℀TRIUMF

DarkLight: Experiment Location and Beam Optics

Aveen Mahon, PhD Student Beam Physics Group, TRIUMF

Darklight Collaboration Meeting May 27, 2022

Initial Experiment Location

Beam Optics and Foreseeable Losses

Revised Experiment Location and Considerations

e-Linac Layout

e-Linac Layout: Initial Experiment Location

e-Linac Layout: Initial Experiment Location

DarkLight target chamber in the e-hall.

TRANSOPTR Beam Optics Simulation

Typical 2 RMS e-Linac beam envelope. Radius of beampipe is 2.5 cm.

TRANSOPTR Beam Optics Simulation

 \Rightarrow very difficult to transport. Pachal (2021)

Beam Optics Limitations

Beam loss requirement \Rightarrow maximum 1 Watt per meter.

Assuming a Gaussian distribution for a 10 kWatt beam, this loss will occur at a 3.7 RMS envelope.

Maximum tolerable foil thickness at this location would be ≈ 7 nm.

Not feasible \Rightarrow revise experiment location.

Revised Experiment Location

Figure obtained from Katherine Pachal.

Revised Experiment Location: Phase 0

Re-located near the high-power dump for initial round of data taking.

Revised Experiment Location: Phase 0

Limited space available in this section.

TRANSOPTR Beam Optics Simulation

Envelope with no additional optics \Rightarrow must add focusing elements.

TRIUMF Quadrupoles

Inner diameter: 5.2 cm Outer diameter: \approx 28 cm Diagonal length: \approx 40 cm Length in beam direction: \approx 10 cm Integrated field strength: \approx 0.3 T

Baartman (2011)

Quadrupole triplet option \Rightarrow 1 micron foil

3.7 RMS envelope contained within beampipe aperture.

Quadrupole triplet option \Rightarrow 0.5 micron foil

3.7 RMS envelope contained within beampipe aperture.

Quadrupole triplet issue \Rightarrow Spectrometer magnets 0.5 micron setup: 1 micron setup: 40cm 57 cm 12 12.5cm 20cm 20cm

Overlap between elements \Rightarrow will need to compromise somewhere.

- Phase 0 location moved in front of current e-Linac beam dump;
- Satisfactory beam envelope can obtained using quadrupole triplet for 1 and 0.5 micron foils at this location;
- BUT would need to compromise on size of quadrupoles or spectrometer magnets for it to fit in allocated space;
- Also planning to explore the option of permanent magnet.

∂TRIUMF

Thank you Merci

Richard Baartman. Quads for ARIEL electrons. Technical Report TRI-BN-11-02, TRIUMF, 2011.

Katherine Pachal. A look at beam spread and radiation from foils. Technical report, TRIUMF, 2021.

CFI Phase 1

Figure obtained from Katherine Pachal.

CFI Phase 2

Figure obtained from Katherine Pachal.

Mathematica computation $f[x_{-}] = f[x_{-}] = 1/(\sigma * \sqrt{(2\pi)}) * Exp[(-x^{2}/(2\sigma^{2}))]$ $Out[z] = \frac{e^{-\frac{x^{2}}{2\sigma^{2}}}}{\sqrt{2\pi}\sigma}$

 $ln[\circ] := Assuming[\sigma > 0, Integrate[f[x], \{x, -\infty, \infty\}]]$ $Out[\circ] := 1$

 $ln[*]:= Assuming[\sigma > 0, Solve[Integrate[f[x], {x, a, \infty}] = 1/10000, a]]$

.... Solve: Inverse functions are being used by Solve, so some solutions may not be found; us

$$Out[=]= \left\{ \left\{ a \rightarrow \sqrt{2} \sigma InverseErfc \left[\frac{1}{5000} \right] \right\} \right\}$$

$$ln[*] = \sqrt{2} \text{ InverseErfc} \left[\frac{1}{5000.} \right]$$

Out[*]= 3.71902