New measurements of the cosmic birefringence

Based on

- YM & Komatsu, PRL, 125, 221301 (2020)
- Diego-Palazuelos, Eskilt, YM, et al., PRL, 128, 091302 (2022)
- *Eskilt & Komatsu, arXiv:2205.13962*

Yuto Minami (KEK->RCNP, Osaka Univ.)

Introduction

- The Universe's energy budget is dominated by two dark components:
 Dark Energy
 - Dark Matter

- Parity violation may hold the key to understanding their nature. For example, are they axion-like fields (Marsh 2016; Ferreira 2020)?
- We know that the weak interaction violates parity (Lee & Yang 1956; Wu et al. 1957)

Why should the laws of physics governing the Universe conserve parity?

Cosmic Birefringence

The Universe filled with a "birefringent material"

➢ If the Universe is filled with a pseudo-scalar field, \$\phi\$,(e.g., an axion field) coupled to the electromagnetic tensor via a Chern-Simons coupling: $\tilde{F}^{\mu\nu} = \frac{1}{2} \epsilon^{\mu\nu\rho\sigma} F_{\rho\sigma}$

$$\mathcal{L} \supset -\frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi - \frac{1}{4} F_{\mu\nu} F^{\mu\nu} + \frac{1}{4} g_{\phi\gamma} \phi F_{\mu\nu} \tilde{F}^{\mu\nu} \quad \cdots (1)$$

$$\beta = \frac{g_{\phi\gamma}}{2} \int_{emission}^{observer} dt \,\dot{\phi}$$
$$= \frac{g_{\phi\gamma}}{2} (\phi_{observer} - \phi_{emission})$$
...(2)

Turner & Widrow (1988)

Difference of the field values rotates the linear polarization!

Cosmic Microwave Background as a polarised source

Temperature (smoothed) + Polarisation

Emitted 13.8 billions years ago at the last scattering surface (LSS) We know the initial $\beta = 0$

2022/08/02

In the case of axion like particles (ALPs)

Fujita, Minami, Murai, & Nakatsuka (2020)

Which is possible when we search with cosmic microwave background (CMB): Dark Energy | Part of D

See Marsh (2016) and Ferreira (2020) for reviews of ALPs

E-mode: Polarisation directions are parallel or perpendicular to the wavenumber direction

B-mode: Polarisation directions are 45 degrees tilted w.r.t the wavenumber direction

IMPORTANT": These "*E* - and *B*-modes" are jargons in the CMB community, and completely unrelated to the electric and magnetic fields of the electromagnetism!!

> We can use these to probe parity-violating physics!

EB correlation from the cosmic birefringence

Lue, Wang & Kamionkowski (1999); Feng et al. (2005, 2006); Liu, Lee & Ng (2006)

 \succ Cosmic birefringence convert E < -> B as

$$\begin{pmatrix} E_{\ell m} \\ B_{\ell m} \end{pmatrix}^{obs} = \begin{pmatrix} \cos(2\beta) & -\sin(2\beta) \\ \sin(2\beta) & \cos(2\beta) \end{pmatrix} \begin{pmatrix} E_{\ell m} \\ B_{\ell m} \end{pmatrix} \dots$$

(4)

Π

$$\langle C_{\ell}^{EB,obs} \rangle = \frac{1}{2} \left(\langle C_{\ell}^{EE} \rangle - \langle C_{\ell}^{BB} \rangle \right) \sin(4\beta) + \langle C_{\ell}^{EB} \rangle \cos(4\beta)$$

Need to assume a model! Vanish at the LSS ... (3)
> Traditionally, one would find β by fitting $C_{\ell}^{EE,CMB} - C_{\ell}^{BB,CMB}$ to

the observed $C_{\ell}^{EB,obs}$ using the best-fitting CMB model

> Assuming the intrinsic $\langle C_{\ell}^{EB} \rangle = 0$, at the last scattering surface (LSS) (justified in the standard cosmology)

Only with observed data

Zhao et al. 2015; Minami et al. 2019

 \succ Cosmic birefringence convert E < -> B as

$$\begin{pmatrix} E_{\ell m} \\ B_{\ell m} \end{pmatrix}^{obs} = \begin{pmatrix} \cos(2\beta) & -\sin(2\beta) \\ \sin(2\beta) & \cos(2\beta) \end{pmatrix} \begin{pmatrix} E_{\ell m} \\ B_{\ell m} \end{pmatrix}^{obs} \cdots (4)$$

$$\geq \text{ We find additional relations}$$

$$\begin{pmatrix} C_{\ell}^{EB,obs} \rangle = \frac{1}{2} \left(\langle C_{\ell}^{EE} \rangle - \langle C_{\ell}^{BB} \rangle \right) \sin(4\beta) + \langle C_{\ell}^{EB} \rangle \cos(4\beta) \\ \langle C_{\ell}^{EE,obs} \rangle - \langle C_{\ell}^{BB,obs} \rangle = \left(\langle C_{\ell}^{EE} \rangle - \langle C_{\ell}^{BB} \rangle \right) \cos(4\beta) - 2 \langle C_{\ell}^{EB} \rangle \sin(4\beta)$$

$$\cdot \langle C_{\ell}^{EE,obs} \rangle = \langle C_{\ell}^{EE} \rangle \cos^{2}(2\beta) + \langle C_{\ell}^{BB} \rangle \sin^{2}(2\beta) - \langle C_{\ell}^{EB} \rangle \sin(4\beta)$$

$$\cdot \langle C_{\ell}^{BB,obs} \rangle = \langle C_{\ell}^{EE} \rangle \sin^{2}(2\beta) + \langle C_{\ell}^{BB} \rangle \cos^{2}(2\beta) + \langle C_{\ell}^{EB} \rangle \sin(4\beta)$$

$$\cdot \langle C_{\ell}^{BB,obs} \rangle = \frac{1}{2} \left[\langle (C_{\ell}^{EE,o} \rangle - \langle C_{\ell}^{BB,o} \rangle) \right] \tan(4\beta) + \frac{\langle C_{\ell}^{EB} \rangle}{\cos(4\beta)} \cdots (4)$$

No need to assume a model Vanish at the LSS

2022/08/02

The Biggest Problem: Miscalibration of detectors

Miscalibration of detectors

Cosmic or Instrumental?

Wu et al. (2009); Komatsu et al. (2011); Keating, Shimon & Yadav (2012)

Polarisation-sensitive detectors on the focal plane

coordinate (and we did not know)?

rotated by an angle " α " (but we do not know it)

We can only measure the sum, $\alpha + \beta$

The past measurements

Systematic errors on α limited the measurements

Phase Tran: Wire grid

Measurement		$oldsymbol{eta}$ + stat. + sys. (deg.)			
Feng et al. 2006	Feng et al. 2006		± 4.0 ±??	First measurement	
WMAP Collaboration, Komatsu et al. 2009; 2011		$-1.1 \pm 1.4 \pm 1.5$			
QUaD Collaboration, Wu et al. 2009		$-0.55 \pm$	0.82 ± 0 . 5		
Planck Collaboration 2016		0.31 ± 0	.05 ± 0 . 28	Uncertainty in	
POLARBEAR Collaboration 2020		$-0.61 \pm 0.22 +??$		the calibration of α has been the major	
SPT Collaboration, Bianchini et al. 2020		0.63 ± 0.04 + ??			
ACT Collaboration, Namikawa et al. 2020		0.12 ± 0.06 + ??			
ACT Collaboration, Choi et al. 2020*		0.09 ± 0.09 + ??		limitation	
*used optical model , "as-designed" angles					
Other way to calibrate?Crab nebul (Celestial s		a, Tau A 0.27 deg. (Aumont et al.(2018)) ource)		umont et al.(2018))	

1.00 deg. ? (Planck pre launch) 15

The Key Idea: The polarised Galactic foreground emission as a calibrator

Credit: ESA

Polarised dust emission within our Milky Way!

Emitted "right there" - it would not be affected by the cosmic birefringence.

Directions of the magnetic field inferred from polarisation of the thermal dust emission in the Milky Way

2022/08/02

... (5)

Searching for birefringence

Idea: Miscalibration of the polarisation angle α rotates both the FG and CMB, but β affects only the CMB $E_{\ell,m}^{o} = E_{\ell,m}^{fg} \cos(2\alpha) - B_{\ell,m}^{fg} \sin(2\alpha) + E_{\ell,m}^{CMB} \cos(2\alpha + 2\beta) - B_{\ell,m}^{CMB} \sin(2\alpha + 2\beta) + E_{\ell,m}^{N}$ $B_{\ell,m}^{o} = E_{\ell,m}^{fg} \sin(2\alpha) + B_{\ell,m}^{fg} \cos(2\alpha) + E_{\ell,m}^{CMB} \sin(2\alpha + 2\beta) + B_{\ell,m}^{CMB} \cos(2\alpha + 2\beta) + B_{\ell,m}^{N}$

From them, we derived

$$\langle C_{\ell}^{EB,o} \rangle = \frac{\tan(4\alpha)}{2} \left(\langle C_{\ell}^{EE,o} \rangle - \langle C_{\ell}^{BB,o} \rangle \right) + \frac{\sin(4\beta)}{2\cos(4\alpha)} \left(\frac{\langle C_{\ell}^{EE,CMB} \rangle - \langle C_{\ell}^{BB,CMB} \rangle}{\text{Known accurately}} \right) \quad \cdots \text{(6)}$$

$$+ \frac{1}{\cos(4\alpha)} \left(\langle C_{\ell}^{EB,fg} \rangle \right) + \frac{\cos(4\beta)}{\cos(4\alpha)} \left(\langle C_{\ell}^{EB,CMB} \rangle \right).$$

- For the baseline result, we ignore the intrinsic EB correlations of the FG and the CMB
 - The latter is justified but the former is not
 - We will revisit this important issue at the end

Likelihood for determination of α and β

Minami et al. (2019)

Single frequency case, full sky data

$$-2\ln\mathcal{L} = \sum_{\ell=2}^{\ell_{\max}} \frac{\left[C_{\ell}^{EB,o} - \frac{\tan(4\alpha)}{2} \left(C_{\ell}^{EE,o} - C_{\ell}^{BB,o}\right) - \frac{\sin(4\beta)}{2\cos(4\alpha)} \left(C_{\ell}^{EE,CMB} - C_{\ell}^{BB,CMB}\right)\right]^{2}}{\operatorname{Var}\left(C_{\ell}^{EB,o} - \frac{\tan(4\alpha)}{2} \left(C_{\ell}^{EE,o} - C_{\ell}^{BB,o}\right)\right) \cdots (7)$$

- \succ We determine α and β simultaneously using this likelihood
- For analysing the Planck data, we use the multifrequency likelihood developed in Minami and Komatsu (2020a)
- > We first validate the algorithm using simulated data

How does it work?

How does it work?

Simulation with future CMB data (LiteBIRD)

- The CMB signal determines the sum of two angles, α + β
 Diagonal line
- > The FG determines only α
- Mid freq. : breaking the degeneracy with FG signal! $\sigma(\beta) \sim \sigma(\alpha)$, since $\sigma(\alpha + \beta) \ll \sigma(\alpha)$

Application to the Planck Data (PR3, released in 2018)

ℓ_{min} = 51, ℓ_{max} = 1500 (the same values used by Planck team) ➢ We used Planck High Frequency Instrument (HFI) data ➢ 100, 143, 217, and 353 GHz

Information for experts

- Power spectra calculated from "Half Missions" (HM1 and HM2 maps)
- Mask (using NaMaster [Alonso et al.]), apodization by "Smooth" with 0.5 deg
 - > Bright CO regions. Bright point sources. Bad pixels.
- > $I \rightarrow P$ leakage due to the beam is corrected using QuickPol [Hivon et al.]
 - It does not change the result even if we ignore this correction: good news!

Main results: $\beta > 0$ at 99.2% (2.4 σ)

Minami & Komatsu (2020b)

Minami & Komatsu (2020b)

EB power spectra (Black dots)

- > Can we see $\beta = 0.35 \pm 0.14^{\circ}$ by eyes?
- Red: The observed signal attributed to the miscalibration angle, α_ν
- Blue: The CMB signal attributed to the cosmic birefringence, β
- Red + Blue is the best-fitting model for explaining the data points (black dots)

Planck HFI+LFI+WMAP

➢ Including WMAP data: $β = 0.342^{+0.094°}_{-0.091°}$ ➢ Significance increases to 3.6σ

Implications

Minami & Komatsu (2020b)); Diego-Palazuelos, Eskilt, et al. (2022);Eskilt & Komatsu (2022)

What does it mean for your models of dark matter and energy?

When a Lagrangian density includes a Chern-Simons coupling between a pseudo-scalar field and the electromagnetics tensor as:

$$\mathcal{L} \supset \frac{1}{4} g_{\phi\gamma} \phi F_{\mu\nu} \tilde{F}^{\mu\nu} \quad \dots (9)$$

The birefringence angle is

$$\beta = \frac{g_{\phi\gamma}}{2} \left(\bar{\phi}_{obs} - \bar{\phi}_{LSS} + \delta \phi_{obs} \right)_{\cdots} (10)$$

Carroll, Field & Jackiw (1990); Harari & Sikivie (1992); Carroll (1998); Fujita, Minami, et al. (2020)

This measurement yields

$$g_{\phi\gamma} (\bar{\phi}_{obs} - \bar{\phi}_{LSS} + \delta \phi_{obs}) = (1.2 \pm 0.3) \times 10^{-2} \text{ rad.} \quad \cdots (11)$$

How about the foreground *EB*?

If the intrinsic foreground (FG) *EB* exists, our method interprets it as a miscalibration angle α

- Thus, α → α + γ, where γ is the parameter of the intrinsic EB
 The sign of γ is the same as the sign of the foreground EB
- > We thus can determine:

FG:
$$\alpha + \gamma$$

CMB: $\alpha + \beta$ $\beta - \gamma = 0.34 \pm 0.09$ deg.

- > There is evidence for the dust-induced $TE_{dust} > 0 \& TB_{dust} > 0$; then, we'd expect $EB_{dust} > 0$ [Huffenberger et al.], i.e., $\gamma > 0$. If so, β increased further...
 - \succ We can give a lower bound on β

What if the model is taken into account?

Including foreground model: Planck HFI (PR4, released in 2020)

Diego-Palazuelous et al (2022)

Smaller sky fraction decreases β(= β − γ)
 It is known that EB^{dust} becomes for smaller sky fraction
 γ_ℓ is estimated from Planck 353 GHz map

With FG model, β is stable

Conclusion

- We find a hint of the parity violatingphysics in the CMB polarisation:
 - β = 0.35 ± 0.14 deg. (68% C.L.)
- Planck + WMAP

eta = 0.34 \pm 0.09 deg. (68% C.L.)

*Higher statistical significance is needed to confirm this signal

- New method finally makes impossible to possible:
 - Use foreground signal to calibrate detector rotations
 - Our method can be applied to any of the existing and future CMB experiments
- We should be possible to test the signal is true or only a coincidence
 - If confirmed, it would have important implications for the dark matter/energy.

Backups

Ideas for discussion

- Are there any good calibration source of microwave?
 - > In other bands, protoplanetary disc can be used
- Any good foreground models?
 - Connection with galactic science
- Any systematic uncertainty to create miscalibration angle (like) bias?
 - > If any, it becomes an important issue for future CMB missions
- Any other physics which convert *E*-mode to *B*-mode except for birefringence?
- ➢ Is the earth in special position?
 - The potential of the pseudoscalar particle varies when the earth is in outer edge of the galaxy

Huffenberger, Rotti, & Collins (2019) Clark, Kim, Hill, & Hensley (2021)

Model of polarised dust emission by spheroidal filamentary structures of hydrogen clouds

➢ Misalignment between the filament and magnetic field can generate TE > 0, TB > 0, and EB > 0

Estimating **EB** from **TB**

\succ In generic approach, we relate *EB* to *TE* as

Our ansatz motivated by the filament model:

$$C_{\ell}^{EB,dust} = A_{\ell}C_{\ell}^{EE,dust}\sin(4\psi_{\ell}^{dust})$$
$$\psi_{\ell}^{dust} = \frac{1}{2}\arctan(\frac{C_{\ell}^{TB,dust}}{C_{\ell}^{TE,dust}})$$

 \succ Then we can put them into a expression of γ as

$$\gamma_{\ell} \simeq A_{\ell} \frac{C_{\ell}^{EE,dust}}{\left(C_{\ell}^{EE,dust} - C_{\ell}^{BB,dust}\right)} \frac{C_{\ell}^{TB,dust}}{C_{\ell}^{TE,dust}}$$

We can estimate the effect from foreground *EB*!

2022/08/02

In future

With the same method

> Application to future satellite mission LiteBIRD (around 2030):

- Smaller noise level
- \succ Can push this over 4σ
- > $(\sigma(\beta) \approx 0.1 \text{ deg in Minami&Komatsu (2020a)})$
- > Improvement of our knowledge of the foreground polarization
 - Observation of galaxy
 - More precise foreground modelling

With other calibrators

- > Improvement of a calibrator on the ground
- Improvement of the Tau A (Crab Nebula) measurement
 - > polarised celestial source which Planck also observed

PR4 mask

PR4 mask

PR4: Frequency dependence

 $\beta_0 = 0.26^{+0.11}_{-0.11}$

- Primordial magnetic field create Faraday rotation
- Using Planck HFI (100, 143, 217, 353 GHz) + LFI (30, 44, 70 GHZ)

 $\beta_{\nu} \propto \nu^{-2}$

$$\beta_{\nu} = \left(\frac{\nu}{\nu_0 (= 150 \text{ GHz})}\right)^{\prime}$$

No frequency dependence!

п

$\alpha + \beta$ against sky fraction

> When we assume $\alpha = 0$ in the estimatin of β , we can estimate $\alpha + \beta$ with the CMB

- $\succ \alpha + \beta$ is stable against the sky fraction
 - Since CMB signal is isotropic in the sky, the reduction of $\beta (= \beta \gamma)$ is possibly from foreground

ℓ_{min} dependence

2022/08/02

POLARBEAR (2019)

POLARBEAR degree scale *E*-mode at 150 GHz

LiteBIRD (2022)

How baound in *B*-mode?

> The effect is small because it is $\propto \beta^2$ $\langle C_{\ell}^{BB,obs} \rangle = \langle C_{\ell}^{EE} \rangle \sin^2(2\beta)$

Because *B*-mode itself is weak, we need to remove lensing to observe birefringence in *B*-mode

2022/08/02

Foreground **EB** cross correlation

If FG *EB* is negative, our assumption does not hold

Magnetically misaligned filamentary dust structures introduce nonzero EB (Clark, Kim, Hill, & Hensley 2021)

If we select some part of sky area, EB can be small

 ℓ dependence of ψ which is proportional to EB