Semileptonic B-decays with a vector final state

Andrew Lytle (FNAL-MILC collaboration) University of Illinois @ Urbana-Champaign

> 04.22.22 USQCD All Hands Meeting Zoom@MIT

Intro & Motivation

- Semileptonic decays are a rich source of information for determining CKM matrix elements.
- Lattice data a critical source of input for testing the CKM paradigm.

• With new experimental and theoretical data on the horizon, these are interesting times!

- Overall aim: Precision (~ 1%) determination of a range of B_(s) (and D_(s)) semileptonic form factors, of direct relevance for current and upcoming experimental programs.
- Here we discuss extending this program to decays with vector final states (specifically the processes $B_{(s)} \to D^*_{(s)}$).
- Support/enhance physics of $B \rightarrow D^*$ with FNAL heavy quarks on asqtad (and hisq) sea. 2105.14019

- Intro & Motivation
- FNAL/MILC all-HISQ semileptonic decays
 - Calculation framework
 - ▶ Preliminary results w/ pseudoscalar final state
- Including vector final states
- Summary

Carleton DeTar Elvira Gámiz Steve Gottlieb William Jay Aida El-Khadra Andreas Kronfeld Jim Simone Alejandro Vaquero Treatment of c and especially b quarks challenging in lattice simulation due to lattice artifacts which grow as $(am_h)^n$

- May use an effective theory framework to handle the *b* quark.
 - ▶ Fermilab method, RHQ, OK, NRQCD
 - ▶ Pros: Solves problem w/ am_h artifacts.
 - ▶ Cons: Requires matching, can still have *ap* artifacts.
- Also possible to use relativistic fermion provided a is sufficiently small $am_c \ll 1$, $am_b < 1$.
 - Use improved actions e.g. $\mathcal{O}(a^2) \to \mathcal{O}(\alpha_s a^2)$
 - Pros: Absolutely normalised current, straightforward continuum extrap.
 - Cons: Numerically expensive, extrapolate $m_h \to m_b$.

- Here we simulate all quarks with the HISQ action.
- Unified treatment for wide range of $B_{(s)}$ (and $D_{(s)}$) to pseudoscalar transitions

$$\blacktriangleright \ B_{(s)} \to D_{(s)}$$

$$\blacktriangleright \ B_{(s)} \to K$$

 $\blacktriangleright \ B \to \pi$

- Ensembles with (HISQ) sea quarks down to physical at each lattice spacing.
- Enables correlated studies of ff *ratios*.

See our 2021 Lattice proceeding for more details! 2111.05184

- HISQ fermion action.
 - Discretization errors begin at $\mathcal{O}(\alpha_s a^2)$.
 - Designed for simulating heavy quarks (m_c and higher at current lattice spacings).
- Symanzik-improved gauge action, takes into account $\mathcal{O}(N_f \alpha_s a^2)$ effects of HISQ quarks in sea. [0812.0503]
- Multiple lattice spacings down to $\sim 0.042 \pmod{0.03}$ fm.
- Effects of u/d, s, and c quarks in the sea.
- Multiple light-quark input parameters down to physical pion mass.
 - ► Chiral fits.
 - ► Reduce statistical errors.

MILC ensemble parameters

1712.09262

- Use a heavy valence mass h as a proxy for the b quark.
- Work at a range of m_h , with $am_c < am_h \lesssim 1$ on each ensemble. On sufficiently fine ensembles, m_h is near to m_b (e.g. m_b at $am_h \approx 0.65$ on a = 0.03 fm).
- Map out physical dependence on m_h , remove discretisation effects $\sim (am_h)^{2n}$ using information from several ensembles. Extrapolate results $a^2 \rightarrow 0, m_h \rightarrow m_b$.

Update on allHISQ $P \rightarrow P$

- Will Jay's *D*-decay analysis $(D \to \pi, K D_s \to K)$ at an advanced stage. Percent-level targets achieved.
- For *B* decays, vector operator renorm. and chiral/continuum extrapolations remain.

Update on allHISQ $P \rightarrow P$

- Good statistical precision out to p=300.
- Tree-level disc. artifacts removed in right-hand figure.

• Pioneering FNAL-MILC calculation beyond zero-recoil using FNAL *b* and *c* quarks.

Figs. courtesy A. Vaquero

- FNAL-HISQ analysis in progress (Vaquero).
- all-HISQ approach normalizes currents exactly (Ward identities), reducing an important source of uncertainty.

Extending allHISQ to vector final states

Structurally, calculation is similar to $P \rightarrow P$ – need to modify spin-taste at source/sink/current.

Normalize vector (axial vector) current using PCVC (PCAC).

• Semileptonic decays are crucial sources of information for fundamental physics, e.g. $|V_{ub}|$ and $|V_{cb}|$. Lattice results needed to support experimental physics programs at LHCb and Belle II.

▶ Understand inclusive/exclusive discrepancies.

- Pure SM predictions for R-ratios.
- The FNAL-MILC allHISQ-*b* program aims to produce high quality form factor data for a range of phenomenologically important channels.
- Propose to extend these calculations to vector final states, to obtain $B_{(s)} \to D^*_{(s)}$ form factors over the full kinematic range.

Thank you!