LA-UR-22-27316

Generalized Contact Formalism – Recent Advances

Ronen Weiss

Los Alamos National Lab

SRC collaboration meeting, MIT, August 2022

Generalized Contact Formalism

$$\Psi(r_1, r_2, \dots, r_A) \xrightarrow{r_{12} \to 0} \varphi(\mathbf{r}) \times A(\mathbf{R}, \{\mathbf{r}_k\}_{k \neq 1, 2})$$

universal function

For any short-range two-body operator \hat{O} (assuming that acts on protons):

- Two-body dynamics
- Universal for all nuclei
- Simply calculated

- Depends on the nucleus
- Independent of the operator
- Might be difficult to calculate directly for heavy nuclei

RW, B. Bazak, N. Barnea, PRC 92, 054311 (2015)

The nuclear contact relations

Two-body density

R. Cruz-Torres, D. Lonardoni, RW, et al., Nature Physics (2020)

Momentum distributions

$$n_p(k) \xrightarrow[k \to \infty]{} \frac{C_{pn}^d}{k} \left| \varphi_{pn}^d(k) \right|^2 + \frac{C_{pn}^0}{k} \left| \varphi_{pn}^0(k) \right|^2 + 2\frac{C_{pp}^0}{k} \left| \varphi_{pp}^0(k) \right|^2$$

RW, R. Cruz-Torres, N. Barnea, E. Piasetzky and O. Hen, PLB 780, 211 (2018)

Consistency: k-space vs r-space

R. Cruz-Torres, D. Lonardoni, RW, et al., arXiv: 1907.03658 [nucl-th], Nature Physics (2020)

• Detailed experimental data compared to GCF predictions

• Detailed experimental data compared to GCF predictions

I. Korover et al., arXiv:2004.07304 (2020)

I. Korover et al., arXiv:2004.07304 (2020)

Using the VMC contact values

Possible explanations:

- FSI
- Non-impulse-approximation contributions
- Mean-field contribution
- Relativistic effects
- 3N SRCs?
- NN interaction / theoretical contact values

RW, A. W. Denniston et. al., PRC 103, L031301 (2021)

Model independence of contact ratios

 $C^{V_2}(X)$ $C^{V_1}(X)$ C^{V_1}

Neutrinoless double beta decay

RW, P. Soriano, A. Lovato, J. Menendez, R. B. Wiringa, arXiv:2112.08146 [nucl-th]

Neutrinoless double beta decay

 $nn \rightarrow pp + 2e$

Measurement of the decay will provide information about:

- Majorana nature of neutrinos
- Matter dominance of the universe
- Neutrino mass
- . . .

Nuclear matrix elements (NMEs) are needed

NMEs - Methods

Shell model

Quasiparticle random phase approximation Energy density functional theory

Interactingboson model

• Describe well long-range properties of nuclei

• Missing short-range correlations

Shell model + correlation functions

$$M = \langle SM | f(r) \hat{O} f(r) | SM \rangle$$

- Correlation function Main features:
 - reduction at short distances
 - peak around 1 fm
 - $f(r) \rightarrow 1$ for $r \rightarrow \infty$

$$f(r) = 1 - ce^{-ar^2}(1 - br^2)$$

F. Simkovic et al., PRC 79, 055501 (2009)

• Extracted for example from coupled-cluster calculations:

$$|\Psi\rangle = e^{\hat{T}}|\Phi\rangle$$

• Possible inconsistencies:

 $|\text{SM}\rangle \neq |\Phi\rangle$

More consistent approaches – evolved effective operator (Coraggio, Engel,...)

Neutrinoless double beta decay

Very different values of matrix elements

NMEs – ab-initio methods

Based on single-particle basis expansion:

- All applied for ⁴⁸Ca
- ⁷⁶Ge and ⁸²Se using VS-IMSRG
- Relatively small values of NMEs
- Used with "soft" interactions \rightarrow possibly larger contribution of two-body nuclear currents

NMEs – ab-initio methods

Quantum Monte Carlo (Variational Monte Carlo):

- Very accurate
- Can be applied to both "soft" and "hard" (local) interactions
- Captures well short-range dynamics
- Limited to $A \leq 12$ nuclei for $0\nu 2\beta$

X.B. Wang, A.C. Hayes, J. Carlson, G.X. Dong, E. Mereghetti, S. Pastore, R.B. Wiringa, PLB 798, 134974 (2019)

Our approach: GCF-SM method

RW, P. Soriano, A. Lovato, J. Menendez, R. B. Wiringa, arXiv:2112.08146 [nucl-th]

NMEs and transition densities

Light Majorana neutrino exchange mechanism

$$M^{0\nu} = \langle \Psi_f | O^{0\nu} | \Psi_i \rangle$$
$$O^{0\nu} = O_F^{0\nu} + O_{GT}^{0\nu} + O_T^{0\nu} + O_S^{0\nu}$$

$$4\pi r^2 \rho_F(r) = \langle \Psi_f | \sum_{a < b} \delta(r - r_{ab}) \tau_a^+ \tau_b^+ | \Psi_i \rangle$$

$$C^{0\nu}_{\alpha}(r) \equiv (8\pi R_A) 4\pi r^2 \rho_{\alpha}(r) V^{0\nu}_{\alpha}(r)$$

$$M^{0\nu}_{\alpha} = \int_0^\infty dr \, C^{0\nu}_{\alpha}(r$$

The GCF-SM method

 $\rho_{\alpha}(r)$

 $r < 1 \, \mathrm{fm}$

 $r > 1 \,\mathrm{fm}$

GCF

Shell model

GCF-SM: Short distances (r < 1 fm)

• Fermi density for example:

$$\rho_F(r) = \frac{1}{4\pi r^2} \left\langle \Psi_f \right| \sum_{a < b} \delta(r - r_{ab}) \tau_a^+ \tau_b^+ \left| \Psi_i \right\rangle$$

• New contacts

$$C(f,i) = \frac{A(A-1)}{2} \langle A(f) | A(i) \rangle$$

$$\rho_F(r) \to \frac{1}{4\pi} |\phi(r)|^2 C(f,i)$$

$$\rho_{GT}(r) \rightarrow -\frac{3}{4\pi} |\phi(r)|^2 C(f,i)$$

GCF-SM: Short distances (r < 1 fm)

• Fermi density for example:

$$\rho_F(r) = \frac{1}{4\pi r^2} \left\langle \Psi_f \right| \sum_{a < b} \delta(r - r_{ab}) \tau_a^+ \tau_b^+ \left| \Psi_i \right\rangle$$

• New contacts

$$C(f,i) = \frac{A(A-1)}{2} \langle A(f) | A(i) \rangle$$

$$\rho_F(r) \rightarrow \frac{1}{4\pi} |\phi(r)|^2 \mathcal{C}(f,i) \qquad \qquad \rho_{GT}(r) \rightarrow -\frac{3}{4\pi} |\phi(r)|^2 \mathcal{C}(f,i)$$

The values of the contacts are needed

Model independence of contact ratios

• For $0\nu 2\beta$:

$$\frac{C^{AV18}(f_1, i_1)}{C^{AV18}(f_2, i_2)} = \frac{C^{SM}(f_1, i_1)}{C^{SM}(f_2, i_2)}$$

$$C^{AV18}(f_1, i_1) = \frac{C^{SM}(f_1, i_1)}{C^{SM}(f_2, i_2)} C^{AV18}(f_2, i_2)$$

Exact QMC

calculations

• For example

$$C^{AV18}({}^{76}\text{Ge} \rightarrow {}^{76}\text{Se}) = \frac{C^{SM}({}^{76}\text{Ge} \rightarrow {}^{76}\text{Se})}{C^{SM}({}^{12}\text{Be} \rightarrow {}^{12}\text{C})}C^{AV18}({}^{12}\text{Be} \rightarrow {}^{12}\text{C})$$

Validation using light nuclei (AV18)

Using ⁶He \rightarrow ⁶Be and ¹⁰Be \rightarrow ¹⁰C to "predict" ¹²Be \rightarrow ¹²C

Short distances - GCF

Long distances – Shell model

Validation using light nuclei (AV18)

Using ⁶He \rightarrow ⁶Be and ¹⁰Be \rightarrow ¹⁰C to "predict" ¹²Be \rightarrow ¹²C

Uncertainty band: 10% on the contact value + varying matching point (0.8 - 1 fm)

Results – heavy nuclei (AV18)

• Transition densities (using A = 6, 10, 12 to predict heavy nuclei):

Results – heavy nuclei (AV18)

Significant reduction due to SRCs

Results – heavy nuclei (AV18)

Significant reduction due to SRCs

Next:

- Model and cutoff dependence chiral interactions
- Include 3N-SRCs and other corrections
- Detailed comparison with other methods (using the same interaction)
- Tensor matrix elements

RW, A. Lovato, R. B. Wiringa, arXiv:2206.14235 [nucl-th]

• Derived relations based on isospin symmetry involving two-body densities

$$\rho_{t,t_z}(r) = \frac{A(A-1)}{2} \frac{1}{4\pi r^2} \left\langle \Psi \left| \delta(r-r_{12}) \hat{P}_{12}^{t,t_z} \right| \Psi \right\rangle$$

• For T = 0 nuclei:

$$\rho_{1,1}(r) = \rho_{1,0}(r) = \rho_{1,-1}(r)$$

• For T = 1/2 nuclei:

$$2\rho_{1,0}(r) = \rho_{1,1}(r) + \rho_{1,-1}(r)$$

Equivalent relations hold in momentum space

• For $T \ge 1$ nuclei:

No relation exist!

• For T = 1/2 nuclei:

$$2\rho_{1,0}(r) = \rho_{1,1}(r) + \rho_{1,-1}(r)$$

• Additional relations:

Connecting nuclei in the same isospin multiplet

Connection to $0\nu\beta\beta$ ($\Delta T = 0$)

• Additional relations:

Connecting nuclei in the same isospin multiplet

Useful for:

- Benchmarking codes
- Reducing cost of calculation
- Studying isospin-breaking effects
- Obtaining information on excited states using ground-state calculations
- SRC studies

• For T = 1/2 nuclei: $2\rho_{1,0}(r) = \rho_{1,1}(r) + \rho_{1,-1}(r)$

$$2C_{t_z=0}^{t=1} = C_{t_z=1}^{t=1} + C_{t_z=-1}^{t=1}$$

Can help in disentangling contribution from different channels in experiments

•
$$0\nu\beta\beta \ (\Delta T = 0)$$
 $\rho_F(r) = \rho_{1,-1}(r) + \rho_{1,1}(r) - 2\rho_{1,0}(r)$

$$C(f,i) = C_{t_z=-1}^{t=1} + C_{t_z=1}^{t=1} - 2C_{t_z=0}^{t=1}$$

- Information regarding the spectator (A 2) subsystem
- For pn t = 0 SRC pair: The A 2 system must have the same T as Ψ
- For t = 1 pairs there can generally be three values of T^{A-2}
- Based on isospin symmetry we get

$$C_{t_z}^{t=1} = \frac{A(A-1)}{2} \sum_{T^{A-2}} \left| \left\langle T^{A-2} T_z - t_z \ 1 \ t_z \right| T \ T_z \right\rangle \right|^2 \left\langle A(T^{A-2}) \left| A(T^{A-2}) \right\rangle$$

We can express the probability that the A - 2 system is in T^{A-2} -state using the contacts

• For example, for T = 1/2, $T_z = -1/2$ nucleus - when a *nn* SRC pairs is formed the T^{A-2} probabilities obey:

$$\frac{P_{nn}(T^{A-2} = 1/2)}{P_{nn}(T^{A-2} = 3/2)} = \frac{3C_{t_{z=-1}}^{t=1} - C_{t_{z}=1}^{t=1}}{C_{t_{z}=1}^{t=1}}$$

• For example, for T = 1/2, $T_z = -1/2$ nucleus - when a *nn* SRC pairs is formed the T^{A-2} probabilities obey:

$$\frac{P_{nn}(T^{A-2} = 1/2)}{P_{nn}(T^{A-2} = 3/2)} = \frac{3C_{t_{z=-1}}^{t=1} - C_{t_{z}=1}^{t=1}}{C_{t_{z}=1}^{t=1}}$$

- Only the pair need to be detected to extract information on the spectators
- Can be useful to model the A 2 system (relevant for example for spectral function models)
- Can possibly be tested in inverse-kinematics experiments (if A 2 state is identified using gamma detection)

Future work

- Next order corrections to the GCF
 - Systematic expansion
 - Three-body correlations
- Electron scattering:
 - Beyond the spectral function PWIA description (coherent contributions + FSI)
 - Relativistic effects
- GCF + SM: $0\nu\beta\beta$, single-beta decay, spectral function...

Electron-scattering experiments

• Cross sections can be calculated using spectral function (PWIA)

$$S(p_{1},\epsilon_{1}) = \sum_{s} \sum_{f_{A-1}} \delta(\epsilon_{1} + E_{f}^{A-1} - E_{0}) \left| \left\langle f_{A-1} \middle| a_{p_{1},s} \middle| \psi_{0} \right\rangle \right|^{2}$$

• with the GCF:

$$S^{p}(\boldsymbol{p_{1}} > k_{F}, \epsilon_{1}) = C^{1}_{pn}S^{1}_{pn}(\boldsymbol{p_{1}}, \epsilon_{1}) + C^{0}_{pn}S^{0}_{pn}(\boldsymbol{p_{1}}, \epsilon_{1}) + 2C^{0}_{pp}S^{0}_{pp}(\boldsymbol{p_{1}}, \epsilon_{1})$$

We can calculate cross sections for all nuclei if contact values are known (or fit contact values to experiment)

Traditional interpretation of a_2 :

The number of deuteron-like correlated pairs in nucleus A relative to the deuteron

Interpretation might be affected by:

- CM motion of the pair
- Excitation energy of the A 2 system
- Contribution of non-deuteron-like pairs

⁴He - AV18

RW, A. W. Denniston et. al., *PRC 103, L031301* (2021)

⁴He - AV18

RW, A. W. Denniston et. al., *PRC 103, L031301* (2021)

⁴⁸Ca/⁴⁰Ca AV18 Light cone

RW, A. W. Denniston et. al., *PRC 103, L031301* (2021)

NMEs – ab-initio methods

S. Novario, et al., PRL 126, 182502 (2021)

Comparison to previous works

• Studies using correlation functions find smaller SRC effect:

- Peak around r = 1 fm leads to the small effect
- Peak argued to be

necessary to conserve

isospin symmetry J. Engel et al., PRC 83, 034317 (2011)

$$\int_0^\infty \rho_F(r) dr = \langle \psi_f | \sum_{a < b} \tau_a^+ \tau_b^+ | \psi_i \rangle = 0$$

Comparison to previous works

• Studies using correlation functions find smaller SRC effect:

- Peak around r = 1 fm leads to the small effect
- Peak argued to be

necessary to conserve

isospin symmetry J. Engel et al., PRC 83, 034317 (2011)

Isospin symmetry can be conserved without the peak due to the SM rescaling

Comparison to previous works

- Other studies found small effect as well
- For example: (diagrammatic perturbation theory to construct an effective shell-model operator)

Inconsistent with QMC calculations

1

2

r [fm]

¹²Be

AV18

WSS

VMC

.....

5