Cosmic Archaeology with Gravitational Waves from (Axion) Cosmic Strings

arxiv: 1711.03104 (PRD), 1808.08968 (JHEP) YC with Marek Lewicki, David Morrissey and James Wells arxiv: 1912.08832 (PRL), YC with Marek Lewicki and David Morrissey arXiv:1910.04781 (PDU), 2106.09746 (JHEP), YC with Chia-Feng Chang Work in prep with Chia-Feng Chang

Yanou Cui

University of California, Riverside

Cambridge High Energy Workshop, Aug 3 2022

GWs from Cosmic Strings

Cosmic strings:

strong signal, primary targets of LIGO, LISA

David, Kai, + later by Sungwoo, Seth...

- Resonates with Anson's talk yesterday

A network of 1-dim topological defects: a few long strings +more loops per horizon size; strong motivations (U(1)' breaking, superstring theory, axion...) • A leading cosmological/BSM source of GWs (SGWB, bursts), potentially

- General/basic aspects on cosmic strings see earlier talks by

Outline

- Cosmic archaeology with GWs from (NG) cosmic strings:
 - Probe pre-BBN Hubble expansion history with f-spectrum of SGWB from cosmic strings: test the standard model of
 - cosmology/particle physics, e.g. new eq. of state, new d.o.f
 - GW bursts as signals of cosmic strings diluted by inflation
- Probe ALP DM models with GWs from global (axion) strings
- Conclusion/Outlook

I. Cosmic archaeology with GWs from (NG) cosmic strings

The horizon of confidence: **BBN** (~1s-3 min after Big Bang)

• CMB light: a direct window back to ~400k yrs after the Big Bang

The horizon of confidence: **BBN**

(~1s-3 min after Big Bang)

• CMB light: a direct window back to ~400k yrs after the Big Bang

What happened before BBN?

Standard cosmology theory: assumptions to be tested, many unknowns!

(scale of inflation/reheating? early matter domination/kination? early phase transitions? new d.o.f?...)

Pre-BBN Cosmology? - the Primordial Dark Age

(Boyle and Steinhardt 2005, Boyle and Buonanno 2007)

What happened within the first ~1 sec?

The gap amplified on Log scale of temperature T ($\propto a^{-1}$)! \otimes

The Universe is RD with SM content from T_{eq} all the way back to the end of inflation: up to 24 orders of magnitudes on T scale! – IS IT??

• CMB light: a direct window back to ~400k yrs after the Big Bang

What happened before BBN?

Standard cosmology theory: assumptions to be tested, many unknowns!

(scale of inflation/reheating? early matter domination? early phase transitions? new d.o.f?...)

The horizon of confidence: **BBN**

(~1s-3 min after Big Bang)

• CMB light: a direct window back to ~400k yrs after the Big Bang

What happened before BBN?

Standard cosmology theory: assumptions to be tested, many unknowns!

(scale of inflation/reheating? early matter domination? early phase transitions? new d.o.f?...)

Direct observational probe?

inflation + post-inflationary thermal history (Impact on Ω_{DM} , DM halo structure/detection!)

GW: the window of hope?

The horizon of confidence: **BBN**

(~1s-3 min after Big Bang)

• CMB light: a direct window back to ~400k yrs after the Big Bang

What happened before BBN?

Standard cosmology theory: assumptions to be tested, many unknowns!

(scale of inflation/reheating? early matter domination? early phase transitions? new d.o.f?...)

Direct observational probe?

inflation + post-inflationary thermal history (Impact on Ω_{DM} , DM halo structure/detection!)

GW Signatures from Cosmic Strings

Gravitational waves emitted from oscillating string loops

string network history \bigstar (c.f. 1st order PT)

Credit: Matt DePies/UW.

- Relic stochastic GW background: <u>continuous</u> emission throughout the
 - \Rightarrow SGWB spectrum spanning a <u>wide</u> frequency range

Stochastic GW Background from Cosmic Strings

arxiv: 1711.03104, 1808.08968, YC with Lewicki, Morrissey and Wells

We use a simplified loop size distribution (at formation) justified by recent simulation results (e.g. Blanco-Pillado and Olum 2017) :

$$l_i = \alpha t_i, \quad \alpha$$

The loop formation rate per unit V per unit time (t):

$$n(l,t) = \frac{C_{\text{eff}}(t)}{\alpha^2 t_i^4}$$

After its creation, each loop radiates GW energy at a constant rate:

$$\frac{dE}{dt} = -$$

 ≈ 0.1

 $\frac{t_i}{\frac{4}{4}} \frac{a^3(t_i)}{a^3(t)}$

 $-\Gamma G \mu^2$, $\Gamma \approx 50$

Stochastic GW Background from Cosmic Strings

Consequently, the loop size decreases as

 $f = \frac{a}{a}$

k: oscillation mode

- $l = \alpha t_i \Gamma G \mu \left(t t_i \right)$
- The observed GW frequency today from a loop of size l

$$\frac{u(\tilde{t})}{u(t_0)} \frac{2k}{l}$$

Stochastic GW Background from Cosmic Strings

GW density per unit frequency seen today:

$$\Omega_{GW}(f) = \frac{f}{\rho_c} \frac{d\rho_c}{d}$$

$$\Omega_{GW}^{(k)}(f) = \frac{1}{\rho_c} \frac{2k}{f} \frac{(0.1)\Gamma_k C}{\alpha(\alpha + \Gamma C)}$$
$$\times \int_{t_F}^{t_0} d\tilde{t} \ \frac{C_{eff}(t_i)}{t_i^4}$$

-Cosmic expansion history $H(t) \equiv \dot{a}/a$ is encoded $(a(\tilde{t}))!$

- Putting things together:

Testing Standard Cosmology w/GW Spectrum from Cosmic Strings

• An example: $G_{\mu} = 2 \times 10^{-11}$, $\alpha = 0.1$ (in standard cosmology)

The GW Frequency-Time (Temperature) Correspondence

arxiv: 1711.03104, 1808.08968, YC with Lewicki, Morrissey and Wells

• Quantify/utilize the *f-T* correspondence

$$f_{\Delta} \simeq \sqrt{\frac{8}{z_{\rm eq} \alpha \Gamma G \mu}} \left[\frac{g_*(T_{\Delta})}{g_*(T_0)} \right]^{1/4} \left(\frac{T_{\Delta}}{T_0} \right) t_0^{-1}$$

Numerical fit:

 $f_{\Delta} = (8.67 \times 10^{-3} \,\mathrm{Hz}) \,\left(\frac{\Delta}{\mathrm{GeV}}\right) \left(\frac{0.1}{\mathrm{GeV}}\right)$

GW frequency \leftrightarrow temperature

GW with a given f was dominantly contributed by loops formed at a certain t/T

$$\frac{1}{\alpha \Gamma G \mu} \sum^{1/2} \left(\frac{g_*(T_\Delta)}{g_*(T_0)} \right)^{\frac{8}{6}} \left(\frac{g_{*S}(T_0)}{g_{*S}(T_\Delta)} \right)^{-\frac{7}{6}}$$

Experimental Detection Prospects (f-T correspondence)

the corresponding GW detector.

• Fig.: f_{Δ} required to test the standard cosmology up to radiation T_{Δ} for a range of G μ , α =0.1. Shaded regions: signal within detection sensitivity by

Probing New Phases (Equation of States) in Cosmological Evolution

- Non-standard cosmology (new e.o.s) well-motivated, e.g. • Early matter domination ($\rho \propto a^{-3}$): baryogenesis, moduli... • Kination ($\rho \propto a^{-6}$): DE, axion, inflation...
- Take a break from the "boring" RD era ($\rho \propto a^{-4}$) !

 $H^2 = \frac{8\pi}{3}\rho, \ H^2 \propto a^{-n}$

Impact on SGWB spectrum from cosmic strings:

Probing New Phases in Cosmic History with Cosmic String GWs

Probing New (Massive) Degrees of Freedom

Cosmological Probe for (Massive) BSM Degrees of Freedom

- Additional d.o.f's: <u>ubiquitous</u> in BSM theories, maybe hundreds of them!(GUT, DM, SUSY, RS, hidden valley, twin Higgs, NNaturalness...)
- Massive d.o.f's: radiation in the early Universe (g_*), later freezeout/decay can't be traced by CMB ΔN_{eff} (unlike massless d.o.f)

- GW spectrum may provide a way! $(H^2 \propto g_*T^4)$

Gravitational Wave Bursts as Harbingers of Cosmic Strings Diluted by Inflation

(arxiv: 1912.08832 PRL, YC with Marek Lewicki and David Morrissey)

Inflation buries all relics before it (or shortly after it starts)?

Inflation and Cosmic String Regrowth

How is it possible?

 $\rho_{\infty} \equiv \frac{\mu}{L^2}$ L: correlation length

During inflation: $L(t) = L_F e^{H_I(t - t_F)}$ After inflation: $L \propto a, \ \rho_{\infty} \propto a^{-2}$

Slower than the growth of horizon siz

**ze
$$H^{-1}$$
!** RD: $H^{-1} \propto a^2$, $\rho_r \propto a^{-4}$
MD: $H^{-1} \propto a^{3/2}$, $\rho_m \propto a^{-3}$

Strings may grow back into horizon after inflation! (after $\tilde{z} LH \leq 1$)

Inflation and Cosmic String Regrowth

100 E

• How is it possible?

 $\rho_{\infty} \equiv \frac{\mu}{L^2}$ L: correlation length

During inflation: $L(t) = L_F e^{H_I(t-t_F)}$ After inflation: $L \propto a, \ \rho_{\infty} \propto a^{-2}$

Slower than the growth of horizon siz

Solve for string network evolution with VOS model:

RD:
$$H^{-1} \propto a^2$$
, $\rho_r \propto a^{-4}$
MD: $H^{-1} \propto a^{3/2}$, $\rho_m \propto a^{-3}$

Strings may grow back into horizon after inflation! (after $\tilde{z} \ LH \lesssim 1$)

Gravitational Wave Bursts as Harbingers of Cosmic Strings Diluted by Inflation (arxiv: 1912.08832 PRL, YC with Marek Lewicki and David Morrissey)

Distinct GW signals from a diluted then regrown cosmic string network

- Stochastic GW background: suppressed esp. at higher f, strong constraints on G_{μ} based on SGWB alleviated (PPTA, LIGO...)
- GW bursts: transient resolvable, late time/nearby events due to cusps/kinks on strings; subdominant signal channel to SGWB for standard strings, but can be the leading discovery channel now!

★ SGWB: Standard vs. diluted

II. Novel Probes of ALP DM Models with GWs from Axion Topological Defects

— An interesting twist/application when switch gear to a global U(1)...

(arXiv:1910.04781 (PDU), 2106.09746 YC (JHEP) with Chia-Feng Chang)

- Axion-like particle (ALP) DM: ultra-light (pseudo-)goldstone boson from a global $U(1)_{PQ}$ breaking, leading alternative to WIMP paradigm, a lot of interest/effort recently; QCD axion, generic (hidden) ALPs also motivated (e.g. string axiverse)
- U(1)_{PQ} breaking after inflation — potentially significant impact on axion DM physics and detection methods;

<u>Rapidly increasing interest in the past few years (simulations, analytical studies, signals...)</u>

• A relatively under-developed aspect of ALP studies: implication of ALP topological defects readily ALP cosmic strings/domain walls: indispensable companion of ALP particles for

(arXiv:1910.04781 (PDU), 2106.09746 YC (JHEP) with Chia-Feng Chang)

- Axion-like particle (ALP) DM: ultra-light (pseudo-)goldstone boson from a global $U(1)_{PQ}$ breaking, leading alternative to WIMP paradigm, a lot of interest/effort recently; QCD axion, generic (hidden) ALPs also motivated (e.g. string axiverse)

 $U(1)_{PQ}$ breaking after inflation

— potentially significant impact on axion DM physics and detection methods;

<u>Rapidly increasing interest in the past few years (simulations, analytical studies, signals...)</u>

 A relatively under-developed aspect of ALP studies: implication of <u>ALP topological</u> defects readily ALP cosmic strings/domain walls: indispensable companion of ALP particles for

GW signature from axion cosmic strings?

(arXiv:1910.04781 (PDU), 2106.09746 YC (JHEP) with Chia-Feng Chang)

Our focus: GW signature from global/axion cosmic strings? An overlooked, yet potentially discovery channel Why Overlooked? "too small" by naive estimate, some earlier literature (few) suggested non-detectability

 Difference from gauge/local/NG strings #1: GW radiation subdominant to Goldstone emission **Radiation power:** $P_{\rm GW} \sim \Gamma G \mu^2 \ll P_a \sim \Gamma_a \eta^2$,

• Difference from gauge/local strings #2: Log-divergent, time-dependent string tension:

- $\mu \sim \eta^2 \log (L/\delta)$ correlation length: $L \sim H^{-1}$, string core width: $\delta \sim \eta^{-1}$
 - $N \equiv \log(L/\delta)$ —time-dependent parameter (later...)

(arXiv:1910.04781 (PDU), 2106.09746 YC (JHEP) with Chia-Feng Chang)

Our focus: GW signature from global/axion cosmic strings? - An overlooked, yet potentially discovery channel Why Overlooked? "too small" by naive estimate, some earlier literature (few) suggested *non-detectability*

 Difference from gauge/local/NG strings #1: GW radiation subdominant to Goldstone emission **Radiation power:** $P_{\rm GW} \sim \Gamma G \mu^2 \ll P_a \sim \Gamma_a \eta^2$,

• Difference from gauge/local strings #2: Log-divergent, time-dependent string tension:

• Key motivation: rare decay mode can be discovery mode! (e.g. Higgs discovery, axion/ goldstone search strategy model dependent...) + GW signal universal, GW detector sensitivity keep improving...

- $\mu \sim \eta^2 \log (L/\delta)$ correlation length: $L \sim H^{-1}$, string core width: $\delta \sim \eta^{-1}$
 - $N \equiv \log(L/\delta)$ —time-dependent parameter (later...)

Novel Probes of ALP DM Models with GWs from Axion Topological Defects (arXiv:1910.04781, 2106.09746 YC with Chia-Feng Chang)

- Challenges:
- Limited literature (compared to NG/gauge strings)
- Rapid recent development of global string simulation: not converging, nonscaling, more to investigate (challenge: cover hierarchical scales)
- More complex for axion strings: cosmic strings + domain walls

Novel Probes of ALP DM Models with GWs from Axion Topological Defects (arXiv:1910.04781, 2106.09746 YC with Chia-Feng Chang)

- Challenges:
- Limited literature (compared to NG/gauge strings)
- Rapid recent development of global string simulation: not converging, nonscaling, more to investigate (challenge: cover hierarchical scales)
- More complex for axion strings: cosmic strings + domain walls
- Our approach:
 - Start with the simple case: SGWB signal from global strings (massless) goldstone) (\rightarrow QCD axion \rightarrow ALPs)
 - Semi-analytical: VOS model (including Goldstone emission) calibrated with simulation results (low N)
 - Complement simulations: simple extrapolation of low N data to late time evolution vs. solving evolution equation with essential physics encoded

SGWB Spectrum from Global Cosmic Strings

With standard cosmology (YC and Chang 2019, updated in 2021):

 Detectable with upcoming GW experiments! Supported by recent simulation findings (details differ) (Gorghetto, Hardy and Nicholaescu 2021; Figueroa, Hindmarsh, Lizarraga and Urrestilla 2020)

Comparison with NG strings, *f-T* **Correspondence**

- Global strings (solid) vs. NG strings (dashed): Overall smaller amplitude, spectrum redshifted, logarithmically declining tail
- Explanation: Goldstone emission dominance, short-lived loops, log factor in μ
- f-T correspondence: very different from NG, Insensitive to η , the same *f* corresponds to higher $T \rightarrow$ probe up to $T \sim 10^8 GeV!$ (short-lived loops)

$$f_{\Delta} \simeq \frac{2}{\ell(\tilde{t})} \frac{a(t_{\Delta})}{a(t_{0})} = \frac{2}{\alpha z_{\rm eq} t_{\rm eq} T_{\rm eq}} \left[\frac{g_{*}(T_{\Delta})}{g_{*}(T_{\rm eq})} \right]^{1/4} T_{\Delta}$$
$$\simeq (3.02 \times 10^{-6} \,\mathrm{Hz}) \left(\frac{T_{\Delta}}{1 \,\mathrm{GeV}} \right) \left(\frac{\alpha}{0.1} \right)^{-1} \left[\frac{g_{*}(T_{\Delta})}{g_{*}(T_{\rm eq})} \right]^{1/4}$$

Cosmic archaeology with GWs from global strings

 SGWB with non-standard cosmology (early MD, kination):

 SGWB with new particle species in the early Universe:

θ

Conclusion/Outlook

- Cosmic strings: a potentially strong, well-studied source of SGWB that can serve as a "standard candle" for probing very early Universe

 a unique and powerful tool for reconstructing a timeline for pre-BBN cosmic history (the f-T correspondence) + finding new particle species!
- Cosmic strings may regrow back into horizon despite inflationary dilution and leave an imprint: GW bursts + suppressed SGWB, clues for (pre-)inflationary epoch?
- GWs from (global) axion strings/domain walls may be the smoking gun for dark matter; work in prep (w/CF Chang): better understanding of evolution/dynamics of axion DW (towards DM axion)
- Welcome follow-up discussion (reach out to me by email)!

Thank you!