Effective field theory for cosmological phase transitions

Oliver Gould University of Nottingham

Center of Mathematical Sciences and Applications Harvard University 3 August, 2022

Cosmological first-order phase transitions

Figure: Cutting et al. 1906.00480.

- Transition dynamics
- Bubbles nucleate, expand and collide
- This creates fluid flows, and gravitational waves
- Observable remnants ⇒ new probe of particle physics Such as (n_B - n_{B̄})/s, stochastic gravitational wave backgrounds, topological defects, magnetic fields, ...

Gravitational waves

- Gravitational waves directly observed by LIGO/Virgo →
- Future experiments will significantly improve sensitivity ↓

Figure: LISA Pathfinder

Figure: GW150914 1602.03837

Gravitational waves from phase transitions: the pipeline

Figure: The Light Interferometer Space Antenna (LISA) pipeline $\mathscr{L} \to SNR(f)$, Caprini et al. 1910.13125.

Gravitational waves from phase transitions: the pipeline

Figure: The Light Interferometer Space Antenna (LISA) pipeline $\mathscr{L} \to SNR(f)$, Caprini et al. 1910.13125.

Phase transition parameters

 $\phi = 0$

Equilibrium (hom.)

- order of transition
- *T_c*, critical temperature
- $\Delta \theta_c$, latent heat
- c_s^2 , sound speed

Near-equilibrium

• Γ , bubble nucleation rate $\Rightarrow T_*, \Delta \theta_*, \alpha_*, \beta/H_*$

Nonequilibrium

• v_w, bubble wall speed

Standard approach to computing parameters

One-loop resummed approximation is based on

$$V_{\text{eff}}(\phi, T) = V_{\text{tree}}(\phi) + \underbrace{\frac{1}{2} \int_{P \in \mathbb{R}^4} \log(P^2 + V''_{\text{tree}})}_{\text{Coleman-Weinberg}}$$

Standard approach to computing parameters

One-loop resummed approximation is based on

$$V_{\text{eff}}(\phi, T) = V_{\text{tree}}(\phi) + \underbrace{\frac{1}{2} \int_{P \in \mathbb{R}^4} \log(P^2 + V_{\text{tree}}'')}_{\text{Coleman-Weinberg}} \\ - T \int_{P \in \mathbb{R}^3} \log\left[1 + n_{\text{B}}\left(\frac{\sqrt{P^2 + V_{\text{tree}}''}}{T}\right)\right] \\ \underbrace{\text{thermal}}_{\text{thermal}}$$

Standard approach to computing parameters

One-loop resummed approximation is based on

$$\begin{split} V_{\text{eff}}(\phi, T) &= V_{\text{tree}}(\phi) + \underbrace{\frac{1}{2} \int_{P \in \mathbb{R}^4} \log(P^2 + V_{\text{tree}}'')}_{\text{Coleman-Weinberg}} \\ & \underbrace{-T \int_{p \in \mathbb{R}^3} \log\left[1 + n_{\text{B}}\left(\frac{\sqrt{p^2 + V_{\text{tree}}''}}{T}\right)\right]}_{\text{thermal}} \\ & \underbrace{-\frac{T}{12\pi} \left((V_{\text{tree}}'' + \Pi_T)^{3/2} - (V_{\text{tree}}'')^{3/2}\right)}_{\text{daisy}}. \end{split}$$

One then takes $\Re V_{\text{eff}}$ to determine the phases and critical bubbles (discarding $\Im V_{\text{eff}}$, fixing gauge parameter, fixing renormalization scale, and ignoring derivative corrections).

Theoretical uncertainties

GW signals in two different 1-loop approximations for

$$\mathscr{L} = \mathscr{L}_{\mathsf{SM}} + \frac{\mathsf{a}_2}{2} (\Phi^{\dagger} \Phi) \sigma^2 + \frac{1}{2} (\partial \sigma)^2 + \frac{m_{\sigma}^2}{2} \sigma^2 + \frac{b_4}{4} \sigma^4$$

Carena, Liu & Wang 1911.10206

Theoretical uncertainties

Renormalisation scale dependence of GW spectrum at one physical parameter point for

$$\mathscr{L} = \mathscr{L}_{\mathsf{SM}} + \frac{1}{M^2} (\Phi^{\dagger} \Phi)^3.$$

Croon, OG, Schicho, Tenkanen & White 2009.10080

Theoretical uncertainties

Renormalisation scale dependence of GW spectrum at one physical parameter point for

$$\mathscr{L} = \mathscr{L}_{\mathsf{SM}} + \frac{1}{M^2} (\Phi^{\dagger} \Phi)^3.$$

Croon, OG, Schicho, Tenkanen & White 2009.10080

What has gone wrong?

Possible sources of theoretical uncertainties:

- nonperturbativity? Linde '80
- inconsistencies? E. Weinberg & Wu '87, E. Weinberg '92
- higher order perturbative corrections? Arnold & Espinosa '92
- gauge dependence or infrared divergences? Laine '94
- renormalisation scale dependence? Farakos et al. '94

• . . .

Overview

- 1. Motivation and theoretical uncertainties
- 2. Scale hierarchies in phase transitions
- 3. Problems and effective field theory solutions
- 4. Conclusions

Scale hierarchies in phase transitions

A hierarchy problem

Let's assume there is some very massive particle χ , $M_{\chi} \gg m_H$, coupled to the Standard Model Higgs Φ like

$$\mathscr{L} = \mathscr{L}_{\rm SM} + \mathbf{g}^2 \Phi^{\dagger} \Phi \chi^{\dagger} \chi + \mathscr{L}_{\chi}.$$

If we integrate out $\chi_{\rm r}$ we find that the Higgs mass parameter gets a correction of the form

$$(\Delta m_H^2) \Phi^{\dagger} \Phi = \begin{pmatrix} & & \\ & & \\ & & \\ & & \\ & \sim g^2 M_{\chi}^2 \Phi^{\dagger} \Phi \end{pmatrix},$$

Relevant operators in the IR get large contributions from the UV,

$$\frac{\Delta m_H^2}{m_H^2} \sim g^2 \left(\frac{M_\chi}{m_H}\right)^2.$$

Phase transitions

For there to be a phase transition, thermal/quantum fluctuations should modify the potential at leading order,

$$V_{\rm eff} = V_{\rm tree} + \Delta V_{\rm fluct}$$

Hierarchies in phase transitions

So, for there to be a phase transition, we need

$$\frac{\Delta V_{\rm fluct}}{V_{\rm tree}} \sim g^2 N \left(\frac{\Lambda_{\rm fluct}}{\Lambda_{\rm tree}}\right)^\sigma \stackrel{!}{\sim} 1,$$

where $\sigma > 0$ for relevant operators.

Hierarchies in phase transitions

So, for there to be a phase transition, we need

$$\frac{\Delta V_{\rm fluct}}{V_{\rm tree}} \sim g^2 N \left(\frac{\Lambda_{\rm fluct}}{\Lambda_{\rm tree}}\right)^\sigma \stackrel{!}{\sim} 1,$$

where $\sigma > 0$ for relevant operators.

 \Rightarrow either:

(i) $g^2 N \gtrsim 1$, i.e. strong coupling (ii) $\Lambda_{\text{fluct}} \gg \Lambda_{\text{tree}}$, i.e. scale hierarchy

Hierarchies in phase transitions

So, for there to be a phase transition, we need

$$\frac{\Delta V_{\rm fluct}}{V_{\rm tree}} \sim g^2 N \left(\frac{\Lambda_{\rm fluct}}{\Lambda_{\rm tree}}\right)^\sigma \stackrel{!}{\sim} 1,$$

where $\sigma > 0$ for relevant operators.

 \Rightarrow either:

(i) $g^2 N \gtrsim 1$, i.e. strong coupling

(ii) $\Lambda_{\text{fluct}} \gg \Lambda_{\text{tree}}$, i.e. scale hierarchy

Perturbative phase transitions require scale hierarchies!

Problems and effective field theory solutions

High temperature effective field theory

Farakos et al. '94, Braaten & Nieto '95, Kajantie et al. '95

Problem: renormalisation scale dependence

At zero temperature, the one-loop effective potential is renormalisation group invariant

$$rac{\mathrm{d}}{\mathrm{d}\log\mu}(V_{\mathrm{tree}}+V_{\mathrm{1-loop}})=0.$$

Problem: renormalisation scale dependence

At zero temperature, the one-loop effective potential is renormalisation group invariant

$$\frac{\mathrm{d}}{\mathrm{d}\log\mu}(V_{\mathrm{tree}}+V_{\mathrm{1-loop}})=0.$$

But, at high temperatures this fails, even at leading order

$$\frac{\mathrm{d}}{\mathrm{d}\log\mu}(V_{\mathsf{tree}}+V_{1\mathsf{-loop}}^{\mathsf{thermal}})\neq 0.$$

The problem can be traced to the scale hierarchy $\pi T \gg m$, and to

$$\frac{\mathrm{d}}{\mathrm{d}\log\mu}\left(\frac{1}{2}\Pi_{T}\phi^{2}\right).$$

OG & Tenkanen, 2104.04399

EFT solution: renormalisation scale independence

Solution is clear in EFT approach, and requires all terms in V_{eff} up to $O(g^4 T^4)$, including (resummed) two-loop diagrams.

OG & Tenkanen, 2104.04399

$$\mathscr{L} = \mathscr{L}_{\mathsf{SM}} + \frac{a_2}{2} (\Phi^{\dagger} \Phi) \sigma^2 + \frac{1}{2} (\partial \sigma)^2 + \frac{m_{\sigma}^2}{2} \sigma^2 + \frac{b_4}{4} \sigma^4$$

One-loop V_{eff} is strongly gauge dependent at high T, here demonstrated for

$$\mathscr{L} = rac{1}{4} F^{a}_{\mu
u} F^{a}_{\mu
u} + (D_{\mu} \Phi)^{\dagger} D_{\mu} \Phi + m^2 \Phi^{\dagger} \Phi + \lambda (\Phi^{\dagger} \Phi)^2$$

 Naive solutions lead to infrared divergences or inconsistencies. Laine hep-ph/9411252, Patel & Ramsey-Musolf 1101.4665

18 / 23

EFT solution: gauge independence

EFT approach provides exact order-by-order gauge invariance. Ekstedt, OG & Löfgren 2205.07241 (see also Löfgren et al. 2112.05472, Hirvonen et al. 2112.08912)

Problem: what is the thermal nucleation rate?

Linde '81

$$\Gamma_{\rm Linde} \equiv \left. T \left(\frac{S_3[\phi_{\rm B}]}{2\pi T} \right)^{3/2} \left| \frac{\det' S_3''[\phi_{\rm B}]}{\det S_3''[\phi_{\rm F}]} \right|^{-1/2} e^{-\frac{1}{T} \int_{\mathbb{R}^3} \left[\frac{1}{2} (\nabla \phi_{\rm B})^2 + V_T(\phi_{\rm B}) \right]} \right.$$

where V_T is a thermal effective potential.

Affleck '81

$$\Gamma_{\text{Affleck}} \equiv \frac{1}{2\pi} \left(\frac{S_3[\phi_{\text{B}}]}{2\pi T} \right)^{3/2} \left(\frac{\det^+ S_3''[\phi_{\text{B}}]}{\det S_3''[\phi_{\text{F}}]} \right)^{-1/2} e^{-\frac{1}{7} \int_{\mathbb{R}^3} \left[\frac{1}{2} (\nabla \phi_{\text{B}})^2 + V_{\text{tree}}(\phi_{\text{B}}) \right]}$$

where V_{tree} is the tree-level potential at T = 0.

EFT solution: match to classical nucleation theory

First-principles definition of thermal nucleation rate:

- 1. Integrate out all energy scales $\Lambda \gg \Lambda_{nucl} \sim m_{nucl}$.
- 2. This yields a classical, statistical EFT,

$$S_{\mathsf{nucl}}[\phi] = \int d^3x \left[rac{1}{2} (
abla \phi)^2 + rac{1}{2} m_{\mathsf{nucl}}^2 \phi^2 + \dots
ight].$$

3. Classical nucleation theory then gives rate unambiguously.

OG & Hirvonen 2108.04377

EFT solution: what about the previous inconsistencies?

Resolutions in EFT approach:

- $S_{
 m nucl}[\phi]$ is real for all ϕ
- Derivative expansion justified by $\Lambda_{\rm nucl} \ll \Lambda$
- Modes counted only once in path integral,

$$\Gamma_{\mathsf{EFT}} = \underbrace{\frac{\kappa}{2\pi} \left(\frac{S_{\mathsf{nucl}}[\phi_{\mathrm{B}}]}{2\pi T}\right)^{3/2} \left|\frac{\det' S_{\mathsf{nucl}}''[\phi_{\mathrm{B}}]}{\det S_{\mathsf{nucl}}''[\phi_{\mathrm{F}}]}\right|^{-1/2}}_{\mathsf{modes } E < \Lambda} \underbrace{e^{-S_{\mathsf{nucl}}[\phi_{\mathrm{cb}}]}}_{\mathsf{modes } E > \Lambda}.$$

EFT methods ensure result is independent of $\Lambda.$

Conclusions

- Phase transitions may produce observable gravitational waves
- Large theoretical uncertainties in one-loop approximation
- EFT solves many problems of standard approach
- More work needed for non-equilibrium quantities

Conclusions

- Phase transitions may produce observable gravitational waves
- Large theoretical uncertainties in one-loop approximation
- EFT solves many problems of standard approach
- More work needed for non-equilibrium quantities

Thanks for listening!

Backup slides

High temperature effective field theory

Equilibrium thermodynamics

• Can be formulated in $\mathbb{R}^3 \times S^1$.

• Fields are expanded into Fourier (Matsubara) modes:

$$\Phi(\mathbf{x}, \tau) = \sum_{n \text{ even}} \phi_n(\mathbf{x}) e^{i(n\pi T)\tau} \leftarrow \text{boson}$$
$$\Psi(\mathbf{x}, \tau) = \sum_{n \text{ odd}} \psi_n(\mathbf{x}) e^{i(n\pi T)\tau} \leftarrow \text{fermion}$$

• Masses of Matsubara modes are

$$m_n^2 = m^2 + (n\pi T)^2$$

- At T ≫ T_c, thermal corrections dominate, so m_{0,eff} ~ gT which is much less than πT.
- Near $T = T_c$, cancellations typically give $m_{0,eff} \ll gT$.

Resumming UV problems

Resummation by changing split between $\mathscr{L}_{\mathsf{free}}$ and $\mathscr{L}_{\mathsf{int}}$,

$$egin{aligned} \mathscr{L}_{ ext{free}} &
ightarrow \mathscr{L}_{ ext{free}} + rac{1}{2}(m_{0, ext{eff}}^2 - m^2)\phi_0^2, \ & \mathscr{L}_{ ext{int}}
ightarrow \mathscr{L}_{ ext{int}} + rac{1}{2}(m^2 - m_{0, ext{eff}}^2)\phi_0^2. \end{aligned}$$

Top-down EFT

- Split degrees of freedom $\{\phi,\chi\}$ based on energy \rightarrow
- Integrate out the UV modes:

$$\int \mathcal{D}\phi \int \mathcal{D}\chi \ e^{-S[\phi,\chi]} = \int \mathcal{D}\phi_{\mathsf{IR}} \left(\int \mathcal{D}\phi_{\mathsf{UV}} \mathcal{D}\chi \ e^{-S[\phi,\chi]} \right)$$
$$= \int \mathcal{D}\phi_{\mathsf{IR}} \ e^{-S_{\mathsf{eff}}[\phi_{\mathsf{IR}}]}$$
$$\phi_{\mathsf{IR}}$$

• Careful power-counting cancels dependence on Λ.

 $\oint \phi_{\rm UV}, \chi$

Burgess '21, Hirvonen '22

Resummations with EFT

By first integrating out the UV modes

$$egin{aligned} S_{ ext{eff}}[\phi_{ ext{IR}}] &= S_{\phi}[\phi_{ ext{IR}}] - \log \int \mathcal{D}\phi_{ ext{UV}}\mathcal{D}\chi \,\, e^{-S_{\chi}[\chi] - S_{\chi\phi}[\phi,\chi]}, \ &pprox S_{\phi}[\phi_{ ext{IR}}] + \int_{\chi} rac{1}{2}(m_{ ext{eff}}^2 - m^2)\phi_{ ext{IR}}^2, \end{aligned}$$

the daisy resummations arise naturally.

So do all other resummations necessary to resolve UV problems (i.e. large contributions to IR quantities from UV physics).

Lattice versus perturbation theory

Real scalar model

Perturbation theory converges towards the lattice for the jump in the scalar condensate in

$$\mathscr{L} = \frac{1}{2}(\partial\phi)^2 + \frac{m_3^2}{2}\phi^2 + \frac{g_3}{3!}\phi^2 + \frac{\lambda_3}{4!}\phi^4$$

OG 2101.05528

Triplet extension of the Standard Model

Perturbative EFT approach agrees well with lattice in triplet extension of Standard Model,

$$\mathscr{L} = \mathscr{L}_{\mathsf{SM}} + \frac{a_2}{2} \Phi^{\dagger} \Phi \Sigma^a \Sigma^a + \frac{1}{2} D_{\mu} \Sigma^a D_{\mu} \Sigma^a + \frac{m_{\Sigma}^2}{2} \Sigma^a \Sigma^a + \frac{b_4}{4} (\Sigma^a \Sigma^a)^2$$

OG & Tenkanen forthcoming

SU(2) Higgs model - bubble nucleation

Lattice versus perturbative approaches for the nucleation rate in the $\mathop{\rm SU}(2)$ Higgs model

$$\mathscr{L} = rac{1}{4} F^a_{\mu
u} F^a_{\mu
u} + (D_\mu \Phi)^\dagger D_\mu \Phi + m^2 \Phi^\dagger \Phi + \lambda (\Phi^\dagger \Phi)^2$$

OG, Güyer & Rummukainen 2205.07238