SRC Probe Universality with p⁻ Photoproduction

Jackson Pybus

Objectives and Motivation

photoproduction from correlated nucleons

Characterize the level of agreement between the measured data and

Establish the observation of nuclear Short-Range Correlations via meson

predictions of the factorized Generalized Contact Formalism model

Clean SRC Channel: $A(\gamma, \rho^- pp)$ • Vertex interaction $\gamma n \rightarrow \rho^- p$ from correlated neutron tracks, 1 negative charged track, 2 "neutral" showers

• Decay
$$\rho^- \to \pi^- \pi^0$$
, $\pi^0 \to \gamma \gamma$

- Final-state measures 2 positive charged
- Resolution improved by kinematic fitting:
 - Common vertex

•
$$(p_{\gamma 1} + p_{\gamma 2})^2 = m_{\pi^0}^2$$

Sensitive to abundant proton-neutron \bullet pairs

Measured Quantities

р

*P*_{lead}

Scalars:

 p_{π^0}

 $p_{\pi^{-}}$

$$s = (p_{\rho} + p_{lead})^2$$

$$t = (p_{beam} - p_{\rho})^2$$

$$u = (p_{beam} - p_{lead})^2$$

 $p_{\gamma 1}$

 $p_{\gamma 2}$

Event Selection Cuts

- Basic selection criteria
 - 2 positive tracks
 - 1 negative track
 - 2 neutral (photon) showers
 - No extra particles
- Very loose cut on Kinematic Fit Confidence Level > 0.0001
- Basic dE/dx and timing PID cuts applied

Vertex Cuts

Calorimeter Shower Position Cuts

Barrel Calorimeter

Forward Calorimeter

Calorimeter Timing

- Final-state selection
- CL cut
- PID cuts
- Shower position cuts
- Shower timing within 2 ns of d/c

Leading Particle Energy

- Final-state selection
 CL cut
 PID cuts
 Shower position cuts
 Shower timing cuts
- Leading particle energy > 7 GeV

$\omega \to \pi^+ \pi^- \pi^0$ Background Cut

Positive track may be misidentified π^+

Invariant mass can be recalculated assuming different mass of positive particle

Defining some analysis variables

- Longitudinal momentum poorly measured
 - "Minus" component $p^- = E p_Z$
 - Linear combination cancels resolution effects
- Transverse components of momentum well-measured
- Light-cone fraction $\alpha = \frac{p^-}{m_A/A}$ denotes fraction of "minus" momentum carried by nucleon, normalized to A
- For SRCs we expect $\alpha_{CM} \sim 2$; the pair carries 2/A of the minus-momentum of the nucleus

Defining some analysis variables

calculating the momentum using the well-measured components:

$$p_{miss} = p_{\pi^{0}} + p_{\pi^{-}} + p_{lead} - p_{beam}$$

$$p_{proxy}^{+} = 2m_{N} - \frac{m_{N}^{2} + p_{miss,\perp}^{2}}{2m_{N} - p_{miss}^{-}}$$

$$p_{proxy,z} = \frac{1}{2} \left(p_{proxy}^{+} - p_{miss}^{-} \right)$$

$$p_{miss} = p_{\pi^{0}} + p_{\pi^{-}} + p_{lead} - p_{beam}$$

$$p_{proxy}^{+} = 2m_{N} - \frac{m_{N}^{2} + p_{miss,\perp}^{2}}{2m_{N} - p_{miss}^{-}}$$

$$p_{proxy,z} = \frac{1}{2} \left(p_{proxy}^{+} - p_{miss}^{-} \right)$$

$$p_{proxy,z}^{+} = p_{\pi^{0}} + p_{\pi^{-}} + p_{lead} - p_{beam}$$

$$p_{proxy}^{+} = 2m_{N} - \frac{m_{N}^{2} + p_{miss,\perp}^{2}}{2m_{N} - p_{miss}^{-}}$$

$$p_{proxy,z}^{-} = \frac{1}{2} \left(p_{proxy}^{+} - p_{miss}^{-} \right)$$

- "Proxy" momentum vector can be used to calculate pair opening angle $\cos \gamma_{proxy}$
- For SRCs we expect the pair back-to-back, with $\cos \gamma \sim -1$

• "Proxy" for missing momentum can be defined by assuming breakup of a standing pair, and

SRC signal localized with $\alpha_{CM} \sim 2$, back-to-back Signal Simulation Data 1.0 1.0 ⁴He 0.5 0.5 cosy_{proxy} cosyproxy0.0 0.0 -0.5 -0.5-1.0<u>└</u> -1.0<u></u> 2 3 Pair Lightcone Fraction

Cut on ρ^- meson mass

Incorporating photon information requires accidental subtraction

"Internal" missing momentum k_{miss}

$$k = \sqrt{\frac{m^2 + k_{\perp}^2}{\alpha(2 - \alpha)} - m^2} \qquad \alpha = 1 + \frac{k_3}{\sqrt{m^2 + k^2}}.$$

the NN interaction between the nucleons

"Internal" momentum defined in Frankfurt & Strikman 1981 Phys Rep.

In the light-front deuteron model this variable controls the magnitude of

"Internal" missing momentum k_{miss}

 Internal momentum can be calculated assuming a standing pair approximation, defining k_{miss} :

$$k_{miss} = m_N \sqrt{\frac{m_N^2 + p_{miss,\perp}^2}{p_{miss}^- (2m_N - p_{miss}^-)} - 1}$$

GlueX detector

• This variable can be calculated using only quantities well-measured in the

"Internal" missing momentum k_{miss}

Recoil proton momentum

Center-of-mass width matches electron-scattering

Statistics sufficient to distinguish NN interaction models + other GCF inputs

Measurement of $\gamma n \rightarrow \rho^- p$ Cross Section

Cross Section Measurement

- Measurement channel: $\gamma d \rightarrow \pi^- \pi^0 p(p)$
- Using ReactionFilter plugin to specify final-state
- Final state of 1 proton, 1 π^- , 2 γ
- Constraints: \bullet
 - Common Vertex ullet
 - $m_{\gamma\gamma} = m_{\pi^0}$

•
$$m_{miss}^2 = m_p^2$$

(Missing proton because low-momentum protons are not detected)

Event Selection

- Basic selection cuts applied initially
 - 0 unused charged tracks
 - 0 unused shower energy
 - PID CL > 0.1 for all particles
 - KinFit CL > 0.01 for the event
 - FCAL shower quality > 0.5
 - 6 < Beam Energy < 10.8 GeV

After all cuts

Vertex Cuts

Measured Missing Mass ~ m_p

KinFit Missing Momentum Low

Event selection results in prominent ρ^- mass peak over background

Background level is not constant over all kinematics

ρ^- yield estimated by fitting Breit-Wigner curve + polynomial background in each kinematic bin

Conversion to cross section

- phase space
- the cross section
- Simulated $\gamma d \rightarrow \rho^- pp$ events, assuming a flat cross section of $\frac{d\sigma}{dt}(\gamma n \to \rho^- p) = 1 \text{ nb GeV}^{-2}$
 - This allows for event reweighting to test cross section models
- Passed events through GEANT and event selection and examined same mass histograms

• Yield in each kinematic bin is a function of cross section, acceptance, efficiency, and

• Simulation allows us to account for acceptance, efficiency, and phase space to extract

Amplitude of fitted mass peak in simulation give normalization factor for dividing simulation

Cross Section Yields binned in |t|

Cross Section Yields binned in $\cos \theta^*$

Comparison to theory model

|t| and |u|:

$$\frac{d\sigma}{dt}(\gamma n \to \rho^- p) = f(\theta^*)s^{-n}, \ n = 7$$

- - This accounts for bin-centering and bin-migration
- Data compared to a model with functional form: lacksquare

$$\frac{d\sigma}{dt}(\gamma n \to \rho^- p)$$

• Constituent scaling model predicts cross section scaling at large momentum transfer

Different cross section models tested by taking flat simulation and reweighting events

 $) \propto (1 - \cos \theta^*)^{-3} s^{-7}$

Cross Section Yields binned in $\cos \theta^*$

Cross Section Yields binned in $\cos \theta^*$

Examining constituent scaling as a function of s

Examining constituent scaling as a function of s

Conclusions

- Preliminary online analysis shows good indication of SRC signal in photonuclear data
- Deuterium data allows measurement of charged ρ^- meson photoproduction cross section
- Analysis of data will entail detailed comparison between measured SRC data and GCF predictions to test factorization model in photoproduction measurements

Backup

List of SRC Cuts

- KinFit CL > 0.0001
- PID cuts on dE/dx, β
- Vertex cuts
- Calorimeter fiducial cuts
- Calorimeter timing
- $E_{\pi^-} + E_{\pi^0} + E_{lead} > 7 \text{ GeV}$
- ω meson background cut

- Cut in $\alpha_{CM} \cos \gamma_{proxy}$
- $0.65 < m_{\pi^0\pi^-} < 0.9 \text{ GeV}$
- $E_{beam} > 6 \text{ GeV}$
- $|E_{beam} + 2m_N E_{\pi^0} E_{\pi^-} E_{lead} E_{rec}| < 1 \text{ GeV}$
- $k_{miss} > 0.4 \text{ GeV}$
- $p_{rec} > 0.3 \, \text{GeV}$
- $|t|, |u| > 1 \, \text{GeV}^2$

Center-of-mass width matches electron-scattering

Missing light-cone fraction α_{miss}

Recoil light-cone fraction α_{rec}

