Design Parameter, Answers to Q1, Q2, Q3, Q6

Target coordinates: mom. fraction p, in-plane angle θ, out-of-plane angle ϕ, target position y Focal plane coordinates: dispersive $x^{\prime}, \phi^{\prime}$, non-dispersive $y^{\prime}, \theta^{\prime}$, origin central ray

- Magnification $M=-0.77$
- First order imaging of central ray, $(p, \theta, \phi, y)^{t}=J \cdot\left(x^{\prime}, \phi^{\prime}, y^{\prime}, \theta^{\prime}\right)^{t}$:

$$
J=\left(\begin{array}{cccc}
\partial_{x^{\prime}} p & \partial_{\phi^{\prime}} p & \partial_{\theta^{\prime}} p & \partial_{y^{\prime}} p \\
\partial_{x^{\prime}} \phi & \partial_{\phi^{\prime}} \phi & \partial_{\theta^{\prime}} \phi & \partial_{y^{\prime}} \phi \\
\partial_{x^{\prime}} \theta & \partial_{\phi^{\prime}} \theta & \partial_{\theta^{\prime}} \theta & \partial_{y^{\prime}} \theta \\
\partial_{x^{\prime}} y & \partial_{\phi^{\prime}} y & \partial_{\theta^{\prime}} y & \partial_{y^{\prime}} y
\end{array}\right)=\left(\begin{array}{rrrr}
0.00172 & 0.00028 & 0 & 0 \\
0.02856 & 0.50404 & 0 & 0 \\
0 & 0 & 1.16717 & -0.06810 \\
0 & 0 & 24.07773 & -2.21014
\end{array}\right)
$$

Assumed Detector Resolutions: beam size $=1.00 \mathrm{~mm}$

$$
\begin{array}{lll}
\sigma_{x^{\prime}}(\text { disp. }) & =0.10 \quad \mathrm{~mm} \\
\sigma_{y^{\prime}} & =0.10 \quad \mathrm{~mm} \\
\sigma_{\phi^{\prime}} & \text { disp. }) & =3.49 \quad \begin{aligned}
\mathrm{mrad} & =0.2^{\circ} \\
\sigma_{\theta^{\prime}} & =3.49 \\
& \mathrm{mrad}=0.2^{\circ}
\end{aligned}
\end{array}
$$

Target Resolutions:

$$
\begin{array}{ll}
\sigma_{p} & =0.00134 \\
\sigma_{\phi} & =1.80197 \mathrm{mrad}=0.10325^{\circ} \\
\sigma_{\theta} & =2.05093 \mathrm{mrad}=0.11751^{\circ} \\
\sigma_{y} & =2.44801 \mathrm{~mm}
\end{array}
$$

- Acceptance:

$$
\begin{aligned}
& 6^{\circ} \times 6^{\circ} \Rightarrow \Delta \Omega=11.0 \mathrm{msr} \\
& \frac{\Delta p}{p}=30 \%
\end{aligned}
$$

Edge shape, Answers to Q4, Q5

Polynomials (numerical optimized):
Entrance: $x\left(0.1807-0.2937 \frac{x}{250 \mathrm{~mm}}+0.2510\left(\frac{x}{250 \mathrm{~mm}}\right)^{2}-0.2143\left(\frac{x}{250 \mathrm{~mm}}\right)^{3}+0.3102\left(\frac{x}{250 \mathrm{~mm}}\right)^{4}\right)$
Exit: $\quad x\left(0.9460-0.1477 \frac{x}{250 \mathrm{~mm}}-0.2213\left(\frac{x}{250 \mathrm{~mm}}\right)^{2}+0.1913\left(\frac{x}{250 \mathrm{~mm}}\right)^{3}-0.1011\left(\frac{x}{250 \mathrm{~mm}}\right)^{4}\right)$

Remaining Questions

Q7: Focal plane angle: see CAD files
Q8: Focal plane: nearly linear, a small compromise has to be taken to improve the coupling with the in-plane angle. Beam spot size dominates error, so it's not worth to further improve this.

Q9: The big problem: out-of-plane angle introduces the largest error.
This can't be avoided with a single dipole!
Perhaps we have to restrict the out-of-plane acceptance.
Q10: Are we really expecting to be dominated by unrelated $e^{+} e^{-}$background?????
Then we are dead already...

Summary

- Intrinsic resolution better than needed
- Missing angular detection seriously restricts mass-resolution
- Image of beam spot larger than detector resolution, limited by available space
- Final mass resolution has to be determined by simulation
- Aim: same size as multiple scattering in target

