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Particle physics and cosmological history

• Studying particle interactions will help us understand the early universe
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Particle interactions

• However, this is only an assumption, the real cosmological history may differ
• Direct probes are needed to say definitively

• Extrapolating the Standard Model gives us the Standard Cosmological History
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Alternate cosmological histories

• We know the Standard Model is incomplete

• Direct measurements only confirm a Standard Cosmology back to 
Big Bang Nucleosynthesis (BBN)
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• Alternate cosmological histories may help provide explanations

?
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Why consider alternate cosmological histories?

• Scientifically important
• Experimentally we can, so scientifically we should

• Long-term benefits
• Exploring possibilities will help probe what actually happened

Big 
Bang

0.01 ns 1 μs10−35 s 1 s

1015 GeV 100 GeV 1 GeV 1 MeVT

t

BBN

Direct experimental 
constraints

?

Dark Matter

• Immediate practical benefits
• Might lead to profitable results alleviating current 

constraints 
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How to modify cosmological history?

• Common example: Add new particle species
• Standard WIMP Dark Matter
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• Weirder example: Modify strengths of forces
• Features of the early universe caused the strengths of the 

forces to evolve, eventually settling to what we see today 

• This talk: Modify the Electroweak (EW) force to alleviate WIMP DM constraints
• Based on [1] with a WIMP DM candidate thrown into the mix

E.g Joshua Berger, Andrew J. Long, Jessica Turner: 2019. 
Djuna Croon, JNH, Seyda Ipek, Timothy M.P. Tait: 2019.

[1] Joshua Berger, Andrew J. Long, Jessica Turner.  A phase of confined electroweak force in the early Universe.  arXiv: 1906.05157.

https://arxiv.org/abs/1906.05157
https://arxiv.org/abs/1911.01432
https://arxiv.org/abs/1906.05157
https://arxiv.org/abs/1911.01432
https://arxiv.org/abs/1906.05157
https://arxiv.org/abs/1906.05157
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WIMP dark matter (DM) freeze-out

Standard freeze-out 
knobs

mχ
Force

Coupling strength

Ωχh2

Dark Matter Relic Abundance

• A classic WIMP model considers DM as a Weakly charged particle
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WIMP dark matter (DM) freeze-out

• A classic WIMP model considers DM as a Weakly charged particle

• This was assuming a standard cosmological history

Standard freeze-out 
knobs

mχ
Force

Coupling strength

Ωχh2

Standard cosmology

SU(2)L

• Force coupling is uniquely fixed
• Getting the correct relic abundance uniquely fixes the DM mass

Strongly constrained  
by experiments}

Dark Matter Relic Abundance
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WIMP dark matter (DM) freeze-out

• A classic WIMP model considers DM as a Weakly charged particle

• This was assuming a standard cosmological history

Standard freeze-out 
knobs

mχ
Force

Coupling strength

Ωχh2
SU(2)L

• Force coupling is uniquely fixed
• Getting the correct relic abundance uniquely fixes the DM mass

Strongly constrained  
by experiments}

Dark Matter Relic Abundance

• If instead there was an alternate cosmological history where the Weak force coupling 
was different during freeze-out, freedom in DM mass would be restored

Standard cosmology

Alternate cosmology
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Schematic outline of calculation

Direct experimental 
constraintsEW confinement phase

WIMP Freeze-out
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= ( 1
g2 − ⟨ϕ⟩

M ) M > TeV⊃ − 1
2

1
g2

eff
Tr(WμνWμν)L

⟨ϕ⟩ ≪ M/g Electroweak (EW) Force is at normal strength

⟨ϕ⟩ ∼ M/g Electroweak (EW) Force is much stronger

⟨ϕ⟩ ≠ 0

χΠDM

EW Force confines 
DM into “pions”

DM pions interact / freeze-out
ΠDM

ΠDM

ΠSM

ΠSM

χχΠDM

EW confined phase ends, pions deconfine

⟨ϕ⟩ → 0

This causes EW confinement
(analogous to QCD)
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WIMP dark matter in this scenario

• Our DM candidate is a pair of vector-like -charged Weyl fermions
• SM quantum numbers  with mass  

SU(2)L
SU(3)C × SU(2)L × U(1)Y = {1, 2, ± 1/2} mDM

χΠDM

χ1 χ2

= iχ†
1 σ̄μDμχ1 + iχ†

2 σ̄μDμχ2 + mDM χ1χ2 + h . c .Lχ

• During EW confinement,  and  confine with SM quarks and leptons into 
bound states
• These are analogous to mesons and baryons of QCD
• The lightest of these states are mesons:   and 

χ1 χ2

Π η′ 

• In analogy with chiral perturbation theory, we collect these into a 
complex antisymmetric scalar field  where Σij i, j = 1, . . . , 2Nf

Number of flavors of doublets SU(2)L
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Confinement details

• Confinement spontaneously breaks flavor symmetry 
• Follows intuition from chiral symmetry breaking in QCD and confirmed with lattice simulations

• Encoded by  obtaining a vev  satisfying 

SU(2Nf) → Sp(2Nf)

Σij (Σ0)ij Σ†
0Σ0 = Σ0Σ†

0 = 1

• Neglecting other SM gauge interactions and Yukawa couplings we get   massless 
Goldstone bosons (GSBs) and  massive pseudo-GSB, analogous to the  of QCD. 

2N2
f − Nf − 1

1 η′ 

1 generation

{l, qr, qg, qb, χ1, χ2}

3 generations
{l1, qr

1, qg
1 , qb

1 , l2, qr
2, qg

2 , qb
2 , l3, qr

3, qg
3 , qb

3 , χ1, χ2}

15 mesons

⇒

2Nf = 6

SU(6) → Sp(6)

⇒

91 mesons

⇒

2Nf = 14

SU(14) → Sp(14)

⇒

  ’s and 2N2
f − Nf − 1 Π 1 η′ 

SU(2Nf) → Sp(2Nf)

2Nf
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Confinement details

⊃ f2

4 Tr [DμΣ†DμΣ] + Λ3
WTr [MΣ + Σ†MT] + κΛ2

W f2Re [det Σ]LIR L+Δ Σ = exp i
η′ 

Nf f
exp [∑

a
2i

ΠaXa

f ] Σ0

  generators of the broken symmetry 
, 

Xa

SU(2Nf )/Sp(2Nf ) a : 1, . . . , 2N2
f − Nf − 1

• L gauge corrections from  and  explicitly break  giving some GSBs massesΔ SU(3)C U(1)Y SU(2Nf)

• Confinement breaks  eating some of the massless GSBsSU(3)C × U(1)Y → SU(2)C × U(1)Q

L  Δ = CGΛ2
W f2 g2

s

16π2 ∑
a=1,2,3

Tr[LaΣ†LaTΣ] +CAΛ2
W f2 e2

Q

16π2 Tr[QΣ†QΣ]

+CWΛ2
W f2 g2

s /2
16π2 ∑

±
∑
i=1,2

Tr[Li±Σ†Li±Σ]+CZΛ2
W f2 e2

Q/s2
Qc2

Q

16π2 Tr[JΣ†JΣ]
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Pion masses and remaining gauge symmetries
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Deriving pion interactions

• We are interested in reactions which deplete the DM density i.e. ΠDMΠDM → ΠSM ΠSM

• For the benchmarks chosen we can safely neglect annihilation to gauge bosons

• We calculate the velocity averaged effective cross-section, taking into account coannihilation
• We assume non-relativistic, s-wave scattering
• Because of the many possible combinations of  we perform this calculation numerically in Python{a, b, c, d}

⊃ f2

4 Tr [DμΣ†DμΣ] + Λ3
WTr[MΣ + Σ†MT] + κΛ2

W f2Re[det Σ]LIR L+Δ⇒
= 4

f 2 Tr1(a, b, c, d) ΠaΠb∂μ[Πc]∂μ[Πd] + 2mDMΛ3
W

3f 4 Tr2(a, b, c, d) ΠaΠbΠcΠdL2 → 2ΠaΠb → Πc Πd

• We then use this in solving the Boltzmann equation for the final co-moving number density of ΠDM



Jessica N. Howard August 04, 2022/ 1914

WIMP freeze-out in this scenario

χΠDM
• Freeze-out happens while  and  are confined in pion form

• Lightest pion containing  survives freeze-out:    (mass = )

• Calculate  numerically taking into account possible coannihilation

χ1 χ2
χ ΠDM,1 m1

ΩΠDM,1
h2

• After freeze-out, EW confined phase ends and pions deconfine
• Entropy dump from deconfinement is negligible which prevents further 

freeze-out of the ’sχ

• In general,  so we adjust the relic abundance accordinglymΠDM,1
> mDM Ωχh2 = mDM

m1
ΩΠDM,1

h2

Time100 GeV

EW SSBEW confinement phase

WIMP Freeze-out
⟨ϕ⟩ → 0

χ
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Results
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mDM < ΛW f = 1
4π

ΛWMinimal assumptions:

Parameter scan: −2 ln L = [
Ωχh2 (mDM, f) − ΩPDGh2

ΔΩh2 ] ΩPDGh2 ± ΔΩh2 = 0.1200 ± 0.0012
Planck 2018 results: arXiv: 1807.06209

https://arxiv.org/abs/1807.06209
https://arxiv.org/abs/1807.06209
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Experimental constraints: Direct detection

[1] David Smith, Neal Weiner. Inelastic Dark Matter. arXiv: hep-ph/0101138

• No effect on freeze-out for sufficiently large mass scales

Reminder:  are -doublets with hypercharge 
with full strength Z-boson couplings  trouble, but…

χ1,2 SU(2)L
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Mass of DM relic:  χ1,2

• Avoided if there is a small Majorana mass  today[1]mM ≪ mDM

• Can be induced by a dimension 5 interaction with the Higgs

= 1
M1

(H†χ1)(H†χ1) + 1
M2

(Hχ2)(Hχ2) + h . c .LΔM

https://arxiv.org/abs/hep-ph/0101138
https://arxiv.org/abs/hep-ph/0101138
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Other experimental constraints

[1] ATLAS: arXiv:1908.08215 and CMS: arXiv: 1807.07799

LHC bounds
• Analogous signature to charginos

• No constraints for [1]

• Likely out of reach for future colliders

mDM > 420 GeV

Indirect detection
• Might be in reach of future gamma ray observatories Eff
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https://arxiv.org/abs/1908.08215
https://arxiv.org/abs/1807.07799
https://arxiv.org/abs/1908.08215
https://arxiv.org/abs/1807.07799
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Main takeaway
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Mass of DM relic:  χ1,2

What did this alternate cosmological history get us?

• Maintains the correct DM relic abundance


• Increases the possible mass range of DM


• Restores some freedom to WIMP models
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Conclusion
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Mass of DM relic:  χ1,2

• Considering alternate cosmological histories 
is important and can be advantageous

• Modification to cosmological history can help 
restore the WIMP miracle

• Not ruled out by current experiments

Thanks for listening!


