}{4 x^{2} P_{z}^{2}}\right]_{+} \tilde{f}\left(y, P^{z}, \mu\right)
$$

## Perturbative matching at NNLO

## Extrapolation-model dependence further reduced:



Agreement among different extrapolation models extends to smaller $x$ region.

## Perturbative matching at NNLO

## Factorization scale variation uncertainty:

- Calculate the PDF at different $\mu=1.4,2.0 \mathrm{GeV}$;
- Evolve the results to $\mu=2.0 \mathrm{GeV}$ with NLO DGLAP kernel.

Scale uncertainty reduced at NNLO :


- Improved perturbation theory uncertainty;
- Uncertainty from matching $\delta m(a)$ to MSbar under control.
(Only the mean values are shown.)


## Perturbative matching at NNLO

Momentum-dependence significantly reduced:


Convergence at $P^{z}>1.45 \mathrm{GeV}$ (Lorentz boost factor $\sim 5.0$ ) and at moderate $x$.

## Systematic uncertainties

- Statistical uncertainty: bootstrap resampling.
- Scale variation: error band covers results from $\mu=1.4,2.0,2.8 \mathrm{GeV}$, which are all evolved to $\mu=2.0 \mathrm{GeV}$ with NLO DGLAP kernel.
- Truncation point $z_{L}$ : extremely small.
- Extrapolation model dependence: extremely small for the $x$ of interest.
- Higher-order perturbative corrections:
- Requiring N3LO/LO $\leq 5 \% \Rightarrow$ NLO/LO $\leq 37 \%$ and NNLO/LO $\leq 14 \%$;
$\cdot 0.03 \leq x \leq 0.88$.
- Power corrections:
- Use $P^{z=2.42 ~ G e V ~ r e s u l t ~ a s ~ f i n a l ~ p r e d i c t i o n ; ~}$
- Fit $P^{z} \geq 1.45 \mathrm{GeV}$ results with $f_{v}(x)+\alpha(x) / P_{z}^{2}$ at each $x$;
- $\left|\alpha(x) /\left[P_{z}^{2} f_{v}(x)\right]\right| \leq 10 \%, \quad \Rightarrow 0.01 \leq x \leq 0.80$.


## Final prediction



## Global fits at NLO

- JAM21nlo, P. C. Barry, C.-R. Ji, N. Sato, and W. Melnitchouk, PRL 127 (2021);
- xFitter, I. Novikov et al., PRD 102 (2020);
- ASV, Aicher, A. Schafer, and W. Vogelsang, PRL 105 (2010);
- GRVPI1, M. Gluck, E. Reya, and A. Vogt, Z. Phys. C 53 (1992).

Short-distance factorization at NLO, with same lattice data:
BNL20, X. Gao, YZ, et al., PRD102 (2020).

The uncertainties are $5-20 \%$ for $0.03<x<0.80$, not including pion mass dependence and finite volume effects.

## Comparison to short-distance factorization

## Operator product expansion:

$$
\begin{aligned}
\tilde{h}\left(\lambda, z^{2} \mu^{2}\right) & =\langle P| O_{\gamma^{0}}(z, \mu)|P\rangle /\left(2 P^{0}\right) \\
\lambda=z P^{z} & =\sum_{n=0}^{\infty} C_{n}\left(z^{2} \mu^{2}\right) \frac{(-i \lambda)^{n}}{n!} a_{n}(\mu)+\mathcal{O}\left(z^{2} \Lambda_{\mathrm{QCD}}^{2}\right),
\end{aligned}
$$

Can calculate the lowest moments within finite $\lambda_{\max }=Z_{\max } p^{z_{\max }}$.
$Z_{\text {max }}$ must be small (0.2-0.3 fm?)
Reduce loffe-time pseudo distribution: - A. Radyushkin, PRD 96 (2017);

$$
\begin{aligned}
& \tilde{h}\left(\lambda, z^{2} \mu^{2}\right)=\int_{0}^{1} d \alpha \mathscr{C}\left(\alpha, z^{2} \mu^{2}\right) h(\alpha \lambda, \mu)+\mathscr{O}\left(z^{2} \Lambda_{\mathrm{QCD}}^{2}\right) \\
& f(x, \mu)=\int_{-\infty}^{\infty} \frac{d \lambda}{2 \pi} e^{-i x \lambda} h(\lambda, \mu)
\end{aligned}
$$

- Power-law decrease at large $\lambda$ : needs very large $\lambda$ for controlled FT ;
- With not very large $\lambda_{\text {max }}$, needs assumptions, e.g., $f(x) \propto x^{a}(1-x)^{b}(1+c \sqrt{x}+\ldots)$.


## Comparison with short-distance factorization approach



## Comparison to BNL20:

- Better agreement with xFitter (2020) and JAM21nlo (2021);
- Reduced uncertainties.

Short-distance factorization at NLO, with same lattice data:
BNL20, X. Gao, YZ, et al., PRD102 (2020).

- With finite $P^{z}$ and statistics, lattice QCD can only reliably predict $x \in\left[x_{\min }, x_{\max }\right]$;
- In short-distance factorization analysis, modeling the PDF correlates all $x \in[0,1]$;
- There can be bias from the model choice.


## Conclusions

- We have carried out a lattice calculation of the $x$-dependence of pion valence PDF with an adapted hybrid renormalization scheme;
- The Wilson-line mass correction can be well determined from lattice and matched to the MSbar scheme, with the uncertainty under control;
- NNLO matching shows good perturbative convergence and reduced scale-variation uncertainty;
- We demonstrate that we can predict the $x$-dependence with controlled systematic uncertainties within $\left[x_{\text {min }}, x_{\text {max }}\right]$;
- Systematics to be analyzed: physical pion mass, lattice spacing dependence, finite volume effect, etc.
- Same renormalization method can also be used to calculate gluon PDFs, GPDs and TMDs.


## Matching the Wilson-line mass to MSbar

How small should $z$ be?


$$
z, z_{0} \gg a
$$

Resummed coefficient:

$$
\begin{aligned}
& C_{0}^{\mathrm{RGI}}\left(\mu^{2}, z^{2}\right)=C_{0}\left(\alpha_{s}\left(2 e^{-\gamma_{E}} / z\right), 1\right) \\
& \times \exp \left[\int_{2 e^{-\gamma_{E} / z}}^{\mu} d \alpha_{s}\left(\mu^{\prime}\right) \frac{\gamma_{\Theta}\left(\alpha\left(\mu^{\prime}\right)\right)}{\beta\left(\alpha_{s}\left(\mu^{\prime}\right)\right)}\right]
\end{aligned}
$$

- For z ~ 0.2 fm , perturbation theory uncertainty is still under control;
- To suppress finite a effects, we choose

$$
z_{0}=0.24 \mathrm{fm}, z_{0} \leq z \leq 0.4 \mathrm{fm}
$$

- and use NNLO C 0 ,
- and vary $\mu$ by a factor of $1 / 1.4$ and 1.4 to estimate the uncertainty in this matching.

$$
\lim _{a \rightarrow 0} e^{\delta m(a)\left(z-z_{0}\right)} \frac{\tilde{h}\left(z, P^{z}=0, a\right)}{\tilde{h}\left(z_{0}, P^{z}=0, a\right)}=e^{-\bar{m}_{0}(\mu)\left(z-z_{0}\right)} \frac{C_{0}\left(\alpha_{s}(\mu), z^{2} \mu^{2}\right)+\Lambda(\mu) z^{2}}{C_{0}\left(\alpha_{s}(\mu), z_{0}^{2} \mu^{2}\right)+\Lambda(\mu) z_{0}^{2}}
$$

## Matching the Wilson-line mass to MSbar

## Define effective mass and its slope in $z$ :

$$
\begin{aligned}
& \bar{m}_{0}^{\mathrm{eff}}(z) \equiv\left[-\ln \frac{\tilde{h}(z, 0, a)}{\tilde{h}\left(z_{0}, 0, a\right)}+\ln \frac{C_{0}^{\mathrm{NNLO}}\left(z^{2} \mu^{2}\right)}{C_{0}^{\mathrm{NNLO}}\left(z_{0}^{2} \mu^{2}\right)}\right] /\left(z-z_{0}\right) \\
& \bar{m}_{2}^{\mathrm{eff}}(z)=\frac{\bar{m}_{0}^{\mathrm{eff}}(z)-\bar{m}_{0}^{\mathrm{eff}}(z-a)}{a}
\end{aligned}
$$




## Matching the Wilson-line mass to MSbar




- Both $\bar{m}_{0}$ and $\Lambda$ are sensitive to $\mu$ because we used fixed-order $C_{0}$ at NNLO;
- We vary $\mu$ by a factor of 1.4 to estimate the corresponding uncertainties in the final result.


## Matched hybrid-scheme matrix element

## Continuum limit:

$$
\begin{array}{r}
\tilde{h}\left(z, z_{S}, P^{z}, \mu\right)=\frac{\tilde{h}_{0}^{\overline{\mathrm{MS}}}\left(z, P^{z}, \mu\right)}{C_{0}\left(z^{2} \mu^{2}\right)} \theta\left(z_{S}-|z|\right)+\frac{\tilde{h}_{0}^{\overline{\mathrm{MS}}}\left(z, P^{z}, \mu\right)}{C_{0}\left(z_{S}^{2} \mu^{2}\right)} \theta\left(|z|-z_{S}\right) \\
\tilde{h}^{\overline{\mathrm{MS}}}\left(z, P^{z}, \mu\right)=e^{-m_{0}^{\overline{\mathrm{MS}}}|z|} \tilde{h}_{0}^{\overline{\mathrm{MS}}}\left(z, P^{z}, \mu\right)
\end{array}
$$

- Perturbatively matchable to $\tilde{h}_{0}^{\overline{\mathrm{MS}}}\left(z, P^{z}, \mu\right)$ as long as $z_{S} \ll 1 / \Lambda_{\mathrm{QCD}}$ !
- After Fourier transform, it preserves the perturbative matching in $x$-space.


## Asymptotic behavior at large $z$

- Current-current correlator in a static hadron:

$$
\begin{aligned}
\langle\pi| j^{0}(z) j^{0}(0)|\pi\rangle & =\sum_{n} \int \frac{d^{3} p_{n}}{(2 \pi)^{3} 2 E_{p_{n}}}\langle\pi| j^{0}(z)|n\rangle\langle n| j^{0}(0)|\pi\rangle \\
& \xrightarrow{|z| \rightarrow \infty} \propto e^{-M_{0}|z|} \quad \text { Burkardt, Grandy and Negele, Annals of Physics 238 (1995). }
\end{aligned}
$$

- Nonlocal quark bilinear $\Rightarrow$ "heavy-to-light" current-current correlator, in a boosted hadron:

$$
\begin{aligned}
&\langle\pi(p)| \bar{\psi}(z) \Gamma W[z, 0] \psi(0)|\pi(p)\rangle=\langle\pi(p) \psi \bar{\psi}(z) \Gamma Q(z) \bar{Q}(0) \psi(0) \mid \pi(p)\rangle_{Q} \\
& \xrightarrow{|z| \rightarrow \infty} \propto e^{-\bar{\Lambda}|z|} g(p \cdot z) \\
& \bar{\Lambda}=m_{H}-m_{Q} \sim 0.4-0.6 \mathrm{GeV}
\end{aligned}
$$

## Physical extrapolation and Fourier transform (FT)

$z_{L}$ dependence:


