DarkLight target tests, summer 2022

Kate Pachal, Dean Ciarnciello, Mike Hasinoff

July-Aug 2022

1 Key information

1.1 Camera

No access via IP address. Can only be accessed via website or mobile app. Easiest is likely website.

- View feed at mydlink.com (has some browser dependency, but works for me in FireFox + Mac)
- Account login: username kpachal@triumf.ca, password "DarkLight_generic"

1.2 Remote control for target ladder

Remote control is upstairs on desk. Motor box will be down in the e-hall. Remote control was calibrated with 50 m cables to a very linear 1.71 Volts per inch. Recall that lowermost position of ladder has been cut off so only 3 positions remain. Voltages corresponding to target positions are:

- Highest position of ladder (beam passing below bottom foil): 8.80 V
- Center of lower foil $(10 \mu \mathrm{~m}): 5.05 \mathrm{~V}$
- Center of BeO screen: 3.17 V
- Center of upper foil $(1 \mu \mathrm{~m}): 1.29 \mathrm{~V}$

2 Scintillators

Scintillator placement: 97 cms to first scintillator from the outside of the target chamber, in direct line from target (i.e. not perpendicular to beam pipe). Operate scintillators at -1700 V ? Currently using -1600 .

Initial tests with source...

- coincidence rate between 1 and 2 kHz with $\mathrm{Sr}-90$ source
- coincidence without source $3-4 \mathrm{~Hz}$

128＇8	08＇8		008＇8			OS＇＇ゅ－	
\forall / N	\forall / N	\forall / N	өpup				
9 6°－	0＜6．1	L 26.1	SE6．1	0z6．1	616．	001＊	
Oャc＇z	$0 ¢ ¢$ ¢	\＆bs＇乙	で๑＇て	$98 \underbrace{\prime}$＇乙	¢\＆ง＇ర	OSt＇レ－	әј！
¢18＇ย	$008 \cdot \varepsilon$	008 ＇ε	$808 \cdot \varepsilon$	018 ¢	008 ¢	00て＇て－	
Oレガカ	－レガカ	Oてt＇t	－レガカ	Sレレ゙カ	SOカ＇t	oss＇て－	әэи！
089＇s	089＇s	069＇s	089＇s	069＇s	089 ¢	00¢＇\＆－	өри！дөмо ґо шощоя
0¢6．9	016．9	0869	0z6．9	0z6．9	026.9	¢ <0＇ь－	ssodo
 	имор＇әqеэ 6uol ‘ı дə⿰丬犬		dn＇レ வəษฑW	имор ‘ 2 גөңəW		（seyou）ио！̣⿺辶0า	

[^0]
3 Log book

Add log notes here!

3.1 August 3rd

Scintillators in original placement: 97 cm from outside of target chamber to first scintillator and 10 cm between scintillators.

Current	Target	Rate	Width	Volt. (ch1)	Volt. (ch2)	Duty	Thresh. (ch1)	Thresh. (ch2)
35 uA	1 um	120 kHz	30 ns	1600 V	1300 V	0.05	45 mV	90 mV
75 uA	1 um	120 kHz	30 ns	1600 V	1300 V	0.05	45 mV	90 mV
75 uA	10 um	107 kHz	30 ns	1600 V	1300 V	0.04	45 mV	90 mV

Beam off and access to e-hall to move scintillators behind cement block (to shield from x-rays from 2nd frequency cavity). New position of scintillators: $83 "=210.8 \mathrm{~cm}$ from Target to Front scintillator. The Back scintillator is 10 cm further away. We found that the front scint was 2 when we re-entered the area around 5 pm . They must have become switched when we moved the cables to allow us to shield them more by placing them further from the target

Current	Target	Rate	Width	Volt. (ch1)	Volt. (ch2)	Duty	Thresh. (ch1)	Thresh. (ch2)
75 uA	10 um	107 kHz	30 ns	1600 V	1300 V	0.04	40 mV	40 mV
75 uA	10 um	150 kHz	30 ns	1600 V	1300 V	0.04	40 mV	40 mV
75 uA	10 um	170 kHz	30 ns	1600 V	1300 V	0.04	40 mV	40 mV
75 uA	10 um	245 kHz	30 ns	1600 V	1300 V	0.04	40 mV	40 mV
75 uA	10 um	215 kHz	30 ns	1600 V	1300 V	0.04	40 mV	40 mV
100 uA	1 um	200 kHz	30 ns	1600 V	1300 V	0.05	40 mV	40 mV
100 uA	1 um	208 kHz	30 ns	1600 V	1300 V	0.05	40 mV	40 mV
100 uA	BeO	350 kHz	30 ns	1600 V	1300 V	0.05	40 mV	40 mV
85 uA	none	140 kHz	30 ns	1600 V	1300 V	0.05	40 mV	40 mV
85 uA	none	385 kHz	30 ns	1600 V	1300 V	0.05	40 mV	40 mV
85 uA	none	15 kHz	30 ns	1600 V	1300 V	0.05	100 mV	100 mV
85 uA	BeO	60 kHz	30 ns	1600 V	1300 V	0.05	100 mV	100 mV
85 uA	BeO	50 kHz	30 ns	1600 V	1300 V	0.05	100 mV	100 mV

Set HV-1 to 1800V. Sr-90 Source signal up to 600 mV .
Set HV-2 to 1300V. Sr-90 Source signal up to 400 mV . Raise HV-2 to 1700 V. Set both thresholds to 50 mV .
Measure singles and coincidence rates w Sr-90 source.
Front Scint position $=96.75 "=245.8 \mathrm{~cm}$ from Target. S1-rate $=17 \mathrm{kHz}$, S2-rate $=320 \mathrm{~Hz}$ S1*S2-rate $=$ 320 Hz .
Lower HV-1 to 1700 V. Coincid rate $=4 \mathrm{~Hz}$.
Raise HV-1 to 1800 V. Amplitudes $=800 \mathrm{mV}$ (S1) and 3.0 V (S2).
S1-rate $=16.5 \mathrm{kHz}, \mathrm{S} 1^{*} \mathrm{~S} 2$ coinc rate $=300 \mathrm{~Hz}$ Source hits S1 first.
Move source so it hits S 2 first.
S1-rate $=320 \mathrm{~Hz}, \mathrm{~S} 2-$ rate $=45 \mathrm{kHz}, \mathrm{S} 1 *$ S2-rate $=325 \mathrm{~Hz}$.
Added 10 sheets of paper between source and first counter (currently S2),
Now the S2-rate $=30.5 \mathrm{kHz}, \mathrm{S} 1^{*}$ S2-rate $=130 \mathrm{~Hz}$.
Thurs Aug 4 - move counters so that Front scint (\#2) is now $98.25 "=249.6 \mathrm{cms}$ from Target. They are also rotated to be exactly perpendicular to the radial line to the target. We also added lead bricks to form a $3 "=7.6 \mathrm{~cm}$ vertical slot in front of S 2 (see Figures 1 and 2).

Figure 1: Overview of current test setup.

3.2 August 5th

Doug's Notes: 11:32 am

- beam on into FC
- HV1-1800 V
- HV2 - 1700 V
- sig 1-0 up to $4 \mathrm{~V}, 40 \mathrm{~ns}$ width
- sig 2-0 up to $15 \mathrm{~V}, 40 \mathrm{~ns}$ width
- set HV2 to $1600 \mathrm{~V}-\operatorname{sig} 2$ down to 10 V
- set point was set to 1400 (for the morning)

Set Point (corresponds to beam energy)	Coincidence Rate (events/sec)
0	20 Hz
900	16 Hz
1000	21 Hz
1100	95 Hz
1200	2000 Hz
1300	2700 Hz
1400	12000 Hz
1500	130000 Hz

2:21 pm

Background measurement:

Figure 2: View of current test setup looking from behind the two scintillator bars, through the lead collimators, to the target chamber.

Current	Target	Duty	Rate of Coincidence
100 uA	none	0.05	175 kHz
100 uA	none	0.05	180 kHz
100 uA	none	0.05	178 kHz
beam off	none	beam off	190 kHz
beam off	1 um	beam off	222 kHz
beam off	1 um	beam off	222 kHz
100 uA	1 um	0.05	319 kHz
100 uA	1 um	0.05	290 kHz
100 uA	1 um	0.05	311 kHz
beam off	10 um	beam off	363 kHz
beam off	10 um	beam off	375 kHz
70 uA	10 um	0.05	366 kHz
70 uA	10 um	0.05	375 kHz

With 1 micron foil and beam on at 100 uA (0.05 duty), only 10% of beam reaching the beam dump (10 uA)

[^0]:
 ＋Meter 1，down＋Meter 2，down＋Meter 1，up＋Meter 2，up＋Meter 1，long cable，down＋Meter 2，long cable，up

