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Gravitational waves from stable cosmic strings

= Topological defects after U(1)
breaking in the early Universe

= Network of long strings and
closed loops in scaling regime

= Parameters: string tension G
and loop size at production «

= Loop oscillations + GW bursts
from cusps and kinks on loops

[CERN]

Energy loss via particle emission off closed loops is negligible

[Matsunami, Pogosian, Saurabh, Vachaspati: 1903.05102] [Hindmarsh, Lizarraga, Urio, Urrestilla: 2103.16248]



Stable cosmic strings and NANOGrav

[Blasi, Brdar, KS: 2009.06607]
[See also Ellis, Lewicki: 2009.06555]
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Stable cosmic strings and NANOGrav

[Blasi, Brdar, KS: 2009.06607]
[See also Ellis, Lewicki: 2009.06555]
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©  Explain NANOGrav signal for G ~ 10~(191) and o ~ 0.1
©  GUT scale A ~ 1010 GeV points to G ~ 10~(78) (smaller a?)
©  Signal at higher frequencies too small for LIGO, Virgo, KAGRA



Cosmic strings and grand unification

[Dror, Hiramatsu, Kohri, Murayama, White: 1908.03227]
[See also King, Pascoli, Turner, Zhou: 2005.13549, 2106.15634]
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Cosmic strings and grand unification

[Dror, Hiramatsu, Kohri, Murayama, White: 1908.03227]
[See also King, Pascoli, Turner, Zhou: 2005.13549, 2106.15634]
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Inflation that wipes out magnetic monopoles
mefries that forbid right-handed
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UV embedding of the seesaw mechanism in GUT models:
Neutrino mass, leptogenesis, cosmic strings, GWSs, proton decay

Example: Ggym x U(1)g—1 — Gg results in metastable cosmic strings:
quantum tunneling events lead to SO(10) monopole pair production

Assumption: Inflation dilutes monopoles; otherwise string—monopole gas



Monopole pair production

Decay rate per string length:

[Vilenkin: Nucl. Phys. B 196 (1982) 240]
[Preskill, Vilenkin: hep-ph/9209210]
[Monin, Voloshin: 0808.1693]
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Monopole pair production

Decay rate per string length:

[Vilenkin: Nucl. Phys. B 196 (1982) 240]
[Preskill, Vilenkin: hep-ph/9209210]
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= String tension p, monopole mass m

= Strings are not topologically stable, decay on cosmological times scales
= Dynamics around the GUT scale — y/k ~ 1---10, metastable strings
= Dynamics around intermediate scale — /k > 10, quasistable strings

Monopoles with and without unconfined magnetic flux:
= Unconfined flux: MM annihilation, emission of massless gauge bosons
= No unconfined flux: energy loss only via emission of gravitational waves
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[Buchmiiller, Domcke, Murayama, KS: 1912.03695]
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Reheating temperature Ty, [GeV]
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10° u [Buchmiiller, KS, Vertongen: 1008.2355, 1104.2750]
H T [Buchmiiller, Domcke, KS: 1111.3872, 1202.6679, 1203.0285]
0 121015 2x105 3x10° 4x10 5x10' 6x101° [Buchmiiller, Domcke, Kamada, KS: 1305.3392, 1309.7788]

Symmetry-breaking scale vg 1 [GeV]

Minimal alternative: SU(2) x U(1) triplet U(1) x U(1) doublets u(1)

[Buchmiiller: 2102.08923]



End of scaling when long string segments begin to enter the horizon:
[Leblond, Shlaer, Siemens: 0903.4686]
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= Long strings: decay into segments on superhorizon
scales, chop off closed loops, GW emission negligible




End of scaling when long string segments begin to enter the horizon:
[Leblond, Shlaer, Siemens: 0903.4686]

Fglts ~TgH 1 tg ~Tyt2 ~ 1

=t~
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Scaling regime, t < ts

= Loops: emit GWs, decay into segments negligible
= Long strings: decay into segments on superhorizon

scales, chop off closed loops, GW emission negligible

Decay regime, t > t;

N -

= Loops: emit GWs and decay into segments

= Segments from loops and long strings: emit GWs

and decay into segments; no production of new loops
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Formal description

Kinetic equation for the number densities of loops and segments, n and A:
Orn(l,t) =Sl t)—0[u(l,t)n(l,t)] —[BH(t)+Talln(t,t) (4)

Source term S:

= Loops from long strings (loop production function): S oc t=* 6§ (£ — act)
= Loops during the decay regime: S =0

= Segments from loops: S =g ln(/, )

= Segments from segments: S =2y [, d¢' i (¢, t)

Time derivative of the string length u = /:

= Long strings during scaling: u=3H (t) ¢ — 20/t

= Loops and segments when radiating off GWs: u = —Gu, — Gp
Challenge: Solve set of partial integro-differential equations in both the
scaling and decay regimes, match solutions at t = t;. (Plus, RD /MD.)



Number densities

Loop number density during the decay regime in the radiation era:
[Cf. Blanco-Pillado, Olum, Shlaer: 1309.6637] [Cf. Blanco-Pillado, Olum: 1709.02693]
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Number densities

Loop number density during the decay regime in the radiation era:
[Cf. Blanco-Pillado, Olum, Shlaer: 1309.6637] [Cf. Blanco-Pillado, Olum: 1709.02693]

—Tyle(t—t)+12TGu(t—1)?] ~
Be O (ats — I(t)) © (teg — t) (5)

oIl
n ( 7t) -
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= Exponential suppression at (t > 1/Iy = t2 or t> > 2/ ([4TGu) = t2
because of new exponential suppression factor:
t
Mo [ o (4T (' ~ )] =Ta (O (¢ - ) (6)
ts
= Time-resolved picture of loop decay in dependence of ¢ and t
Similar results for I"I“, ;71:111, ;il%lnl, 'f:]nu, ;71“”1, F],S)H’, F]FS)“”H, ﬁ(s,)mi, FI(S)HH,
pleymm p()rr p(rm - p(lmm pp o integro-differential equation for 77(>I) is

solved by an infinite series that needs be evaluated order by order.



Compute GW spectrum following the standard procedure:

Qp () = SMT;P % tto dt{;((tz))}“r’,,(a(t) 2’%) (7)
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Compute GW spectrum following the standard procedure:
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= Loop contribution almost always dominant (cr tebiond, Shiaer, Siemens: 0903 4686]
= Loop contributions scales like f2 at low f (cf. Buchmilier, Domeke, Murayoma, KS: 1912 03695]
= Suppress spectrum in nHz range, explain NANOGrav for larger Gp
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= Close to prediction of supersymmetric B—L model (Gu > 10~7)

= Tilt at PTA frequencies correlated with amplitude at LVK frequencies

= LISA will probe the entire parameter space consistent with NANOGrav
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Metastable cosmic strings:

= Prediction in many GUT models when combined
/K with inflation to solve the monopole problem

= Exciting predictions for future PTA and
interferometer experiments

Next steps:
= Explore other directions in parameter space: «, I, F,
= Numerically simulate the dynamics of a metastable string network

= Other observables: MM annihilation, CMB spectral distortions, etc.?
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