Dark Matter Freeze-out during $SU(2)_T$ Confinement

Jessica N. Howard (she/her)

NSF Graduate Research Fellow jnhoward@uci.edu

Phase Transitions and Topological Defects in the Early Universe CMSA | August 04, 2022

JHEP, DOI: 10.1007/JHEP02(2022)047 | arXiv: 2112.09152

Jessica N. Howard¹, Seyda Ipek², Tim M.P. Tait¹, Jessica Turner³

¹ Department of Physics and Astronomy, UC Irvine ² Department of Physics, Carleton University ³ Institute for Particle Physics Phenomenology, Durham University

GitHub: jnhoward/SU2LDM_public, DOI: 10.5281/zenodo.5965537

This work was supported in part by the following grants:

DGE-1839285

Particle physics and cosmological history

- Studying particle interactions will help us understand the early universe
- However, this is only an assumption, the real cosmological history may differ
 - Direct probes are needed to say definitively

Extrapolating the Standard Model gives us the Standard Cosmological History

Alternate cosmological histories

 Direct measurements only confirm a Standard Cosmology back to **Big Bang Nucleosynthesis (BBN)**

Alternate cosmological histories may help provide explanations

Why consider alternate cosmological histories?

- Immediate practical benefits
 - Might lead to profitable results alleviating current constraints

- Scientifically important
 - Experimentally we can, so scientifically we should

- Long-term benefits
 - Exploring possibilities will help probe what actually happened

03 / 19

How to modify cosmological history?

• **Common example:** Add new particle species

Standard WIMP Dark Matter

• Weirder example: Modify strengths of forces

• Features of the early universe caused the strengths of the forces to evolve, eventually settling to what we see today

• This talk: Modify the Electroweak (EW) force to alleviate WIMP DM constraints • Based on [1] with a WIMP DM candidate thrown into the mix

[1] Joshua Berger, Andrew J. Long, Jessica Turner. A phase of confined electroweak force in the early Universe. arXiv: 1906.05157.

WIMP dark matter (DM) freeze-out

• A classic WIMP model considers DM as a Weakly charged particle

Dark Matter Relic Abundance

knobs

WIMP dark matter (DM) freeze-out

- A classic WIMP model considers DM as a Weakly charged particle
 - Force coupling is uniquely fixed
 - Getting the correct relic abundance uniquely fixes the DM mass ullet
- This was assuming a standard cosmological history

Dark Matter Relic Abundance

Standard freeze-out knobs

Strongly constrained by experiments

WIMP dark matter (DM) freeze-out

Alternate cosmology

- A classic WIMP model considers DM as a Weakly charged particle
 - Force coupling is uniquely fixed
 - Getting the correct relic abundance uniquely fixes the DM mass ullet
- This was assuming a standard cosmological history
- If instead there was an alternate cosmological history where the Weak force coupling was different during freeze-out, freedom in DM mass would be restored

Standard freeze-out knobs

Dark Matter Relic Abundance

Strongly constrained by experiments

Schematic outline of calculation

Jessica N. Howard

$$\supset -\frac{1}{2} \frac{1}{g_{\text{eff}}^2} \operatorname{Tr}(W_{\mu\nu} W^{\mu\nu}) \qquad \frac{1}{g_{\text{eff}}^2} = \left(\frac{1}{g^2} - \frac{\langle \phi \rangle}{M}\right) \qquad M > \mathrm{Te}$$

Electroweak (EW) Force is at normal strength

WIMP dark matter in this scenario

- Our DM candidate is a pair of vector-like $SU(2)_{I}$ -charged Weyl fermions
 - SM quantum numbers $SU(3)_C \times SU(2)_L \times U(1)_V = \{1, 2, \pm 1/2\}$ with mass m_{DM}

$$\mathcal{L}_{\chi} = i \chi_1^{\dagger} \bar{\sigma}^{\mu} D_{\mu} \chi_1 + i \chi_2^{\dagger} \bar{\sigma}^{\mu} D_{\mu} \chi_2 + m_{DM} \chi_1 \chi_2 + h.c.$$

- During EW confinement, χ_1 and χ_2 confine with SM quarks and leptons into bound states
 - These are analogous to mesons and baryons of C
 - The lightest of these states are mesons: Π and η'
- In analogy with chiral perturbation theory, we collect these into a

complex antisymmetric scalar field Σ_{ij} where $i, j = 1, ..., 2N_f$ Number of flavors of SU(2)_L doublets

Confinement details

- Confinement spontaneously breaks flavor symmetry $SU(2N_f) \rightarrow Sp(2N_f)$
 - Follows intuition from chiral symmetry breaking in QCD and confirmed with lattice simulations - Encoded by Σ_{ii} obtaining a vev $(\Sigma_0)_{ii}$ satisfying $\Sigma_0^{\dagger}\Sigma_0 = \Sigma_0\Sigma_0^{\dagger} = 1$
- Neglecting other SM gauge interactions and Yukawa couplings we get $2N_f^2 N_f 1$ massless Goldstone bosons (GSBs) and 1 massive pseudo-GSB, analogous to the η' of QCD.

```
1 generation
\{l, q^{r}, q^{g}, q^{b}, \chi_{1}, \chi_{2}\}
         2N_{f} = 6
\begin{array}{c} SU(6) \rightarrow Sp(6) \\ \Downarrow \end{array}
       15 mesons
```

 $2N_f^2 - N_f - 1 \ \Pi$'s and $1 \ \eta$

Jessica N. Howard

3 generations

Confinement details

$$\begin{aligned} \mathcal{L}_{\mathsf{IR}} &\supset \frac{f^2}{4} \operatorname{Tr} \left[D_{\mu} \Sigma^{\dagger} D^{\mu} \Sigma \right] + \Lambda_W^3 \operatorname{Tr} \left[M \Sigma + \Sigma^{\dagger} M^T \right] + \kappa \Lambda_W^2 f^2 \operatorname{Re} \left[\det \Sigma \right] + \Delta J \\ \Delta \mathcal{L} &= C_G \Lambda_W^2 f^2 \frac{g_s^2}{16\pi^2} \sum_{a=1,2,3} \operatorname{Tr} \left[L^a \Sigma^{\dagger} L^{aT} \Sigma \right] + C_A \Lambda_W^2 f^2 \frac{e_Q^2}{16\pi^2} \operatorname{Tr} \left[Q \Sigma^{\dagger} Q \Sigma \right] \\ &+ C_W \Lambda_W^2 f^2 \frac{g_s^2/2}{16\pi^2} \sum_{\pm} \sum_{i=1,2} \operatorname{Tr} \left[L^{i\pm} \Sigma^{\dagger} L^{i\pm} \Sigma \right] + C_Z \Lambda_W^2 f^2 \frac{e_Q^2/s_Q^2 c_Q^2}{16\pi^2} \operatorname{Tr} \left[J \Sigma^{\dagger} J \Sigma \right] \end{aligned}$$

$$\Sigma = \exp\left[i\frac{\eta'}{\sqrt{N_f f}}\right] \exp\left[\sum_a 2i\frac{\Pi^a X}{f}\right]$$

 X^a generators of the broken symmetry $SU(2N_f)/Sp(2N_f)$, $a:1, ..., 2N_f^2 - N_f - 1$

• $\Delta \mathcal{L}$ gauge corrections from $SU(3)_C$ and $U(1)_Y$ explicitly break $SU(2N_f)$ giving some GSBs masses

• Confinement breaks $SU(3)_C \times U(1)_Y \rightarrow SU(2)_C \times U(1)_Q$ eating some of the massless GSBs

Pion masses and remaining gauge symmetries

Gauge charges

1

1

T

12 / 19

Deriving pion interactions

• We are interested in reactions which deplete the DM density i.e. $\Pi_{DM}\Pi_{DM} \rightarrow \Pi_{SM} \Pi_{SM}$ $\Gamma [M\Sigma + \Sigma^{\dagger} M^{T}] + \kappa \Lambda_{W}^{2} f^{2} \operatorname{Re}[\det \Sigma] + \Delta \mathcal{L}$ \downarrow $\mathbf{I}_{a}\Pi_{b}\partial^{\mu}[\Pi_{c}]\partial_{\mu}[\Pi_{d}] + \frac{2m_{\mathrm{DM}}\Lambda_{W}^{3}}{3f^{4}}\mathrm{Tr}_{2}(a,b,c,d) \Pi_{a}\Pi_{b}\Pi_{c}\Pi_{d}$

$$\mathcal{L}_{\mathsf{IR}} \supset \frac{f^2}{4} \operatorname{Tr} \left[D_{\mu} \Sigma^{\dagger} D^{\mu} \Sigma \right] + \Lambda_W^3 \mathrm{T}$$

$$\Pi_a \Pi_b \to \Pi_c \Pi_d \qquad \qquad \mathcal{L}_{2 \to 2} = \frac{4}{f^2} \operatorname{Tr}_1(a, b, c, d) \Pi_d$$

- For the benchmarks chosen we can safely neglect annihilation to gauge bosons
- We calculate the velocity averaged effective cross-section, taking into account coannihilation •
 - We assume non-relativistic, s-wave scattering ullet
 - Because of the many possible combinations of $\{a, b, c, d\}$ we perform this calculation numerically in Python
- We then use this in solving the Boltzmann equation for the final co-moving number density of Π_{DM}

WIMP freeze-out in this scenario

EW confinement phase

- Freeze-out happens while χ_1 and χ_2 are confined in pion form
 - Lightest pion containing χ survives freeze-out: $\Pi_{\text{DM},1}$ (mass = m_1)
 - Calculate $\Omega_{\Pi_{\rm DM,1}} h^2$ numerically taking into account possible coannihilation
- After freeze-out, EW confined phase ends and pions deconfine
 - Entropy dump from deconfinement is negligible which prevents further freeze-out of the χ 's
- In general, $m_{\Pi_{\rm DM,1}} > m_{\rm DM}$ so we adjust the relic abundance accordingly

 $-2 \ln L = \int \frac{\Omega_{\chi} h^2}{\Lambda}$ **Parameter scan:**

Minimal assumptions:

 $m_{\rm DM} < \Lambda_W$ $f = \frac{1}{4\pi} \Lambda_W$

$$\frac{2\left(m_{\rm DM},f\right) - \Omega_{\rm PDG}h^2}{\Delta\Omega h^2}$$

$\Omega_{\rm PDG} h^2 \pm \Delta \Omega h^2 = 0.1200 \pm 0.0012$ Planck 2018 results: <u>arXiv: 1807.06209</u>

Experimental constraints: Direct detection

Reminder: $\chi_{1,2}$ are SU(2)_L-doublets with hypercharge with full strength Z-boson couplings \Rightarrow trouble, but...

- Avoided if there is a small Majorana mass $m_M \ll m_{\rm DM}$ today^[1]
- Can be induced by a dimension 5 interaction with the Higgs

$$\mathcal{L}_{\Delta M} = \frac{1}{M_1} (H^{\dagger} \chi_1) (H^{\dagger} \chi_1) + \frac{1}{M_2} (H \chi_2) (H \chi_2) + h$$

• No effect on freeze-out for sufficiently large mass scales

[1] David Smith, Neal Weiner. Inelastic Dark Matter. arXiv: hep-ph/0101138

Jessica N. Howard

Mass of DM relic: $\chi_{1,2}$

Other experimental constraints

LHC bounds

- Analogous signature to charginos
- No constraints for $m_{\rm DM} > 420 \ {\rm GeV}^{(1)}$
- Likely out of reach for future colliders

Indirect detection

• Might be in reach of future gamma ray observatories

[1] ATLAS: <u>arXiv:1908.08215</u> and CMS: <u>arXiv: 1807.07799</u>

Main takeaway

What did this alternate cosmological history get us?

- Maintains the correct DM relic abundance \bullet
- Increases the possible mass range of DM •
- Restores some freedom to WIMP models

Conclusion

- Considering alternate cosmological histories is important and can be advantageous
- Modification to cosmological history can help restore the WIMP miracle
- Not ruled out by current experiments

Thanks for listening!

