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Intro & Motivation

• Semileptonic decays are a rich source of information for
determining CKM matrix elements.

• Lattice data a critical source of input for testing the CKM
paradigm.
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• With new experimental and theoretical data on the
horizon, these are interesting times!
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FNAL-MILC allHISQ-b program 2111.05184

• Overall aim: Precision (∼ 1%) determination of a range of
B(s) (and D(s)) semileptonic form factors, of direct
relevance for current and upcoming experimental programs.

• Here we discuss extending this program to decays with
vector final states (specifically the processes B(s) → D∗

(s)).

• Support/enhance physics of B → D∗ with FNAL heavy
quarks on asqtad (and hisq) sea. 2105.14019
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Outline

• Intro & Motivation

• FNAL/MILC all-HISQ semileptonic decays
▶ Calculation framework

▶ Preliminary results w/ pseudoscalar final state

• Including vector final states

• Summary
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FNAL-MILC allhisq working group

Carleton DeTar
Elvira Gámiz
Steve Gottlieb
William Jay
Aida El-Khadra
Andreas Kronfeld
Jim Simone
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Heavy quarks

Treatment of c and especially b quarks challenging in lattice
simulation due to lattice artifacts which grow as (amh)

n

• May use an effective theory framework to handle the b
quark.
▶ Fermilab method, RHQ, OK, NRQCD
▶ Pros: Solves problem w/ amh artifacts.
▶ Cons: Requires matching, can still have ap artifacts.

• Also possible to use relativistic fermion provided a is
sufficiently small amc ≪ 1, amb < 1.
▶ Use improved actions e.g. O(a2) → O(αsa

2)
▶ Pros: Absolutely normalised current, straightforward

continuum extrap.
▶ Cons: Numerically expensive, extrapolate mh → mb.
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allhisq simulations

• Here we simulate all quarks with the HISQ action.

• Unified treatment for wide range of B(s) (and D(s)) to
pseudoscalar transitions
▶ B(s) → D(s)

▶ B(s) → K

▶ B → π

• Ensembles with (HISQ) sea quarks down to physical at
each lattice spacing.

• Enables correlated studies of ff ratios.

See our 2021 Lattice proceeding for more details! 2111.05184
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MILC ensembles [1004.0342, 1212.4768]

• HISQ fermion action.
▶ Discretization errors begin at O(αsa

2).
▶ Designed for simulating heavy quarks (mc and higher at

current lattice spacings).

• Symanzik-improved gauge action, takes into account
O(Nfαsa

2) effects of HISQ quarks in sea. [0812.0503]

• Multiple lattice spacings down to ∼ 0.042 (now 0.03) fm.

• Effects of u/d, s, and c quarks in the sea.

• Multiple light-quark input parameters down to physical
pion mass.
▶ Chiral fits.
▶ Reduce statistical errors.
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MILC ensemble parameters 1712.09262
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allHISQ b

• Use a heavy valence mass h as a proxy for the b quark.

• Work at a range of mh, with amc < amh ≲ 1 on each
ensemble. On sufficiently fine ensembles, mh is near to mb

(e.g. mb at amh ≈ 0.65 on a = 0.03 fm).

• Map out physical dependence on mh, remove discretisation
effects ∼ (amh)

2n using information from several
ensembles. Extrapolate results a2 → 0,mh → mb.
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Update on allHISQ P → P

D → π Bs → Ds
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• Will Jay’s D-decay analysis (D → π,K Ds → K) at an
advanced stage. Percent-level targets achieved.

• For B decays, vector operator renorm. and
chiral/continuum extrapolations remain.
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Update on allHISQ P → P

Bs → K
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• Good statistical precision out to p=300.

• Tree-level disc. artifacts removed in right-hand figure.
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B → D∗ at non-zero recoil 2105.14019

• Pioneering FNAL-MILC calculation beyond zero-recoil
using FNAL b and c quarks.
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Figs. courtesy A. Vaquero

• FNAL-HISQ analysis in progress (Vaquero).
• all-HISQ approach normalizes currents exactly (Ward
identities), reducing an important source of uncertainty.
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Extending allHISQ to vector final states

Structurally, calculation is similar to P → P – need to modify
spin-taste at source/sink/current.

OH(s)
OP/V OJ

f+ γ5 ⊗ γ5 γ5 ⊗ γ5 γi ⊗ 1
f0 γ0γ5 ⊗ γ0γ5 γ5 ⊗ γ5 γ0 ⊗ γ0
V γ5 ⊗ γ1 γ1 ⊗ γ1 γ3 ⊗ 1
A0 γ5 ⊗ γ5γ1 γ1 ⊗ γ1 γ5 ⊗ γ5
A1 γ5 ⊗ γ5γ3 γ3 ⊗ γ3 γ3γ5 ⊗ γ5
A2 γ5 ⊗ γ5γ1 γ1 ⊗ γ1 γ1γ5 ⊗ γ5

Normalize vector (axial vector) current using PCVC (PCAC).
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Summary & Conclusion

• Semileptonic decays are crucial sources of information for
fundamental physics, e.g. |Vub| and |Vcb|. Lattice results
needed to support experimental physics programs at LHCb
and Belle II.
▶ Understand inclusive/exclusive discrepancies.

▶ Pure SM predictions for R-ratios.

• The FNAL-MILC allHISQ-b program aims to produce high
quality form factor data for a range of phenomenologically
important channels.

• Propose to extend these calculations to vector final states,
to obtain B(s) → D∗

(s) form factors over the full kinematic
range.
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Thank you!


