





Funded by



# How fast do heavy quarks thermalize in the QGP? Lattice QCD results for the heavy quark diffusion coefficient

1. Precise calculation in quenched QCD at 1.5  $T_c$   $\mathscr{O}$  10.1103/PhysRevD.103.014511 (2021)

Bielefeld U.: Altenkort, Kaczmarek, Mazur, Shu TU Darmstadt: Eller, Moore

#### 2. First impressions from 2 + 1 flavor QCD

Bielefeld U.: Altenkort, Kaczmarek, Shu Brookhaven NL: Petreczky, Mukherjee U. of Stavanger: Larsen

Luis Altenkort (Bielefeld University) for the HotQCD collaboration

April 21, 2022 USQCD All Hands' Meeting 2022



## What does heavy quark diffusion tell us about the QGP?

- Hydrodynamics  $\Rightarrow$  kinetic equilibration time  $\tau_{kin}^{heavy} \simeq \frac{M}{T} \tau_{kin}^{light}$  where  $\tau_{kin}^{light} \approx \frac{1}{T}$
- But: significant collective motion  $(v_2)! \Rightarrow \tau_{kin}^{heavy} \stackrel{?}{\approx} \frac{1}{T} \Rightarrow \tau_{kin}^{hight} \stackrel{?}{\ll} \frac{1}{T}$
- Knowledge of  $\tau_{kin}^{heavy}$  essential to understand collisional energy loss and explain exp. data
- Crucial input for quarkonium production models

Can we calculate  $\tau_{\rm kin}^{\rm heavy}$  from first principles?

■ Consider non-relativistic limit *M* ≫ *T*: (Langevin dynamics)

$$(\tau_{\rm kin}^{\rm heavy})^{-1} = \frac{\kappa}{2MT}$$
$$D = 2T^2/\kappa$$

- Problem: perturbative series for D or re ill-behaved!
  - > nonperturbative first-principles approach: lattice QCD



### What does heavy quark diffusion tell us about the QGP?

- Hydrodynamics  $\Rightarrow$  kinetic equilibration time  $\tau_{kin}^{heavy} \simeq \frac{M}{T} \tau_{kin}^{light}$  where  $\tau_{kin}^{light} \approx \frac{1}{T}$
- But: significant collective motion  $(v_2)! \Rightarrow \tau_{kin}^{heavy} \stackrel{?}{\approx} \frac{1}{T} \Rightarrow \tau_{kin}^{hight} \stackrel{?}{\ll} \frac{1}{T}$
- Knowledge of  $\tau_{kin}^{heavy}$  essential to understand collisional energy loss and explain exp. data
- Crucial input for quarkonium production models

# Can we calculate $\tau_{kin}^{heavy}$ from first principles?

Consider non-relativistic limit  $M \gg T$ : (Langevin dynamics)

$$(\tau_{\rm kin}^{\rm heavy})^{-1} = \frac{\kappa}{2MT}$$
 
$$D = 2T^2/\kappa$$

Problem:

perturbative series for D or  $\kappa$  ill-behaved!

nonperturbative first-principles approach: lattice QCD

#### How to calculate diffusion coefficients from the lattice?

■ Linear response theory: diffusion physics ⇔ low-energy in-equilibrium spectral functions (SPF)

**SPF** of HQ vector current  $\rho^{ii}(\omega) = \int_{-\infty}^{\infty} dt \, e^{i\omega t} \int d^3 \mathbf{x} \left\langle \frac{1}{2} \left[ \hat{\mathcal{J}}^i(\mathbf{x},t), \hat{\mathcal{J}}^i(\mathbf{0},0) \right] \right\rangle$ 

reconstruct from Euclidean correlation functions:

**s**: 
$$G(\tau) = \int_0^\infty d\omega \ \boldsymbol{\rho}(\omega) \ \frac{\cosh\left(\omega(\tau - \frac{\beta}{2})\right)}{\sinh\left(\omega\frac{\beta}{2}\right)}$$



- fluct.-dissipation: consider Kubo-formula for momentum diffusion coeff. κ instead of D
- utilize **HQET**: HQ mass  $M \to \infty$ , expansion in 1/M, replace  $\hat{\mathcal{J}}^i$  with LO versions
- $\Rightarrow$  color-electric two-point function (force-force correlator)  $G(\tau)$  with

$$\boldsymbol{\kappa} = \lim_{\omega \to 0} 2T \frac{\boldsymbol{\rho}(\omega)}{\omega}$$

 $\Rightarrow$  smooth  $\omega \rightarrow 0$  limit expected: **no transport peak** (much easier to reconstruct)

#### How to calculate diffusion coefficients from the lattice?

■ Linear response theory: diffusion physics ⇔ low-energy in-equilibrium spectral functions (SPF)

**SPF** of HQ vector current  $\rho^{ii}(\omega) = \int_{-\infty}^{\infty} dt \, e^{i\omega t} \int d^3 \mathbf{x} \left\langle \frac{1}{2} \left[ \hat{\mathcal{J}}^i(\mathbf{x},t), \hat{\mathcal{J}}^i(\mathbf{0},0) \right] \right\rangle$ 

reconstruct from Euclidean correlation functions:

$$\mathbf{G}(\tau) = \int_0^\infty \mathrm{d}\omega \; \boldsymbol{\rho}(\omega) \; \frac{\cosh\left(\omega(\tau - \frac{\beta}{2})\right)}{\sinh\left(\omega\frac{\beta}{2}\right)}$$



- fluct.-dissipation: consider Kubo-formula for momentum diffusion coeff. κ instead of D
- utilize **HQET**: HQ mass  $M \to \infty$ , expansion in 1/M, replace  $\hat{\mathcal{J}}^i$  with LO versions
- $\Rightarrow$  color-electric two-point function (force-force correlator)  $G(\tau)$  with

$$\boldsymbol{\kappa} = \lim_{\omega \to 0} 2T \frac{\boldsymbol{\rho}(\omega)}{\omega}$$

 $\Rightarrow$  smooth  $\omega \rightarrow 0$  limit expected: **no transport peak** (much easier to reconstruct)



$$= \int_{0}^{\infty} d\omega \,\rho(\omega) \underbrace{\underbrace{\frac{\cosh\left(\omega(\tau - \frac{\beta}{2})\right)}{\sinh\left(\omega\frac{\beta}{2}\right)}}_{K(\omega, \tau)}}, \qquad \kappa = \lim_{\omega \to 0} 2T \frac{\rho(\omega)}{\omega}$$

- Leading order, small  $\tau$ :  $G(\tau) \propto \tau^{-4}$
- Lattice discretization:



The drawback of the  $M 
ightarrow \infty$  limit

- $\blacksquare \ G(\tau) \text{ is purely gluonic}$ 
  - $\Rightarrow$  UV gauge fluctuations dominate for large  $\tau$
- $K(\omega, \tau)$ : large  $\tau$  are most sensitive to  $\omega \to 0$ 
  - need noise reduction method



$$= \int_{0}^{\infty} d\omega \,\rho(\omega) \underbrace{\underbrace{\frac{\cosh\left(\omega(\tau - \frac{\beta}{2})\right)}{\sinh\left(\omega\frac{\beta}{2}\right)}}_{K(\omega, \tau)}, \qquad \kappa = \lim_{\omega \to 0} 2T \frac{\rho(\omega)}{\omega}$$

- Leading order, small  $\tau$ :  $G(\tau) \propto \tau^{-4}$
- Lattice discretization:



### The drawback of the $M ightarrow \infty$ limit

- $G(\tau)$  is purely gluonic
  - $\Rightarrow$  UV gauge fluctuations dominate for large  $\tau$
- $K(\omega, \tau)$ : large  $\tau$  are most sensitive to  $\omega \to 0$ 
  - need noise reduction method

## Solution to gauge noise problem: gradient flow @Lüscher 2010

- applicable to nonlocal actions (e.g. 2+1 flavor QCD)
- $\blacksquare$  introduces extra dimension: "flow time"  $\tau_{\rm F}$

• evolves gauge fields  $A_{\mu}(x)$  towards minimum of action  $S_G$ 

$$\begin{split} A_{\mu}(x, \tau_{\mathbf{F}} = \mathbf{0}) &= A_{\mu}(x) \\ \frac{\mathrm{d}A_{\mu}(x, \tau_{\mathrm{F}})}{\mathrm{d}\tau_{\mathrm{F}}} \sim \frac{-\delta S_G[A_{\mu}]}{\delta A_{\mu}(x, \tau_{\mathrm{F}})} \end{split}$$

### Flow = smooth regulator

Suppression of high-momentum modes in gluon prop.

•  $A_{\mu}^{\rm LO}$ : average over Gaussian, width  $\simeq \sqrt{8\tau_{\rm F}}$  "flow radius"

$$A_{\mu}^{\rm LO}(x,\tau_{\rm F}) = \int \mathrm{d}y \left(\sqrt{2\pi}\sqrt{8\tau_{\rm F}}/2\right)^{-4} \exp\left(\frac{-(x-y)^2}{\sqrt{8\tau_{\rm F}}^2/2}\right) A_{\mu}(y)$$

## On the lattice

- links replaced by well-defined local averages ⇒ noise suppression
- suppression of renormalization artifacts
- ...but contact terms contaminate  $G(\tau)$  for  $\sqrt{8\tau_{
  m F}}\gtrsim \tau/3$  (LO pert. theory 2 Eller, Moore 2018 )

⇒ idea: flow no more than necessary (max.  $\sqrt{8\tau_{\rm F}} \approx \tau/3$ ), extrapolate back to  $\tau_{\rm F} = 0$ 

#### Solution to gauge noise problem: gradient flow @Lüscher 2010

- applicable to nonlocal actions (e.g. 2+1 flavor QCD)
- $\blacksquare$  introduces extra dimension: "flow time"  $\tau_{\rm F}$

• evolves gauge fields  $A_{\mu}(x)$  towards minimum of action  $S_G$ 

$$\begin{split} A_{\mu}(x, \tau_{\rm F} = \mathbf{0}) &= A_{\mu}(x) \\ \frac{\mathrm{d}A_{\mu}(x, \tau_{\rm F})}{\mathrm{d}\tau_{\rm F}} &\sim \frac{-\delta S_G[A_{\mu}]}{\delta A_{\mu}(x, \tau_{\rm F})} \end{split}$$

## Flow = smooth regulator

Suppression of high-momentum modes in gluon prop.

•  $A_{\mu}^{\rm LO}$ : average over Gaussian, width  $\simeq \sqrt{8\tau_{\rm F}}$  "flow radius"

$$A_{\mu}^{\rm LO}(x,\tau_{\rm F}) = \int {\rm d}y \left(\sqrt{2\pi}\sqrt{8\tau_{\rm F}}/2\right)^{-4} \exp\left(\frac{-(x-y)^2}{\sqrt{8\tau_{\rm F}}^2/2}\right) A_{\mu}(y)$$

## On the lattice

- links replaced by well-defined local averages ⇒ noise suppression
- suppression of renormalization artifacts
- ...but contact terms contaminate  $G(\tau)$  for  $\sqrt{8\tau_{
  m F}}\gtrsim \tau/3$  (LO pert. theory  $\mathscr{P}$  Eller, Moore 2018 )

⇒ idea: flow no more than necessary (max.  $\sqrt{8\tau_{\rm F}} \approx \tau/3$ ), extrapolate back to  $\tau_{\rm F} = 0$ 



continuum corr. from *P* Eller, Moore 2018, lattice corr. from *P* Eller, Moore, LA et al. 2021

## Flow limit = lower bound for au

 $\blacksquare$  cont. correlator deviates <1% for  $\ \tau\gtrsim 3\sqrt{8 au_{\rm F}}$ 

(vertical lines)

#### Use to enhance nonpert. lattice results:

- get rid of log-scale by normalizing to this
- comparison of LO cont. and LO latt. correlators
  - remove tree-level discretization errors



- double-extrapolated EE correlator
- shape consistent with previous pert. renormalized results

P Francis et al. 2015 , P Christensen, Laine 2016

- overall shift due to
  - nonperturbative renormalization
  - difference in statistical power of gauge conf.
  - systematic uncertainty introduced by flow extr.
- only large- $\tau$  correlator can be obtained

# Spectral reconstruction through pert. model fits

$$G(\tau) = \int_0^\infty d\omega \ \rho(\omega) K(\omega, \tau), \qquad \kappa = \lim_{\omega \to 0} 2T \frac{\rho(\omega)}{\omega}$$

 $\Rightarrow$  integral inversion problem; on paper valid only at  $au_{
m F}=0$   $\, \mathscr{P}$  Eller 2021

Strategy: constrain allowed form of ρ(ω) using IR and UV asymptotics:

$$\phi_{\rm IR}(\omega) \equiv \frac{\kappa}{2T}\omega, \quad \phi_{\rm UV}(\omega) \equiv \frac{g^2(\bar{\mu}_\omega)C_F}{6\pi}\omega^3, \quad \dots$$

and various interpolations I(w):

$$\Rightarrow \rho_{\rm model}(\omega) \equiv I(\omega) \sqrt{\left[\phi_{\rm IR}(\omega)\right]^2 + \left[\phi_{\rm UV}(\omega)\right]^2}$$

 $\Rightarrow$  well-defined fit with parameters  $|\kappa/T^3|$  and  $c_n$  via

$$\chi^2 \equiv \sum_{\tau} \left[ \frac{G(\tau) - G_{\text{model}}(\tau)}{\delta G(\tau)} \right]^2$$



## HQ momentum diffusion coefficient (quenched, $1.5T_c$ ) strategy I ---strategy II --- $\beta b$ model Ba $\alpha b$ $\alpha a$ 0 9 3 Λ $\kappa/T^3$ $\kappa/T^3 = 2.31 \dots 3.70$ We find agrees with previous studies e.g. Prancis et al. 2015 (multi-level method + pert. renorm.) • convert via $2\pi TD = \frac{4\pi}{\kappa/T^3}$ : $2\pi TD = 3.40 \dots 5.44$ kinetic equilibration time:

 $\tau_{\rm kin} = (1.63 \dots 2.61) \left(\frac{T_c}{T}\right)^2 \left(\frac{M}{1.5 {
m GeV}}\right) {
m fm/c}$ 

Comparison to previous studies



# HQ momentum diffusion coefficient (quenched, $1.5T_c$ ) strategy I strategy II ---- $\beta b$ model Ba $\alpha b$ $\alpha a$ 0 3 Λ $\kappa/T^3$ $\kappa/T^3 = 2.31 \dots 3.70$ We find agrees with previous studies e.g. Prancis et al. 2015 (multi-level method + pert. renorm.) • convert via $2\pi TD = \frac{4\pi}{\kappa/T^3}$ : $2\pi TD = 3.40 \dots 5.44$

kinetic equilibration time:

$$\tau_{\rm kin} = (1.63 \dots 2.61) \left(\frac{T_c}{T}\right)^2 \left(\frac{M}{1.5 {\rm GeV}}\right) {\rm fm/c}$$

Comparison to previous studies



# Setup & strategy for $\mathbf{2}+\mathbf{1}$ flavor QCD

L

| attice setup (proposed)                                       |               |                                |                |  |
|---------------------------------------------------------------|---------------|--------------------------------|----------------|--|
| 2+1 flavor HISQ fermions                                      |               |                                |                |  |
| physical $m_s$ ,<br>with $m_l=m_s/5~(m_\pipprox 320{ m MeV})$ |               |                                |                |  |
|                                                               | $T[{ m MeV}]$ | $N_{\sigma}^3 \times N_{\tau}$ | $a  [{ m fm}]$ |  |
|                                                               | 195           | $96^3 \times 36$               | 0.028          |  |
|                                                               |               | $64^3	imes 24$                 | 0.042          |  |
|                                                               |               | $64^3	imes 20$                 | 0.051          |  |
|                                                               | 220           | $96^3 \times 32$               | 0.028          |  |
|                                                               |               | $64^3	imes 24$                 | 0.037          |  |
|                                                               |               | $64^3	imes 20$                 | 0.045          |  |
|                                                               | 251           | $96^3 \times 28$               | 0.028          |  |
|                                                               |               | $64^3	imes 24$                 | 0.033          |  |
|                                                               |               | $64^3	imes 20$                 | 0.039          |  |
|                                                               | 293           | $96^3 \times 24$               | 0.028          |  |
|                                                               |               | $64^3	imes 22$                 | 0.031          |  |
|                                                               |               | $64^3	imes20$                  | 0.034          |  |
|                                                               |               |                                |                |  |

■ + three temp. ≤ 195 MeV with physical masses (64<sup>3</sup> × 24)

## **Current situation**

- no continuum and flow-time-to-zero extrapolation
- additional resources necessary

## However:

- $\blacksquare$  long-distance correlator insensitive to finite  $(a,\tau_{\rm F})$
- to keep flow corrections small, use  $\tau_F$  relative to each  $\tau$ :

$$\frac{\sqrt{8\tau_F}}{\tau} = \text{const.} < \frac{1}{3}$$

 $\Rightarrow$  enough to constrain  $\kappa$ ?

## So, in the meantime:

- treat finite  $(a, \tau_{\rm F})$  as systematic uncertainties
- use quenched data to estimate additional systematic error





# Conclusionsshape of correlator preserved

at fixed small  $\sqrt{8\tau_F}/\tau$ 



#### Conclusions

- shape of correlator preserved at fixed small  $\sqrt{8\tau_F}/\tau$
- for large τ also preserved at finite a!
- ⇒ sufficient to still constrain  $\kappa/T^3$  (using simple models)



#### Conclusions

- shape of correlator preserved at fixed small  $\sqrt{8\tau_F}/\tau$
- for large τ also preserved at finite a!
- ⇒ sufficient to still constrain  $\kappa/T^3$  (using simple models)



# Recap

| What do we want?               | <b>a</b> first-principles nonpert. estimate from full QCD for the <b>HQ momentum diffusion coefficient</b> $\kappa$ (or in turn $D$ , $\tau_{kin}$ )                                                                                                                                                                                                                                               |
|--------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Why?                           | <ul> <li>phenomenology: explain experimental data for HQ</li> <li>crucial input for transport simulations</li> </ul>                                                                                                                                                                                                                                                                               |
| What did we<br>achieve so far? | <ul> <li>quenched QCD</li> <li>proof-of-concept for gradient flow method <i>P</i>LA et al. 2021</li> <li>consistent results for κ compared to previous studies</li> <li>(a, τ<sub>F</sub>) → 0 data serves as benchmark for systematics of finite (a, τ<sub>F</sub>) data</li> <li>2+1 flavor QCD</li> <li>preliminary explorations to constrain κ using finite (a, τ<sub>F</sub>) data</li> </ul> |
| What to do next?               | <ul> <li>2+1 flavor QCD</li> <li>increase statistics, add lattice spacings, look into quark mass effects</li> <li>estimate systematic errors</li> <li>determine finite-mass correction (color-magnetic correlator) &amp; Bouttefeux, Laine 2021</li> </ul>                                                                                                                                         |