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Summary of theoretical expectations  for 3NSRC
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Evidence for 3N SRC from analyses of hadronic and (e,e’) reactions.

Introduction : To resolve SRC need high resolution (energy momentum transfer)
to constituents of SRC—> light cone dominates 



Relativistic 
projectile

t1, z1 t2, z2

t1 − z1 = t2 − z2

⇒ High energy process develops along the 
light cone. 

Similar to the perturbative QCD the amplitudes of 
the processes are expressed through the wave 
functions on the light cone. Note: in general no benefit 
for using LC for low energy processes.
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Since high energy processes are dominated by  interactions near light cone, their 
cross sections are more simply expressed through light cone wave functions (or 
more complicated LC objects like LC spectral function, LC decay function
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FIG. 6.1: Prediction of eq. (6.2) for F (N)
2C (x ≥ 1, Q2) for several nuclear wave functions.

arise from some kind of superdense configurations either consisting of few nearby nucleons with large momenta or a
more complicated multiquark configuration. Consequently, the dependence of F2A(x,Q2) for x > 1 on the average
nuclear density 〈ρ〉 should be more pronounced F2A(x,Q2)

∣∣
x>1

∝ 〈ρ〉n, n > 1, see below] than for the kinematical
region of the EMC effect (x ∼ 0.3−0.7), where the small deviation of F2A/F2N from unity is proportional to 〈ρ〉. Thus,
it may provide important information on the equation of state at large densities. Evidently, by measuring F2A(x,Q2)
at x > 1 one can demonstrate the presence of correlations, but cannot determine their quark-gluon structure. For
this purpose a comparison of F2A(x,Q2) with the data on near-threshold (e, e′) reactions and related processes is
necessary. Note also that knowledge of F2A(x,Q2) at x > 1 is necessary for the accurate extraction of ΛQCD from
the measurements on nuclear targets on the basis of the evolution equation. It is easy to demonstrate [321] that the
existing procedure, like, e.g., in ref. [322], where it is assumed that F2A(x,Q2) → 0 for x → 1, underestimates ΛQCD

(Λtrue
QCD − ΛQCD may be as 20 − 30 MeV cf. ref. [323]).
In the pre EMC effect era the value of F2A(x,Q2) at x > 1 has been predicted in ref. [324–326] on the basis of

the few-nucleon correlation model (FNCM) for the single-nucleon light-cone density matrix ρN
A(α, pt) (see summary

in Appendix B). The presence of a large tail of superfast quarks was suggested for deuterons [327]] and nuclei [328]
by assuming that for fast backward pion production58

GA/π
h (xF, pt) ≡

dσ(h + A → π + X)
(dxF/xF) d2pt

∝ F2A(xF, Q2). (6.1)

The calculation of ref. [324–326] neglects possible nonnucleon degrees of freedom and uses the convolution equation
whose derivation was briefly discussed in section 5 5.1 (for a detailed discussion see ref. [320]):

F2A(x,Q2) =
∑

N=p,n

∫
F2N(x/α, Q2)ρN

A(α, kt)
dα

α
d2kt. (6.2)

Since ρN
A(α, kt) at α > 1 rapidly decreases with α (∼ exp−7α), the prediction of eq. (6.2) for the shape of the

x-distribution is rather insensitive to uncertainties in the value of F2N(x,Q2) at x > 0.8 (cf. eq. (5.15) in ref. [320]).
We want to draw attention to the fact that practically the same shape of F2A(x,Q2) is expected in models where the

58 The phenomenological observation that for x ! 0.8, G
p/π+

h (x) ∝ u(x), G
p/π−

h (x) ∝ d(x), was first made in ref. [329]. At x > 0.8, where

the triple-Regge limit contribution dominates, these relations underestimate G
N/π
h (x), e.g. G

p/π+

h (x) ∝ (1− x)2 for x > 0.8 [330]. Note
also that with increasing number of quarks in the system the difference between the behaviour of the pion spectrum for xF → A and
the quark distribution for x → A is expected to become more and more pronounced, e.g. for the deuteron perturbative QCD predicts

[320] G
D/π
h (xF) ∝ (2 − xF)5 for xF → 2, while F2D(x) ∝ (2 − x)10 for x → 2.
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Here ⌅ is the light cone nucleus WF, the solution of Weinberg equation (2.29), which is normalized a usually for
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These sum rules can be derived in a somewhat independent way. Eq. (2.33) represents the sum rule for the baryon
charge conservation. It follows directly from the condition that the matrix element of the baryon current at zero
momentum transfer is equal ⌅A|jB

0 |A⇧/pA|pA⇥⇤ = A. Eq. (2.34) represents the sum rule for the momentum con-
servation. To obtain this sum rule we can use the fact that the matrix element of the energy-momentum tensor
Tµ�(⌅A|Tµ�|A⇧/p2

A|pA⇥⇤) at zero momentum transfer does not depend on the target. This property of Tµ� is a
consequence of the universality of gravitation.

Comment. To check the consistency of the developed approach one can use the celebrated Adler, Dashen, Gell-
Mann, Fubini sum rules [149, 150] and momentum conservation sum rule [151] valid for an arbitrary target in any
renormalizable quantum field theory (QCD) [152, 153]. The application of these sum rules together with eqs. (2.14)
for the nucleus structure functions leads to eqs. (2.33), (2.34) correspondingly. Note however that both of these sum
rules are not fulfilled in the approaches based on the Bethe-Salpeter WF with the o�-mass-shell interacting nucleon
(see the discussion in Appendix A).

2.4.3. Connection with non-relativistic theory of the nucleus

To obtain the usual Schrödinger equation from the Weinberg type eq. (2.29) the approximation
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{For authors: Shouldn’t the sign be just ⇤ ? } should be used (cf. eq. (2.16)). In this approximation
⇤N
A(�, k⌅) is simply related to the single nucleon density matrix n(k):

n(k) =
↵

⌅̃2
A(k1 . . . kA)

⌦

j=1

d3kj⇥

⇤

⇧
A 

j=1

kj

⌅

⌃
A 

i=1

⇥(k � ki)
A

. (2.36)

Here ⌅̃2
A = ⌅2
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�

n(k)d3k = A. From the comparison of eqs. (2.35), (2.36) and eq. (2.30) we
have
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A(�, k⌅) = m n(k), k =

�
m2(1� �)2 + k2

⌅. (2.37)

An equivalent though more complicated procedure is to consider IMF diagrams for the nuclear WF and to verify that
the angular condition for an A-nucleon system has the same form as for free nucleon system in the approximation
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If one uses a rest frame approaches - one needs to use a spectral function 
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FIG. 8.4:

8.3.1. “y”-scaling

In the impulse approximation (corrections to this approximation due to the final state interaction will be briefly
discussed below) the process is described by the diagram in fig. 8.4, where the virtual photon is absorbed by a nucleon
with momentum k. In the kinematic region described in eq. (8.3) the difference between the invariant mass of the
produced system, W , and MA is small as compared to Q2 and |q|. To produce such a state the momentum k of
the struck nucleon in the wave function of the nucleus should be large (in the rest frame of the nucleus), roughly
k ∼ −q/2 (for γ∗ scattering of the two-nucleon correlation), cf. eq. (8.29) below.

Another characteristic feature of the reaction discussed is that the intrinsic energy E of the residual system X is
comparable with W −MA. (By definition E = MX −MA−1, where MX and MA−1 are the invariant masses of X and
of a nucleus consisting of A − 1 nucleons.) For example, in the two-nucleon correlation approximation E # q2/8m.
As a result the closure approximation is inapplicable here and therefore the cross section of reaction (8.1) could not
be expressed through the ground state wave function of nucleus A. One should use instead the spectral function of
the nucleus, PA(k,E), which accounts for the probability of removing a nucleon with momentum k from the target
nucleus A, leaving the final nuclear system X with excitation energy E. By definition102 (see, e.g., ref. [458])

PA(k,E) = 〈ψA|a+
N(k)δ(E + ER − EfX)aN(k)|ψA〉, (8.25)

where ER # k2/2m2
X is the recoil energy of the residual system X. a+

N(k) and aN(k) are the creation and annihilation
operators of a nucleon with momentum k. It follows from the definition (8.25) that PA(k,E) and the single-nucleon
momentum distribution nA(k) are related as

nA(k) =
∞∫

0

PA(k,E)dE. (8.26)

In the plane wave impulse approximation the cross section of the (e, e′) reaction is given by

σA(ν, q) ≡ dσ

dE′
e′ dΩe′

=
∫

d3k dE σeNPA(k,E)

× δ(ν + (mA − mA−1 − mN) − E(kN) − E(k) − ER(k))δ(kN − k − q). (8.27)

Here ν = q0 = Ee−E′
e′ is the photon energy and σeN = 1

2 (σep +σen) denotes the cross section for the scattering of the
electron from a nucleon with momentum k times the flux factor (1 + k3/mN) [458]. To avoid difficulties with gauge
invariance (due to off-energy-shell effects) the component j3 of the electromagnetic current is usually reconstructed
from the j0 component using the gauge invariance of the whole amplitude. (The 3-axis is chosen in the direction of
the photon momentum.)

Digression. This approach enables us to illustrate many of the basic qualitative features of the process, avoiding
a more cumbersome light-cone quantum mechanical formulation. However, to obtain quantitative results in the
kinematic region considered in this section (Q2 ≥ 1 GeV2, k > 0.3 GeV/c) it is necessary to take into account
relativistic effects resulting from the relativistic space-time development of the scattering process characteristic for
a quantum field theory, QCD. This requirement is naturally fulfilled in light-cone quantum mechanics but not in
approaches which use the Schrödinger wave functions of nuclei and therefore arbitrarily neglect the production of NN̄
pairs from the vacuum by γ∗. This is not a small effect even at q2 = 0 [459, 460] and this is more true for processes
due to the high-momentum nucleon component in the wave function of the nucleus.

102 To simplify the discussion spin and isospin labels are omitted here.

Information contained in n(k) is not sufficient/ of limited value
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No correspondence between asymptotic of n(k→∞) and  ρN
A (α → A)

Some resemblance between structure of diagrams for high 
momentum dependence of various contributions to the spectral 
function P(k,E) and ρ(α,pt).
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FIG. 8.6:

FIG. 8.7:

8.3.2. Properties of the spectral function at large nucleon momenta

In order to foresee the pattern of y-scaling violation and the range of applicability of the scaling laws derived
in section 8 8.2, and to explain what numerical calculations are needed now it is necessary to analyse the general
properties of PA(k,E) at large k. (Remember that at present no calculations of PA(k,E) exist for large k and A > 3,
due to the lack of an effective procedure to calculate the N > 2 nucleon wave function for the continuum.) The
straightforward generalization of this analysis will also be of use in the discussion of the properties of the light-cone
spectral function in section 8 8.4.

For potentials singular for r → 0 the dominant contribution to nA(k) at large k is evidently given by the two-nucleon
correlations, i.e., by configurations where the momentum of the fast nucleon is balanced by one nucleon (see fig. 8.6),
i.e.

nA(k) ∼
k→∞

ψ2
2N(k) ∼ ψ2

D(k). (8.33)

Here ψ2N(k) (ψD(k)) is the high-momentum component of the two-nucleon (deuteron) wave function. In the current
calculations of nA(k) for different nuclei (3He, 4He, 16O) eq. (8.33) is approximately satisfied for k ! (0.3−0.4) GeV/c.
In principle the high-momentum behaviour of ψ2

2N(k) depends on the quantum numbers of the two-nucleon system;
spin, isospin, orbital momentum, and it could be different from ψ2

D(k).
Provided that the internucleon potential V (k) is local and

V (k)
∣∣
k→∞∼ k−n, (8.34)

with n > 1, the behaviour of nA(k) for k → ∞ is controlled by the Born diagram of fig. 8.7 and therefore [466, 467]

nA(k)
∣∣
k→∞∼ V 2(k)

k4
. (8.35)

It follows from the above discussion (eqs. 8.34 and 8.35) and the relation between nA(k) and PA(k,E) (eq. 8.26)
that at large k the dominant contribution to

∫
PA(k,E)dE arises from the region of large E:

E(k) + ER(k) ∼ k2/2m. (8.36)

Note that on average the interaction between the remaining nucleon of the two-nucleon correlation and the rest of
the residual nucleus tends to reduce E(k) but by a small amount (% k2/2m for large k). Equation (8.36) reasonably
agrees with the trend observed in a numerical calculation of P3He(k,E) [468].

An immediate consequence of eqs. (8.36) and (8.27) – which in fact follows from the kinematical analysis of section
8 8.2 8.2.1 – is that the states with E(k) satisfying eq. (8.36) do not give a contribution to the cross section of
reactions (8.1) and (8.2) for x > 2. Consequently, for large negative y such that x(y,Q2 → ∞) < 2, the right-hand
side of eq. (8.34) should considerably increase with Q2 until Emax in eq. (8.31) reaches the value given by eq. (8.36)
(i.e., until x(y,Q2) becomes smaller than 2; for y = −0.4 GeV/c and A & 1 this corresponds to Q2 > 2 GeV2).
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PA(k,E)dE arises from the region of large E:
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Note that on average the interaction between the remaining nucleon of the two-nucleon correlation and the rest of
the residual nucleus tends to reduce E(k) but by a small amount (% k2/2m for large k). Equation (8.36) reasonably
agrees with the trend observed in a numerical calculation of P3He(k,E) [468].

An immediate consequence of eqs. (8.36) and (8.27) – which in fact follows from the kinematical analysis of section
8 8.2 8.2.1 – is that the states with E(k) satisfying eq. (8.36) do not give a contribution to the cross section of
reactions (8.1) and (8.2) for x > 2. Consequently, for large negative y such that x(y,Q2 → ∞) < 2, the right-hand
side of eq. (8.34) should considerably increase with Q2 until Emax in eq. (8.31) reaches the value given by eq. (8.36)
(i.e., until x(y,Q2) becomes smaller than 2; for y = −0.4 GeV/c and A & 1 this corresponds to Q2 > 2 GeV2).
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8.3.1. “y”-scaling

In the impulse approximation (corrections to this approximation due to the final state interaction will be briefly
discussed below) the process is described by the diagram in fig. 8.4, where the virtual photon is absorbed by a nucleon
with momentum k. In the kinematic region described in eq. (8.3) the difference between the invariant mass of the
produced system, W , and MA is small as compared to Q2 and |q|. To produce such a state the momentum k of
the struck nucleon in the wave function of the nucleus should be large (in the rest frame of the nucleus), roughly
k ∼ −q/2 (for γ∗ scattering of the two-nucleon correlation), cf. eq. (8.29) below.

Another characteristic feature of the reaction discussed is that the intrinsic energy E of the residual system X is
comparable with W −MA. (By definition E = MX −MA−1, where MX and MA−1 are the invariant masses of X and
of a nucleus consisting of A − 1 nucleons.) For example, in the two-nucleon correlation approximation E # q2/8m.
As a result the closure approximation is inapplicable here and therefore the cross section of reaction (8.1) could not
be expressed through the ground state wave function of nucleus A. One should use instead the spectral function of
the nucleus, PA(k,E), which accounts for the probability of removing a nucleon with momentum k from the target
nucleus A, leaving the final nuclear system X with excitation energy E. By definition102 (see, e.g., ref. [458])

PA(k,E) = 〈ψA|a+
N(k)δ(E + ER − EfX)aN(k)|ψA〉, (8.25)

where ER # k2/2m2
X is the recoil energy of the residual system X. a+

N(k) and aN(k) are the creation and annihilation
operators of a nucleon with momentum k. It follows from the definition (8.25) that PA(k,E) and the single-nucleon
momentum distribution nA(k) are related as

nA(k) =
∞∫

0

PA(k,E)dE. (8.26)

In the plane wave impulse approximation the cross section of the (e, e′) reaction is given by

σA(ν, q) ≡ dσ

dE′
e′ dΩe′

=
∫

d3k dE σeNPA(k,E)

× δ(ν + (mA − mA−1 − mN) − E(kN) − E(k) − ER(k))δ(kN − k − q). (8.27)

Here ν = q0 = Ee−E′
e′ is the photon energy and σeN = 1

2 (σep +σen) denotes the cross section for the scattering of the
electron from a nucleon with momentum k times the flux factor (1 + k3/mN) [458]. To avoid difficulties with gauge
invariance (due to off-energy-shell effects) the component j3 of the electromagnetic current is usually reconstructed
from the j0 component using the gauge invariance of the whole amplitude. (The 3-axis is chosen in the direction of
the photon momentum.)

Digression. This approach enables us to illustrate many of the basic qualitative features of the process, avoiding
a more cumbersome light-cone quantum mechanical formulation. However, to obtain quantitative results in the
kinematic region considered in this section (Q2 ≥ 1 GeV2, k > 0.3 GeV/c) it is necessary to take into account
relativistic effects resulting from the relativistic space-time development of the scattering process characteristic for
a quantum field theory, QCD. This requirement is naturally fulfilled in light-cone quantum mechanics but not in
approaches which use the Schrödinger wave functions of nuclei and therefore arbitrarily neglect the production of NN̄
pairs from the vacuum by γ∗. This is not a small effect even at q2 = 0 [459, 460] and this is more true for processes
due to the high-momentum nucleon component in the wave function of the nucleus.

102 To simplify the discussion spin and isospin labels are omitted here.
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This phenomenon was observed numerically in the behaviour of P3He(k,E) and F3He(y,Q2) calculated using realistic
two-nucleon potentials [462].

To illustrate that nucleon configurations are important at x > 2 − 2.5 and large Q2 (i.e. large k) let us consider
the case of a three-nucleon system. It follows from the kinematical analysis of section 8 8.2 8.2.1 that in the case of
γ∗ scattering from a three-nucleon system at x > 2 and sufficiently large Q2 the momenta of both spectator nucleons
should be large. Thus, similar to the above analysis of nA(k) we can use as a guide for the behaviour of P3(k,E) at
large k the perturbation expansion in V (k).

The first obvious contribution is due to configurations in the ground state wave functions of the nucleus where the
momenta of all three nucleons are large. The leading diagrams for the ground state wave function of the nucleus for
such configurations are presented in fig. 8.8. Their contribution is proportional to (e.g. for fig. 8.8b)

PA(k,E)
∣∣
E<const., k→∞∼

(
V (k/2)
(k/2)2

)4

∼ n2
A(k/2). (8.37)

A comparable contribution to PA(k,E) is due to the overlap integral between the configuration of two nucleons in
the initial wave function with momenta p1 ∼ 0, −k and the final state wave function of the two-nucleon system with
momenta k1 ≈ k2 (see fig. 8.9). The final answer has the same form as in eq. (8.37). [We use here eqs. (8.33) and
(8.35) to estimate ψNN(k/2).]

The diagram in fig. 8.8 is typical for three-nucleon correlations, i.e., for configurations in the wave function of the
nucleus where three nucleons are at small relative distances. The contribution of diagrams like that in fig. 8.9 to
PA(k,E) in the kinematic region discussed is determined by configurations in the nuclear wave function where nucleons
3 and 2 belong to a two-nucleon correlation and thus are close to each other. Since the contribution of diagrams like
that in fig. 8.9 is proportional to

∫
ψ3(k,−k−p1, p1)d3p1, the relative coordinate between the two-nucleon correlation

and the spectator nucleon (1), r32,1 = (r3 + r2)/2 − r1, is also small. Thus, we conclude that for x > 2 − 2.5 and
large Q2 the cross section of the (e, e′) reaction from a three-nucleon system seems to be determined by the term in
P3(k,E) arising from the configuration of three nucleons when all internucleon distances are smaller than average.
The k dependence of this contribution at large k is qualitatively different from that of nA(k).

Digression. Suggestions for future calculations of PA(k,E). Realistic two-nucleon potentials correspond to a rather
complicated behaviour of V (k) at large k; so it would be quite instructive to compare numerical calculations of
P3(k,E) and nA=3, 4,...(k) with the above analysis. These calculations will be of much use for the applications of
light-cone quantum mechanics to high-energy processes as well. For convenience of practitioners of such calculations
we summarise here the quantities of interest.

(1) nA(k) at k > 0.3− 0.4 GeV/c for realistic two-body NN potentials, possibly with account of three-body forces.
(2) Check of the validity of the two-nucleon approximation eq. (8.33) by studying how large a nucleon momentum

k is balanced in ψA.
(3) Analysis of the range of applicability of eq. (8.37).
(4) Study of the relative importance of the contributions to P3(k,E) of terms like the diagrams in figs. 8.8 and 8.9,
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via a comparison of P3(k,E) with
∫

ψ2
3(k, k1, k2)δ((k1 − k2)2/4m − E)δ(k1 + k2 + k)d3k1 d3k2.

(5) Development of methods of calculation of PA(k,E) for A > 3 at large k.
(6) Calculation of the nucleon correlation functions defined in Appendix B. Indeed, for A = 3 they are calculated

as an intermediate step of the calculation of P3He(k,E).
In the case of heavier nuclei it seems reasonable to approximate PA(k,E) at large k in the form of a sum over the

contributions of j-nucleon correlations, Pj(k,E), which are independent of A:

PA(k,E) =
A∑

j=2

aj(A)APj(k, Ẽ) at k > kj , Ẽ = E + ER(j) − ER(A). (8.38)

Similarly to the above analysis of a three-nucleon system one can demonstrate that the aj(A) are determined by
the probabilities for j nucleons to come close together; thus, aj(A) rapidly decreases with increasing j. From the
calculations of nA(k) we expect that P2(k, Ẽ) should become independent of A for k > k0 ∼ (0.3 − 0.4) GeV/c.
Similarly the Pj are expected to be universal for j > 2 at

k > kj ∼ (j − 1)k0. (8.39)

[Note also that for k < (j−1)kF Fermi blocking effects lead to break-down of the universality of Pj(k,E).] Combining
eq. (8.38) with eq. (8.27) we obtain the scaling reactions (8.12) and (8.13). Note that the final state interaction of
the struck nucleon with nearby nucleons would be cancelled in these relations.105

Using eq. (8.29) for kmin(x,Q2) and eq. (8.29) for MR = Mj−1 and taking k0 = (0.25 − 0.35) GeV/c, we can
estimate Q2

min(x) such that σA(x,Q2)/σB=[x]+1 should be practically constant for Q2 > Q2
min(x):

Q2
min(1.5) = (1.4 − 3) GeV2, Q2

min(2.5) = (1.2 − 2.4) GeV2. (8.40)

This is consistent with available experimental data discussed in section 8 8.2 8.2.2, which are rather limited yet.

8.3.3. Comparison of numerical calculations of PA(k, E) at large k with experimental data

It has been shown in ref. [462] that eq. (8.27) noticeably underestimates the cross section of reaction (8.1) off
deuterons at W −Md ! (50− 100) MeV. Taking into account the final state interaction using the calculations of ref.
[469, 470] leads to a reasonable description of the SLAC data [432–436] (the magnitude of the final state interaction
effect is illustrated in fig. 8.15). However, in view of the neglect of nucleon recoil and other shortcomings of the
nonrelativistic approach [some of which were listed after eq. (8.27)] such an agreement for large Q2 > 2 GeV2 and
y < −0.2 GeV/c seems to be misleading. Indeed, relativistic effects (nucleon recoil and transformation NN̄ pairs,
see section 8 8.4) enhance the impulse approximation cross section at Q2 > 2 GeV2, while the final state interaction
seems to be altered insignificantly.

Until now PA(k,E) was calculated at large k for A = 3 only, using the Faddeev equation approach [452] and the
variational approach [451]. The results of these calculations (which are quite close to each other) were compared
with the SLAC data [437–439] using eq. (8.27) and were found to underestimate considerably the experimental cross
section [451, 452]. The analysis of section 8 8.2 (eqs. 8.12 and 8.16) indicates that for x < 2 (where most of the data
correspond to Q2 < 2 GeV2) this discrepancy is mainly due to an underestimate of the cross section of the reaction
e + D → e + X and of a2(3He) by a factor of ∼ 1.3 (probably due to an overestimate of the mean radius of 3He).106
Therefore, the large underestimate of σe 3He (up to a factor of ∼ 4) seems to be in the region x > 2 only, where
three-nucleon correlations should dominate. This conclusion is in line with a recent analysis [464], which included the
effects of three-body forces in the 3He wave function (see the open dots in fig. 8.5).

To summarize section 8 8.3. (i) The approximate y-scaling demonstrates that the description of a nucleus as a
many-nucleon system is a good starting point for the description of high-Q2 (e, e′) reactions. However, the assumption

105 The requirement for the absence of Fermi blocking for the interacting nucleon, q + k > kF, is well satisfied in the kinematic region (8.3).
106 Some increase of PA(k, E) at large k due to adjustment of r3He to its experimental value was reported in ref. [451]. Unfortunately, the

numerical value of the enhancement cannot be extracted from the figures presented in ref. [451].

Numerical calculations in NR quantum mechanics confirm dominance of two nucleon 
correlations in the spectral functions of nuclei at k> 300 MeV/c - could be fitted by a motion of a 
pair in a mean field   (Ciofi, Frankfurt, Simula, MS - 90).  However  these calculations ignored 

three nucleon correlations - 3p3h excitations. Relativistic effects maybe important 
rather early as the recoil modeling does involve k2/mN2 effects.
Studies of the spectral and decay function of 3He 
reveal both two nucleon and three nucleon 
correlations - Sargsian et al 2004
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Since NN interaction is sufficiently singular for large momenta

⇥N
A (�, pt) can  be expanded over contributions of j-nucleon correlations ⇥j(�, pt)

Three nucleon SRCs = three nearby nucleons with large relative momenta

238 L.L. Frankfurt and MI. Strikman, High -energy phenomena, short-range nuclear structure and (lCD

dominated by the configurations, where the momentum of a fast nucleon-k is balanced by the rest of

the nucleus (i.e. the nucleon configuration p’ = k; P2 p
3~ PA — —k/A — 1). This hypothesis has

recently been revived by Amado and Woloshyn [44] in their analysis of the backward nucleon
production at initial energies T~= 600—800 MeV. Practically the same hypothesis was discussed by

Blankenbecler and Schmidt in connection to the backward p, IT production at large energies in the
framework of the Bethe—Salpeter light cone formalism [46—48].

At the same time for a realistic NN potential with a core, the contribution of two-nucleon

correlations dominates at k —* ~. This follows from the large difference between the scales of the
long-range potential characterizing the depth of the potential well (—40MeV), and of the short-range

repulsive potential (the value of the barrier is ~0.6 GeV for the realistic NN potentials). Numerical

calculations with realistic potentials [82] indicate that two-nucleon correlations dominate in n(k) at
k  0.4—0.5 GeV/c.

In relativistic theory the answer is more complicated. It seems fruitful for the theoretical analysis of

hard phenomena to define formally the notion of f-nucleon correlation. Look at a subsystem of j
nucleons in the ground state having invariant mass —~jmN,where nucleons obtain large relative

momenta due to hard short-range interactions between all j nucleons. Typical example of the

three-nucleon correlation is shown in fig. 2.11. Before a hard interaction the j nucleons are in the
average configuration (a, —— a~‘— 1), f-nucleon correlation contribute to p~(a,k± )in the region a <I only

due to momentum conservation. In the non-relativistic Schrödinger equation this kinematic decom-

position of f-nucleon correlations is not evident. Therefore onecannot relate simply n(k) to p~(a,k1) for

a~2.

Though at a —~A A-nucleon correlation should dominatep~(a,k± ),in the region 1 <a -~A relative
contributions of different configurations are determined by the competition of two factors: the small

probability a3 to find a correlation with large / and the enhancement of higher correlations due to a
slower decrease of their contribution to p~(a,k1) at large a (see eq. (2.43)). Therefore it seems natural

to expect that at least in the region of not too large a S 3 (which is probed until now) few-nucleon

correlations (FNC) dominate. Thus, the nucleon density matrix p~(a,k± )can be effectively expanded

over the contribution of j-nucleon correlations p1(a, k1):

k.1) = ~ a1p,(a, k1). (2.38)

More accurate treatment is required to account for the c.m. motion of the j-nucleon configuration in the

mean field of the nucleus. It is expected that this effect should lead to small corrections except near the

edge of the f-nucleon correlation. This is because the scale of the repulsive potential is considerably
larger than that for the long-range potential.

The a1’s in eq. (2.38) can be estimated on the basis of the non-relativistic Schrödinger equation for

nuclear WF since they are determined by the mean internucleon distances. The well known fact that the

/34 ,

Fig. 2.11. A typical diagram for the three-nucleon correlation.

⇥j(�, pt)(j � �)n(j�1)+j�2, where ⇥j(�, 0) ⇥ (2� �)n

FS 79

iterations of NN interactions (Plus 3N from 3N forces possible)

α  up to 2  (3) are allowed for 2N (3N) SRC ( plus small mean field corrections) 

NR case large k = 2N SRC, qualitative difference relativistic and 
nonrelativistic dynamics
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⇢NA (↵ > 1.3, pt) =
AX

j=2

aj(A)⇢j(↵, pt)

grams similar to Fig. 4 yields[28]:

⇢3N(↵1) =

Z
1

4


3� ↵3

(2� ↵3)3
⇢pn (↵3, p3?) ⇢pn

✓
2↵2

3� ↵3

, p2? +
↵1

3� ↵3

p3?

◆
+

3� ↵2

(2� ↵2)3
⇢pn (↵2, p2?) ⇢pn

✓
2↵3

3� ↵2

, p3? +
↵1

3� ↵2

p2?

◆�
�(

3X

i=1

↵i � 3)

d↵2d
2
p2?d↵3d

2
p3?, (14)

where (↵i, pi?), (i = 1, 2, 3) are light-cone momentum fractions and transverse momenta

of nucleons and ⇢pn(↵, p?) is the density matrix of pn-SRC. The prevalence of ⇢3N in a

nuclear density function, ⇢A, in 3N-SRC region suggests several characteristics that can be

experimentally verified. The one follows from Eq.(5), according to which ⇢pn ⇠ a2(A, z)⇢d

and therefore the per nucleon probability of finding a nucleon in a 3N-SRC, a3N , should

be proportional to the square of the probabilities of 2N SRCs, a2N , (actual relation will be

given in Sec.V):

a3N(A,Z) ⇠ a2N(A,Z)
2
. (15)

Another feature follows from the expectation that the mass of the recoil 2N system, mS,

in 3N-SRC is small, which results in a small relative momentum in the recoiling NN system,

k =
p

m
2
S
�4m

2
N

2
. The condition k ⌧ mN and the fact that iso-triplet two-nucleon states

with low relative momentum are strongly suppressed compared to the iso-singlet states[19]

produces a strong sensitivity of the 3N-SRCs on the isospin structure of NN recoil system.

Namely, the dominant 3N-SRC configurations are those which have a recoil two nucleons

in the iso-singlet state. This situation is illustrated in Fig. 5 where the high momentum

distribution of protons and neutrons in 3He, calculated in Variational Monte Carlo (VMC)

approach[43], is compared with the calculation based on the 2N and 3N SRC model of

Ref. [28], the latter being based on Eq. (14). Fig. 5 shows the 2N-SRC model completely

describes the neutron momentum distribution up to 1 GeV/c, while one needs 3N-SRC

contributions to describe the proton momentum distribution above 700 MeV/c. This result

is in agreement with the dominance of iso-singlet recoil NN systems in the generation of

3N-SRCs. For the case of the neutron, the recoil system is a pp pair, which is strongly

suppressed as compared with that of the proton, in which case the recoil system is in the

isosinglet pn state where no suppression exists. Notice, that even if the 3N-SRCs contribute

to the proton momentum distribution in 3He it is still a correction to the main 2N-SRC part

of the momentum distribution as discussed in Sec. I.
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Evidence from NR calculations?  3N SRC can be seen in the 
structure of decay of 3He (Sarsgian et al 2004).

Searching for three-nucleon short-range correlations

Misak M. Sargsian1, Donal B. Day2, Leonid L. Frankfurt3, and Mark I. Strikman4
1 Department of Physics, Florida International University, Miami, FL 33199, USA
2 Department of Physics, University of Virginia, Charlottesville, VA 22904, USA
3Sackler School of Exact Sciences, Tel Aviv University, Tel Aviv, 69978, Israel

4 Department of Physics, Pennsylvania State University, University Park, PA 16802
(Dated: November 1, 2019)

Three nucleon short range correlations (SRCs) are one of the most elusive structures in nuclei.
Their observation and the subsequent study of their internal makeup will have a significant impact
on our understanding of the dynamics of super-dense nuclear matter which exists at the cores
of neutron stars. We discuss the kinematic conditions and observables that are most favorable
for probing 3N-SRCs in inclusive electro-nuclear processes and make a prediction for a quadratic
dependence of the probabilities of finding a nucleon in 2N- and 3N- SRCs. We demonstrate that
this prediction is consistent with the limited high energy experimental data available, suggesting
that we have observed, for the first time, 3N-SRCs in electro-nuclear processes. Our analysis en-
ables us to extract a3(A,Z), the probability of finding 3N-SRCs in nuclei relative to the A=3 system.

I. INTRODUCTION:

Three nucleon short-range correlations (3N-SRCs), in
which three nucleons come close together, are unique
arrangements in strong interaction physics. 3N SRC’s
have a single nucleon with very large momentum (>⇠
700 MeV/c) balanced by two nucleons of compara-
ble momenta. Unlike two-nucleon short-range correla-
tions (2N-SRCs), 3N-SRCs have never been probed di-
rectly through experiment. As the consequence of the
factorization of short-distance e↵ects from low momen-
tum collective phenomena [1, 2], 2N- and 3N- SRCs dom-
inate the high momentum component of nuclear wave
function which is almost universal up to a scale factor (see
e.g.[1, 3]).

The dynamics of three-nucleon short-range configura-
tions reside at the borderline of our knowledge of nuclear
forces making their exploration a testing ground for “be-
yond the standard nuclear physics” phenomena such as
irreducible three-nucleon forces, inelastic transitions in
3N systems as well as the transition from hadronic to
quark degrees of freedom. Their strength is expected
to grow faster with the local nuclear density than the
strength of 2N-SRCs [1, 2]. As a result, their contribution
will be essential for an understanding of the dynamics of
super-dense nuclear matter (see e.g. Ref. [4]).

Until recently a straightforward experimental probe of
2N- and 3N-SRCs was impossible due to the requirements
of high-momentum transfer nuclear reactions being mea-
sured in very specific kinematics in which the expected
cross sections are very small (see Ref.[1] and references
therein). With the advent of the high energy (6 GeV)
and high intensity continuous electron accelerator at Jef-
ferson Lab (JLab) in the late 1990’s, an unprecedented
exploration of nuclear structure became possible, opening
a new window to multi-nucleon SRCs.

FIG. 1: (a) Geometry of 2N-SRCs, pr ⇡ �pi. Two config-
urations of 3N-SRCs: (b) Configuration in which recoil nu-
cleon momenta pr2,pr3 ⇠ �pi/2, (c) configuration in which
pr2 ⇠ pr3 ⇠ pi. Here ms is the invariant mass of the recoiling
2N system.

II. TWO NUCLEON SHORT RANGE
CORRELATIONS (2N-SRCS)

The first dedicated study of 2N-SRCs in inclusive,
A(e, e0)X, high momentum transfer reactions revealed
a plateau in the ratios of per nucleon cross sections
of heavy nuclei to the deuteron [5] measured at Stan-
ford Linear Accelerator Center (SLAC) with momentum
transfer, Q

2 >⇠ 2 GeV2 and Bjorken variable x > 1.5.

Here x = Q
2

2mNq0
with mN the nucleon mass and q0 the

transferred energy to the nucleus, and for a nucleus A,
0 < x < A. The observed plateau, largely insensitive
to Q

2 and x, sets the parameter a2(A,Z)[6] which is the
probability of finding 2N-SRCs in the ground state of
the nucleus A relative to the deuteron. These plateaus
were confirmed in inclusive cross section ratios of nuclei
A to 3He[7, 8], at similar kinematics with the magnitude
of plateaus taken to be related to the relative probabil-
ity, a2(A,Z)

a2(
3He)

. Qualitatively and quantitatively the latter

results were in agreement with Ref.[5]. These, together
with more recent and dedicated measurements of the nu-
clear to the deuteron inclusive cross section ratios[9], pro-
vided compelling evidence for the sizable (⇠ 20%) high
momentum component of the ground state nuclear wave
function for medium to heavy nuclei originating from 2N-
SRCs.
While inclusive processes provided the first evidence
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3N-I SRC

 3N-II SRC
 2N SRC

 2N SRC
 3N-II SRC

(a)

(b)

FIG. 2: Decay function for 3
He nucleus calculated with the condition pm � 700 MeV/c, and

pr2, pr3 � kF . The ✓23 is the relative angle between two recoil nucleons and Em is the missing

energy. Two panels show di↵erent point of views of the same figure. The figure is adapted from

Ref.[19].

Fig. 1. The first, Fig.1(a), referred as type 3N-I SRC, corresponds to the situation in which

the probed fast nucleon is balanced by two fast spectator nucleons pr2, pr3 ⇠ pm/2 with a

small relative angle between them, thus small invariant mass, mS ⇠ 2mN . The second case,

Fig.1(b) corresponds to the symmetric situation in which all three nucleons have comparable

momenta with relative angles ✓23 ⇠ 1200.

To determine which of these 3N SRC configurations will dominate in inclusive A(e, e0)X

scattering it is instructive to consider the decay function for a three-body nucleus at large

values of missing and recoil momenta, noticing that the integrated decay function enters in

the cross section for inclusive scattering. The decay function has been calculated in Ref.[19,

40] for 3He using a realistic wave function based on the solution of Faddeev equations[41]

and one of the results relevant for 3N-SRCs is presented in Fig. 2. In the figure a correlation

between the relative angle of two recoil nucleons, ✓23 and missing energy Em is presented

8

Decay function for 3He nucleus calculated with the condition 
pm ≥ 700 MeV/c, and pr2,pr3 ≥ kF. The θ23 is the relative angle 
between two recoil nucleons and Em is the missing energy. 
Two panels show different point of views of the same figure.

3N -I SRC 3N-IISRC2NSRC



relative angle of the recoil nucleon emission being close to 1200 that characterized
type 3N-II SRCs. The lower right part of the figure shows also different realization
of 3N-I SRCs in which both struck and recoiled nucleons are spectator with the third
nucleon which has roughly twice the momentum of pin or pr.
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Figure 9: Recoil energy dependence of the ratio of decay function calculated for the
case of struck and recoil nucleons being both protons to the decay function for the
case of struck proton and recoil neutron. Both initial momentum of struck and recoil
nucleons is set to be larger than 400 MeV/c. Also the relative angle between inital
and recoil nucleons is restricter to 180 ≤ θr ≥ 1700

Fig.8(a) and (b) corresponds to situation in which struck-proton is detected with
recoil neutron or proton respectively. Comparison of these two cases shows (see
upper left part of the graph) that in type 2N-I SRCs pn correlation dominates the pp
by factor of ten. This feature reflects the dominance of tensor interaction in S = 1,
T = 0 channel of NN interaction at short distances and was confirmed experimentaly,
both for hadron- and electon- induced triple coincidence reactions on carbon[17, 18].
Interesting consequence of the onset of 3N SRCs is that these two rates become
practically equal once recoil energy increases. More detailed view of relative strenght
of pp and pn decay function is given in Fig.9 which demonstrates this trend clearly
which can be considered as an unambigeous indication of the dominance of type 3N-I
SRC effects.

As it was mentioned before formulation of the decay function can be extended to
the situations in which more than two nucleons are detected in the products of the

19

Recoil energy dependence of the ratio of decay function calculated 
for the case of struck and recoil nucleons - ps & pr for struck 
proton and recoil proton and neutron for ps & pr > 400MeV/c &   
180o > θ(ps  pr) > 170o

Jlab e,epN
experiment

3N SRC
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FIG. 5: The momentum distribution of the proton and neutron in 3He. The triangle symbols are

from the VMC calculation of Ref.[43]. The dashed lines are contributions from 2N SRCs only,

solid lines correspond to the combined contributions from 2N and 3N SRCs[28]. In the case of the

neutron distribution no 3N SRCs are included.

It is worth mentioning that type 3N-II SRCs can be described through diagrams similar

to Fig. 4 in which case the intermediate state between two successive NN interactions has a

large invariant mass. Here another source of 3N-SRCs could be the configuration containing a

�-resonance in the intermediate state, which will represent the contribution from “genuine”

three-nucleon forces irreducible to NN interactions. As it was discussed in Sec.II one expects

that type 3N-I SRCs should be the dominant source of 3N correlations in inclusive reactions.

Probing type 3N-II SRCs will require semi-inclusive processes in which the recoiling two-

nucleon system has a large invariant mass.

IV. FINAL STATE INTERACTIONS

Final state interactions (FSI) can both distort and mimic 3N SRCs. Detailed quantita-

tive studies of the FSI e↵ects are clearly necessary. Below we provide several qualitative

considerations based on the high energy nature of electro-production reactions which are

used to probe 3N-SRCs.

The source of the distortion is mainly due to the multiple rescattering of nucleons from

3N SRCs with the nucleons belonging to the “uncorrelated” spectator (A-3) system. An

example is presented in Fig.6(a) in which a nucleon knocked-out from a 3N-SRC rescatters o↵

14

Recoil energy dependence of the ratio of decay function calculated for the 
case of struck and recoil nucleons - ps & pr for struck proton and recoil 
proton and neutron for ps & pr > 400MeV/c &   180o > θ(ps  pr) > 170o

But k is a not a dynamical variable for 3N

Slow onset  of asymptotic regime of the ratio  3N/2N decreasing with increase of k
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Some of experimental evidence in historic order

Plenty of data were described using few nucleon SRC approximation with 3N, 4N correlations dominating in 
certain kinematic ranges. Strength of 2N correlations is similar to the one found in (e,e’),(p,2p)

Observations of (p,2pn) &(e,e’) at x>1 confirm the origin of SRC as 
the dominant source of the fast backward nucleons

Comparison of few nucleon SRC approximation 
with pA data at Epinc=400 GeV

α= 3.0

pTa→backward p+Xp6Li→backward p+X,

Test of universality for pA→p+X  spectra 
for backward emission at   Ep= 9 GeV
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Three nucleon short range correlations (SRCs) are one of the most elusive structures in nuclei.
Their observation and the subsequent study of their internal makeup will have a significant impact
on our understanding of the dynamics of super-dense nuclear matter which exists at the cores
of neutron stars. We discuss the kinematic conditions and observables that are most favorable
for probing 3N-SRCs in inclusive electro-nuclear processes and make a prediction for a quadratic
dependence of the probabilities of finding a nucleon in 2N- and 3N- SRCs. We demonstrate that
this prediction is consistent with the limited high energy experimental data available, suggesting
that we have observed, for the first time, 3N-SRCs in electro-nuclear processes. Our analysis en-
ables us to extract a3(A,Z), the probability of finding 3N-SRCs in nuclei relative to the A=3 system.

I. INTRODUCTION:

Three nucleon short-range correlations (3N-SRCs), in
which three nucleons come close together, are unique
arrangements in strong interaction physics. 3N SRC’s
have a single nucleon with very large momentum (>⇠
700 MeV/c) balanced by two nucleons of compara-
ble momenta. Unlike two-nucleon short-range correla-
tions (2N-SRCs), 3N-SRCs have never been probed di-
rectly through experiment. As the consequence of the
factorization of short-distance e↵ects from low momen-
tum collective phenomena [1, 2], 2N- and 3N- SRCs dom-
inate the high momentum component of nuclear wave
function which is almost universal up to a scale factor (see
e.g.[1, 3]).

The dynamics of three-nucleon short-range configura-
tions reside at the borderline of our knowledge of nuclear
forces making their exploration a testing ground for “be-
yond the standard nuclear physics” phenomena such as
irreducible three-nucleon forces, inelastic transitions in
3N systems as well as the transition from hadronic to
quark degrees of freedom. Their strength is expected
to grow faster with the local nuclear density than the
strength of 2N-SRCs [1, 2]. As a result, their contribution
will be essential for an understanding of the dynamics of
super-dense nuclear matter (see e.g. Ref. [4]).

Until recently a straightforward experimental probe of
2N- and 3N-SRCs was impossible due to the requirements
of high-momentum transfer nuclear reactions being mea-
sured in very specific kinematics in which the expected
cross sections are very small (see Ref.[1] and references
therein). With the advent of the high energy (6 GeV)
and high intensity continuous electron accelerator at Jef-
ferson Lab (JLab) in the late 1990’s, an unprecedented
exploration of nuclear structure became possible, opening
a new window to multi-nucleon SRCs.

FIG. 1: (a) Geometry of 2N-SRCs, pr ⇡ �pi. Two config-
urations of 3N-SRCs: (b) Configuration in which recoil nu-
cleon momenta pr2,pr3 ⇠ �pi/2, (c) configuration in which
pr2 ⇠ pr3 ⇠ pi. Here ms is the invariant mass of the recoiling
2N system.

II. TWO NUCLEON SHORT RANGE
CORRELATIONS (2N-SRCS)

The first dedicated study of 2N-SRCs in inclusive,
A(e, e0)X, high momentum transfer reactions revealed
a plateau in the ratios of per nucleon cross sections
of heavy nuclei to the deuteron [5] measured at Stan-
ford Linear Accelerator Center (SLAC) with momentum
transfer, Q

2 >⇠ 2 GeV2 and Bjorken variable x > 1.5.

Here x = Q
2

2mNq0
with mN the nucleon mass and q0 the

transferred energy to the nucleus, and for a nucleus A,
0 < x < A. The observed plateau, largely insensitive
to Q

2 and x, sets the parameter a2(A,Z)[6] which is the
probability of finding 2N-SRCs in the ground state of
the nucleus A relative to the deuteron. These plateaus
were confirmed in inclusive cross section ratios of nuclei
A to 3He[7, 8], at similar kinematics with the magnitude
of plateaus taken to be related to the relative probabil-
ity, a2(A,Z)

a2(
3He)

. Qualitatively and quantitatively the latter

results were in agreement with Ref.[5]. These, together
with more recent and dedicated measurements of the nu-
clear to the deuteron inclusive cross section ratios[9], pro-
vided compelling evidence for the sizable (⇠ 20%) high
momentum component of the ground state nuclear wave
function for medium to heavy nuclei originating from 2N-
SRCs.
While inclusive processes provided the first evidence

ar
X

iv
:1

91
0.

14
66

3v
1 

 [n
uc

l-t
h]

  3
1 

O
ct

 2
01

9

2NSRC

Evidence from NR calculations?  3N SRC can be seen in the 
structure of decay of 3He (Sarsgian et al 2004).

Searching for three-nucleon short-range correlations

Misak M. Sargsian1, Donal B. Day2, Leonid L. Frankfurt3, and Mark I. Strikman4
1 Department of Physics, Florida International University, Miami, FL 33199, USA
2 Department of Physics, University of Virginia, Charlottesville, VA 22904, USA
3Sackler School of Exact Sciences, Tel Aviv University, Tel Aviv, 69978, Israel

4 Department of Physics, Pennsylvania State University, University Park, PA 16802
(Dated: November 1, 2019)

Three nucleon short range correlations (SRCs) are one of the most elusive structures in nuclei.
Their observation and the subsequent study of their internal makeup will have a significant impact
on our understanding of the dynamics of super-dense nuclear matter which exists at the cores
of neutron stars. We discuss the kinematic conditions and observables that are most favorable
for probing 3N-SRCs in inclusive electro-nuclear processes and make a prediction for a quadratic
dependence of the probabilities of finding a nucleon in 2N- and 3N- SRCs. We demonstrate that
this prediction is consistent with the limited high energy experimental data available, suggesting
that we have observed, for the first time, 3N-SRCs in electro-nuclear processes. Our analysis en-
ables us to extract a3(A,Z), the probability of finding 3N-SRCs in nuclei relative to the A=3 system.

I. INTRODUCTION:

Three nucleon short-range correlations (3N-SRCs), in
which three nucleons come close together, are unique
arrangements in strong interaction physics. 3N SRC’s
have a single nucleon with very large momentum (>⇠
700 MeV/c) balanced by two nucleons of compara-
ble momenta. Unlike two-nucleon short-range correla-
tions (2N-SRCs), 3N-SRCs have never been probed di-
rectly through experiment. As the consequence of the
factorization of short-distance e↵ects from low momen-
tum collective phenomena [1, 2], 2N- and 3N- SRCs dom-
inate the high momentum component of nuclear wave
function which is almost universal up to a scale factor (see
e.g.[1, 3]).

The dynamics of three-nucleon short-range configura-
tions reside at the borderline of our knowledge of nuclear
forces making their exploration a testing ground for “be-
yond the standard nuclear physics” phenomena such as
irreducible three-nucleon forces, inelastic transitions in
3N systems as well as the transition from hadronic to
quark degrees of freedom. Their strength is expected
to grow faster with the local nuclear density than the
strength of 2N-SRCs [1, 2]. As a result, their contribution
will be essential for an understanding of the dynamics of
super-dense nuclear matter (see e.g. Ref. [4]).

Until recently a straightforward experimental probe of
2N- and 3N-SRCs was impossible due to the requirements
of high-momentum transfer nuclear reactions being mea-
sured in very specific kinematics in which the expected
cross sections are very small (see Ref.[1] and references
therein). With the advent of the high energy (6 GeV)
and high intensity continuous electron accelerator at Jef-
ferson Lab (JLab) in the late 1990’s, an unprecedented
exploration of nuclear structure became possible, opening
a new window to multi-nucleon SRCs.

FIG. 1: (a) Geometry of 2N-SRCs, pr ⇡ �pi. Two config-
urations of 3N-SRCs: (b) Configuration in which recoil nu-
cleon momenta pr2,pr3 ⇠ �pi/2, (c) configuration in which
pr2 ⇠ pr3 ⇠ pi. Here ms is the invariant mass of the recoiling
2N system.

II. TWO NUCLEON SHORT RANGE
CORRELATIONS (2N-SRCS)

The first dedicated study of 2N-SRCs in inclusive,
A(e, e0)X, high momentum transfer reactions revealed
a plateau in the ratios of per nucleon cross sections
of heavy nuclei to the deuteron [5] measured at Stan-
ford Linear Accelerator Center (SLAC) with momentum
transfer, Q

2 >⇠ 2 GeV2 and Bjorken variable x > 1.5.

Here x = Q
2

2mNq0
with mN the nucleon mass and q0 the

transferred energy to the nucleus, and for a nucleus A,
0 < x < A. The observed plateau, largely insensitive
to Q

2 and x, sets the parameter a2(A,Z)[6] which is the
probability of finding 2N-SRCs in the ground state of
the nucleus A relative to the deuteron. These plateaus
were confirmed in inclusive cross section ratios of nuclei
A to 3He[7, 8], at similar kinematics with the magnitude
of plateaus taken to be related to the relative probabil-
ity, a2(A,Z)

a2(
3He)

. Qualitatively and quantitatively the latter

results were in agreement with Ref.[5]. These, together
with more recent and dedicated measurements of the nu-
clear to the deuteron inclusive cross section ratios[9], pro-
vided compelling evidence for the sizable (⇠ 20%) high
momentum component of the ground state nuclear wave
function for medium to heavy nuclei originating from 2N-
SRCs.
While inclusive processes provided the first evidence
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FIG. 2: Decay function for 3
He nucleus calculated with the condition pm � 700 MeV/c, and

pr2, pr3 � kF . The ✓23 is the relative angle between two recoil nucleons and Em is the missing

energy. Two panels show di↵erent point of views of the same figure. The figure is adapted from

Ref.[19].

Fig. 1. The first, Fig.1(a), referred as type 3N-I SRC, corresponds to the situation in which

the probed fast nucleon is balanced by two fast spectator nucleons pr2, pr3 ⇠ pm/2 with a

small relative angle between them, thus small invariant mass, mS ⇠ 2mN . The second case,

Fig.1(b) corresponds to the symmetric situation in which all three nucleons have comparable

momenta with relative angles ✓23 ⇠ 1200.

To determine which of these 3N SRC configurations will dominate in inclusive A(e, e0)X

scattering it is instructive to consider the decay function for a three-body nucleus at large

values of missing and recoil momenta, noticing that the integrated decay function enters in

the cross section for inclusive scattering. The decay function has been calculated in Ref.[19,

40] for 3He using a realistic wave function based on the solution of Faddeev equations[41]

and one of the results relevant for 3N-SRCs is presented in Fig. 2. In the figure a correlation

between the relative angle of two recoil nucleons, ✓23 and missing energy Em is presented

8

Decay function for 3He nucleus calculated with the condition 
pm ≥ 700 MeV/c, and pr2,pr3 ≥ kF. The θ23 is the relative angle 
between two recoil nucleons and Em is the missing energy. 
Two panels show different point of views of the same figure.
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Three nucleon short range correlations (SRCs) are one of the most elusive structures in nuclei.
Their observation and the subsequent study of their internal makeup will have a significant impact
on our understanding of the dynamics of super-dense nuclear matter which exists at the cores
of neutron stars. We discuss the kinematic conditions and observables that are most favorable
for probing 3N-SRCs in inclusive electro-nuclear processes and make a prediction for a quadratic
dependence of the probabilities of finding a nucleon in 2N- and 3N- SRCs. We demonstrate that
this prediction is consistent with the limited high energy experimental data available, suggesting
that we have observed, for the first time, 3N-SRCs in electro-nuclear processes. Our analysis en-
ables us to extract a3(A,Z), the probability of finding 3N-SRCs in nuclei relative to the A=3 system.

I. INTRODUCTION:

Three nucleon short-range correlations (3N-SRCs), in
which three nucleons come close together, are unique
arrangements in strong interaction physics. 3N SRC’s
have a single nucleon with very large momentum (>⇠
700 MeV/c) balanced by two nucleons of compara-
ble momenta. Unlike two-nucleon short-range correla-
tions (2N-SRCs), 3N-SRCs have never been probed di-
rectly through experiment. As the consequence of the
factorization of short-distance e↵ects from low momen-
tum collective phenomena [1, 2], 2N- and 3N- SRCs dom-
inate the high momentum component of nuclear wave
function which is almost universal up to a scale factor (see
e.g.[1, 3]).

The dynamics of three-nucleon short-range configura-
tions reside at the borderline of our knowledge of nuclear
forces making their exploration a testing ground for “be-
yond the standard nuclear physics” phenomena such as
irreducible three-nucleon forces, inelastic transitions in
3N systems as well as the transition from hadronic to
quark degrees of freedom. Their strength is expected
to grow faster with the local nuclear density than the
strength of 2N-SRCs [1, 2]. As a result, their contribution
will be essential for an understanding of the dynamics of
super-dense nuclear matter (see e.g. Ref. [4]).

Until recently a straightforward experimental probe of
2N- and 3N-SRCs was impossible due to the requirements
of high-momentum transfer nuclear reactions being mea-
sured in very specific kinematics in which the expected
cross sections are very small (see Ref.[1] and references
therein). With the advent of the high energy (6 GeV)
and high intensity continuous electron accelerator at Jef-
ferson Lab (JLab) in the late 1990’s, an unprecedented
exploration of nuclear structure became possible, opening
a new window to multi-nucleon SRCs.

FIG. 1: (a) Geometry of 2N-SRCs, pr ⇡ �pi. Two config-
urations of 3N-SRCs: (b) Configuration in which recoil nu-
cleon momenta pr2,pr3 ⇠ �pi/2, (c) configuration in which
pr2 ⇠ pr3 ⇠ pi. Here ms is the invariant mass of the recoiling
2N system.

II. TWO NUCLEON SHORT RANGE
CORRELATIONS (2N-SRCS)

The first dedicated study of 2N-SRCs in inclusive,
A(e, e0)X, high momentum transfer reactions revealed
a plateau in the ratios of per nucleon cross sections
of heavy nuclei to the deuteron [5] measured at Stan-
ford Linear Accelerator Center (SLAC) with momentum
transfer, Q

2 >⇠ 2 GeV2 and Bjorken variable x > 1.5.

Here x = Q
2

2mNq0
with mN the nucleon mass and q0 the

transferred energy to the nucleus, and for a nucleus A,
0 < x < A. The observed plateau, largely insensitive
to Q

2 and x, sets the parameter a2(A,Z)[6] which is the
probability of finding 2N-SRCs in the ground state of
the nucleus A relative to the deuteron. These plateaus
were confirmed in inclusive cross section ratios of nuclei
A to 3He[7, 8], at similar kinematics with the magnitude
of plateaus taken to be related to the relative probabil-
ity, a2(A,Z)

a2(
3He)

. Qualitatively and quantitatively the latter

results were in agreement with Ref.[5]. These, together
with more recent and dedicated measurements of the nu-
clear to the deuteron inclusive cross section ratios[9], pro-
vided compelling evidence for the sizable (⇠ 20%) high
momentum component of the ground state nuclear wave
function for medium to heavy nuclei originating from 2N-
SRCs.
While inclusive processes provided the first evidence
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Three nucleon short range correlations (SRCs) are one of the most elusive structures in nuclei.
Their observation and the subsequent study of their internal makeup will have a significant impact
on our understanding of the dynamics of super-dense nuclear matter which exists at the cores
of neutron stars. We discuss the kinematic conditions and observables that are most favorable
for probing 3N-SRCs in inclusive electro-nuclear processes and make a prediction for a quadratic
dependence of the probabilities of finding a nucleon in 2N- and 3N- SRCs. We demonstrate that
this prediction is consistent with the limited high energy experimental data available, suggesting
that we have observed, for the first time, 3N-SRCs in electro-nuclear processes. Our analysis en-
ables us to extract a3(A,Z), the probability of finding 3N-SRCs in nuclei relative to the A=3 system.

I. INTRODUCTION:

Three nucleon short-range correlations (3N-SRCs), in
which three nucleons come close together, are unique
arrangements in strong interaction physics. 3N SRC’s
have a single nucleon with very large momentum (>⇠
700 MeV/c) balanced by two nucleons of compara-
ble momenta. Unlike two-nucleon short-range correla-
tions (2N-SRCs), 3N-SRCs have never been probed di-
rectly through experiment. As the consequence of the
factorization of short-distance e↵ects from low momen-
tum collective phenomena [1, 2], 2N- and 3N- SRCs dom-
inate the high momentum component of nuclear wave
function which is almost universal up to a scale factor (see
e.g.[1, 3]).

The dynamics of three-nucleon short-range configura-
tions reside at the borderline of our knowledge of nuclear
forces making their exploration a testing ground for “be-
yond the standard nuclear physics” phenomena such as
irreducible three-nucleon forces, inelastic transitions in
3N systems as well as the transition from hadronic to
quark degrees of freedom. Their strength is expected
to grow faster with the local nuclear density than the
strength of 2N-SRCs [1, 2]. As a result, their contribution
will be essential for an understanding of the dynamics of
super-dense nuclear matter (see e.g. Ref. [4]).

Until recently a straightforward experimental probe of
2N- and 3N-SRCs was impossible due to the requirements
of high-momentum transfer nuclear reactions being mea-
sured in very specific kinematics in which the expected
cross sections are very small (see Ref.[1] and references
therein). With the advent of the high energy (6 GeV)
and high intensity continuous electron accelerator at Jef-
ferson Lab (JLab) in the late 1990’s, an unprecedented
exploration of nuclear structure became possible, opening
a new window to multi-nucleon SRCs.

FIG. 1: (a) Geometry of 2N-SRCs, pr ⇡ �pi. Two config-
urations of 3N-SRCs: (b) Configuration in which recoil nu-
cleon momenta pr2,pr3 ⇠ �pi/2, (c) configuration in which
pr2 ⇠ pr3 ⇠ pi. Here ms is the invariant mass of the recoiling
2N system.

II. TWO NUCLEON SHORT RANGE
CORRELATIONS (2N-SRCS)

The first dedicated study of 2N-SRCs in inclusive,
A(e, e0)X, high momentum transfer reactions revealed
a plateau in the ratios of per nucleon cross sections
of heavy nuclei to the deuteron [5] measured at Stan-
ford Linear Accelerator Center (SLAC) with momentum
transfer, Q

2 >⇠ 2 GeV2 and Bjorken variable x > 1.5.

Here x = Q
2

2mNq0
with mN the nucleon mass and q0 the

transferred energy to the nucleus, and for a nucleus A,
0 < x < A. The observed plateau, largely insensitive
to Q

2 and x, sets the parameter a2(A,Z)[6] which is the
probability of finding 2N-SRCs in the ground state of
the nucleus A relative to the deuteron. These plateaus
were confirmed in inclusive cross section ratios of nuclei
A to 3He[7, 8], at similar kinematics with the magnitude
of plateaus taken to be related to the relative probabil-
ity, a2(A,Z)

a2(
3He)

. Qualitatively and quantitatively the latter

results were in agreement with Ref.[5]. These, together
with more recent and dedicated measurements of the nu-
clear to the deuteron inclusive cross section ratios[9], pro-
vided compelling evidence for the sizable (⇠ 20%) high
momentum component of the ground state nuclear wave
function for medium to heavy nuclei originating from 2N-
SRCs.
While inclusive processes provided the first evidence

ar
X

iv
:1

91
0.

14
66

3v
1 

 [n
uc

l-t
h]

  3
1 

O
ct

 2
01

9

2NSRC

3NSRC

Suppression Suppression
No suppression

No suppression

h

h

h

13



3

will depend only on the ratio aj(A)/aj(A′). This ‘scal-
ing’ of the ratio will be strong evidence for the dominance
of scattering from a j-nucleon SRC. Note that motion of
the SRC will change the value of the ratio, but not the
scaling itself [7, 8].

Final state interactions (FSI) also can affect the inclu-
sive cross section and must be taken into account . In
SRC studies, FSI consists of two components: interac-
tion of the struck nucleon (i) with other nucleons in the
j-nucleon SRC and (ii) with nucleons in the A−j residual
nucleus. Due to the smaller distances and smaller relative
momenta of nucleons in the SRC, the first component of
FSI dominates [9, 21]. This means that FSI are localized
mainly within SRCs, hence the FSI can modify σ(j) but
not aj(A) (ratios) in the decomposition of Eq. (1)

Since the probabilities of j-nucleon SRC are expected
to drop rapidly with j ( since the nucleus is a dilute
bound system of nucleons) one expects the cross section
ratios of heavy and light nuclei for j < xB < j + 1 to
equal A′

A · aj(A)
aj(A′) . Moreover one expects that the relative

probabilities of j-nucleon SRC should grow with A (for
A ≥ 12) as [4]

aj(A) ∝ 1
A

∫
d3rρj

A(r), (2)

where ρA(r) is the nuclear density. Eq. 2 predicts a faster
increase with A of higher relative correlations, leading to
an expectation of steps in the ratio of σ(A)

σ(A′) for heavy and
light nuclei. Observation of such steps (ie: scaling) would
be a crucial test of the dominance of SRC in inclusive
electron scattering. It would demonstrate the presence
of 3-nucleon SRC and confirm the previous observation
of 2-nucleon SRC.

In particular, for 1.4 < xB < 2 and Q2 > 1.4
(GeV/c)2 one expects [6, 9] that the ratio R(A, 3He) =

3σA(Q2,xB)
Aσ3He(Q

2,xB) of inclusive electron scattering from nucleus
A and 3He is independent of Q2 and xB (ie: it scales).
This scale factor is related to the relative probability of
2-nucleon SRC those nuclei. In our previous work [10] we
directly measured these ratios for the first time and es-
tablished that they indeed scale, confirming findings [9]
which reported scaling based on the comparison of the
data for A ≥ 3 [11–13] and A = 2 [14] obtained in some-
what different kinematic conditions. In this work, we
repeat our previous measurement with higher statistics.

Moreover we can use the ratio R(A, 3He) to search
for the even more elusive 3-nucleon SRC: correlations
which originate from both short-range NN interactions
and three-nucleon forces. As 3-nucleon SRC are very
low-probability, we need to suppress 2-nucleon SRC by
choosing xB > 2 so that ν $ k2/2mN . This analysis was
designed to probe for 3-nucleon correlations by looking
for scaling in the region 2 ≤ xB ≤ 3.

Two sets of measurements were performed at the
Thomas Jefferson National Accelerator Facility in 1999
and 2002. The 1999 measurements used 4.461 GeV elec-
trons incident on liquid 4He and solid 12C targets. The

2002 measurements used 4.471 GeV electrons incident on
a solid 56Fe target and 4.7 GeV electrons incident on a
liquid 3He target. The 12C and 56Fe data were taken
with an empty liquid-target cell.

Scattered electrons were detected in the CLAS spec-
trometer [15]. The lead-scintillator electromagnetic
calorimeter provided the electron trigger and was used to
identify electrons in the analysis. Vertex cuts were used
to eliminate the target walls. The estimated remaining
contribution from the two Al 15 µ target cell windows
is less than 0.1%. Software fiducial cuts were used to
exclude regions of non-uniform detector response. Kine-
matic corrections were applied to compensate for drift
chamber misalignments and magnetic field uncertainties.

We used the GEANT-based CLAS simulation, GSIM,
to determine the electron acceptance correction fac-
tors, taking into account “bad” or “dead” hardware
channels in various components of CLAS. The mea-
sured acceptance-corrected, normalized inclusive electron
yields on 3He, 4He, 12C and 56Fe at 1 < xB < 2 agree
with Sargsian’s radiated cross sections [16] that were
tuned on SLAC data [17] and described reasonably well
the Jefferson Lab Hall C [18] data.

We calculated the radiative correction factors for xB <
2 using Sargsian’s cross sections [19] and the formalism of
Mo and Tsai [20]. These factors are almost independent
of xB for 1 < xB < 2 for all nuclei used. Since there are
no theoretical cross section calculations for xB > 2, we
used the 1 < xB < 2 correction factors for 1 < xB < 3.

We construct the ratios of inclusive cross sections as a
function of Q2 and xB , with corrections for CLAS accep-
tance, and elementary electron-nucleon cross sections:

r(A, 3He) =
A(2σep + σen)

3(Zσep + Nσen)
3Y(A)

AY(3He)
CA

rad (3)

where Z and N are the number of protons and neutrons
in nucleus A, σeN is the electron-nucleon cross section,
Y is the normalized yield in a given (Q2,xB) bin [32] and
CA

rad is the ratio of the radiative correction factors for A
and 3He (CA

radA = 0.95 and 0.92 12C and 56Fe respec-
tively). In our Q2 range, the elementary cross section
correction factor A(2σep+σen)

3(Zσep+Nσen) is 1.14 ± 0.02 for C and
4He and 1.18 ± 0.02 for Fe. Fig. 1 shows the resulting
ratios integrated over Q2 > 1.4 GeV2.

These cross section ratios a) scale the first time for
1.5 < xB < 2, which indicates that 2-nucleon SRCs dom-
inate in this region (see Ref. [10]), b) increase with xB

for 2 < xB < 2.25, which can be explained by scattering
off nucleons involved in moving 2-nucleon SRCs, and c)
scale a second time at 2.25 ≤ xB ≤ 2.8, which indicates
that 3-nucleon SRCs dominate in this region.

Assuming that the scaling regions indicate the kine-
matical domain where the corresponding SRCs dominate,
the ratio of the per-nucleon SRC probabilities in nucleus
A relative to 3He, a2(A/3He) and a3(A/3He), are just
the values of the ratio r in the appropriate scaling region.
a2(A/3He) is evaluated at 1.5 < xB < 2 and a3(A/3He)

20

FIG. 2.9: A typical configuration for the j-nucleon correlation.

In relativistic theory the answer is more complicated. It seems fruitful for the theoretical analysis of hard phenomena
to define formally the notion of j-nucleon correlation. Look at a subsystem of j nucleons in the ground state having
invariant mass ⇤ jmN, where nucleons obtain large relative momenta due to hard short-range interactions between
all j nucleons. Typical example of the three-nucleon correlation is shown in fig. 2.8. Before a hard interaction the j
nucleons are in the average configuration (�i ⇥ �j ⇥ 1), j-nucleon correlation contribute to ⇥N

A(�, k⇥) in the region
� < j only due to momentum conservation. In the non-relativistic Schrödinger equation this kinematic decomposition
of j-nucleon correlations is not evident. Therefore one cannot relate simply n(k) to ⇥N

A(�, k⇥) for � � 2.
Though at �⌅ A A-nucleon correlation should dominate ⇥N

A(�, k⇥), in the region 1 < �⇤ A relative contributions
of di�erent configurations are determined by the competition of two factors: the small probability aj to find a
correlation with large j and the enhancement of higher correlations due to a slower decrease of their contribution
to ⇥N

A(�, k⇥) at large � (see eq. (2.43)). Therefore it seems natural to expect that at least in the region of not too
large � ⇥ 3 (which is probed until now) few-nucleon correlations (FNC) dominate. Thus, the nucleon density matrix
⇥N
A(�, k⇥) can be e�ectively expanded over the contribution of j-nucleon correlations ⇥j(�, k⇥):

1
A

⇥N
A(�, k⇥) =

A⇥

j=2

aj⇥j(�, k⇥). (2.38)

More accurate treatment is required to account for the c.m. motion of the j-nucleon configuration in the mean field
of the nucleus. It is expected that this e�ect should lead to small corrections except near the edge of the j-nucleon
correlation. This is because the scale of the repulsive potential is considerably larger than that for the long-range
potential.

The aj ’s in eq. (2.38) can be estimated on the basis of the non-relativistic Schrödinger equation for nuclear WF
since they are determined by the mean internucleon distances. The well known fact that the nucleon density in the
center of the nucleus is larger than near the surface leads to a certain dependence of aj on the atomic number. This
dependence can be estimated in the gas approximation where15 for j ⇤ A

aj ⇥ (1/A)
⇤

[⇥A(r)]jd3r. (2.39)

Here ⇥A(r) is the nucleon density in the coordinate space normalized according to
�

⇥A(r)d3r = A. The calculation
using the conventional fits of ⇥A(r), obtained in electron and proton scattering data [158, 159] leads to a rather similar
A dependence of aj , which can be roughly approximated as

a2 ⇥ A0.15; a3 ⇥ A0.22; a4 ⇥ A0.27 (2.40)

in the range A = 12� 207. Thus ⇥N
A(�, k⇥) should be a practically universal function of �, k⇥ in a wide �, k⇥ range.

In momentum space ⇥j(�, k⇥) corresponds to the contribution of j-nucleon configuration, where the large momentum
of the fast nucleon is balanced by the other (j � 1) nucleons of this configuration (see fig. 2.9). The momentum
dependence of ⇥2 is expected to be similar to that of the deuteron, since the short distance behaviour is independent
of the nucleus structure. (In principle some di�erence could arise from the presence of pp, pn pairs in spin singlet
states and di�erent orbital momenta of nucleons.) The calculation of n4He using the Reid potential is in agreement
with n(k) ⇥ ⇤2

D(k) [118].
To estimate ⇥j�3(�, k⇥ = 0) at large � we assume that a fast nucleon with �⌅ j collects the large momentum as

a result of j � 1 hard two-body collisions with other nucleons. A typical diagram for the three-nucleon correlation is
shown in fig. 2.8. The black blob in fig. 2.8 corresponds to the o�-energy-shell two-nucleon amplitude (solution of

15 We thank Prof. V.A. Khodel for the explanation, how these formulae can be obtained within the Fermi liquid theory. Similar expression
for a2 was discussed by Erikssons [157]. This estimate is rather rough, since gas approximation is not good if large hard core e�ects are
present.

for A> 12 if Z=A/2

Qualitative idea - to absorb a large Q at x>j at least j nucleons should come 
close together.  For each configuration wave function is determined by local 
properties and hence universal. In the region where scattering of j nucleons is 
allowed, scattering off j+1 nucleons is a small correction.

Scaling of the ratios of (e,e’) cross sections

�eA(x, Q2)x>1 =
�

j=2

A
aj(A)

j
�j(x, Q2) �j(x > j, Q2) = 0

�A1(j � 1 < x < j, Q2)/�A1(j � 1 < x < j, Q2) = (A1/A2)aj(A1)/aj(A2)

Scaling of the ratios  FS80

14



⇒ Note - local FSI interaction,
up to a factor of 2 for σ(e,e’), 

cancels in the ratio of σ’s

kmin=0.3 GeV
kmin=0.25 GeV

W − MD ≤ 50 MeV

Masses of NN system produced in the 
process are small - strong suppression 

of isobar, 6q degrees of freedom.

=
a2(A1)
a2(A2) |1.6>��1.3

Frankfurt et al, 93

Right momenta for onset of scaling of ratios !!!

ρ- Light-cone density
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Superscaling of the ratios  FS88

Compare the ratios for different Q2 at x corresponding to the same momentum of nucleon in nuclei 
(including effect of excitation of the residual system - best done in the light-cone formalism) 

αtn vs  x for Q2=1, 4, 10, 50, ∞. 

where q� = q0 � q3, W 2 = 4m2
N + 4q0mN �Q2

�tn = 2� q� + 2m

2mN

�
1 +

⇤
W 2 � 4m2

N

W

⇥

At Q2→ ∞,     αtn =x  
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Remark for people with a QCD 
background: αtn is rather close to 
Nachtmann variable for massive quarksγ*

A-1

pNint

pNf

precoil
A

Main dependence is on “+” component (α) of pNint, allows to take “-” component in 
average point given by two nucleon SRC at rest

N

⌘ pmiss

= pA + q � pfN



Apply the same logic for scattering off 3N SRC  
to calculate  minimal α3N for given x,Q2 
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FIG. 3: Kinematics of 3N SRCs. (upper panel) Relation between ↵3N and x for mS calculated

according to Eq.(10) with k = 0 (dotted line) and k = 250 MeV/c.(dashed line). The curves

are labeled by their respective Q
2 values. (lower panel) The dependence of |pz| on ↵3N . Arrows

indicate the maximum possible ↵3N ’s that can be reached at given values of Q2.

where mS is defined as:

m
2

S
= 4

m
2

N
+ k

2

?
�(2� �)

, (10)

with k? representing the transverse component of the relative momentum of the spectator

nucleons with respect to ~pS. � is the light-cone momentum fraction of pS carried by one of

the spectator nucleons and is normalized to be 0  �  2.

Eq.(7) can be used to estimate the light-cone momentum fraction of the nucleon in a

10

From analysis of backward nucleon 
production:  3N starts to dominate in 

the LC density for  α > 1.6

Hence we  (Misak, Donal, LF , MS) performed the analysis of Jlab data which cover maximal α.
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Superscaling of the ratios  FS88

Compare the ratios for different Q2 at x corresponding to the same momentum of nucleon in nuclei 
(including effect of excitation of the residual system - best done in the light-cone formalism) 

αtn vs  x for Q2=1, 4, 10, 50, ∞. 

where q� = q0 � q3, W 2 = 4m2
N + 4q0mN �Q2

�tn = 2� q� + 2m

2mN

�
1 +

⇤
W 2 � 4m2

N

W

⇥

At Q2→ ∞,     αtn =x  
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Remark for people with a QCD 
background: αtn is rather close to 
Nachtmann variable for massive quarksγ*

A-1

pNint

pNf

precoil
A

Main dependence is on “+” component (α) of pNint, allows to take “-” component in 
average point given by two nucleon SRC at rest

N

⌘ pmiss

= pA + q � pfN
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FIG. 12: The x and ↵3N dependences of the per-nucleon ratios of 12C/3He for di↵erent angles with

Q
2 ranging from 2.5�7.5 GeV2 (at x = 1) against x (top) and ↵3N . Only data with relative errors

less than 0.5 are shown.

impossible to isolate electrons that scattered from the walls of the relatively small diameter

(4 cm) target cell. This and the fact that �
Al � �

3
He at large x as �

3
He must go to 0 at

its kinematic limit, x = 3. resulted in a set of negative cross sections in three bins at large

x interlaced with other bins in which cross sections were consistent with zero with large

relative errors.

In contrast, the data in the region below x < 2.5 are of excellent quality with small

errors. As expected a y-scaling analysis[54, 55] of the E02-019 data found it to be in good

agreement with the SLAC data[12, 15] from y = 0 (top of the quasielastic peak) to y ' �1

(GeV/c). In Fig. 13 we plot the scaling function F (y) against y with the inset showing (in

a linear scale) the region �1.1 < y < �0.7 and where the negative values of F (y) arise from

the negative 3He cross sections mentioned above.

Despite the negative 3He cross sections the ratio,
4
He

3He
, over the entire x-region from E02-

019 were formed and published in Ref. [6] by making use of the following procedure. First, an

inverted ratio,
3
He

4He
, was formed and then, for the region of x � 1.15, the data was rebinned

by combining three bins into one taking care of the error propagation. Subsequently the data

23

The x and α3N dependences of the per-nucleon ratios of 12C/3He for 
different angles with Q2 ranging from 2.5 —7.5 GeV2 (at x = 1) against x 
(top) and α3N . Only data with relative errors less than 0.5 are shown.  

Problem - 3He data have problems, Donal spend long hours to 
find best ways to combine Jlab and SLAC 3He data

19



error of the E02019 data set [6, 49, 52] was kept rather than the smaller errors from the fit.

The fit parameters are a = 0.296 and b = 8.241. A similar approach was used in Ref. [1],

where the first evidence of 2N-SRCs through cross section ratios in inclusive scattering were

revealed. Subsequently those results were confirmed by precision studies[2, 3, 6] in which

the heavy and light cross section data were measured in single experiment.
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SLAC 3He

Avg 2N
[a2(4He)/a2(3He)]2

FIG. 14: The ↵3N dependence of the inclusive cross section ratios for 4He to 3He, triangles - JLAB

data [6, 49], circles - ratios when using a parameterization of SLAC 3He cross sections [12, 15].

The horizontal line at 1.3  ↵3N < 1.5 identifies the magnitude of the 2N-SRC plateau. The line

for ↵3N > 1.6 is Eq.(27) with a 10% error introduced to account for the systematic uncertainty

in a2(A,Z) parameters across all measurements. The data correspond to Q
2 ⇡ 2.5 GeV2 at

x = 1,↵3N = 1. The figure is adapted from Ref.[35].

Fig. 14 presents the results for the cross section ratios obtained from the approaches

described above; the one adopted in Ref.[6] (blue triangles) and other (red circles) in which

the scaling function F (y) is used to reconstruct cross sections between x = 2.68 and x = 2.85

(1.6  ↵3N  1.8). While both give similar results we consider the replacement of the

problematic data points as a best alternative procedure of Ref [6] in part because it allows

a consistent treatment of the ratios for all A.

25

The α3N dependence of the inclusive cross section ratios for 4He to 3He, 
triangles - JLAB data [6, 49], circles - ratios when using a parameterization of 

SLAC 3He cross sections [12, 15]. The horizontal line at 1.3 < α3N  < 1.5 identifies 
the magnitude of the 2N-SRC plateau. The line for α3N > 1.6 is Eq.(27) with a 10% 
error introduced to account for the systematic uncertainty in a2(A,Z) parameters 
across all measurements. The data correspond to Q2 ~ 2.5 GeV2 at x = 1, α3N = 1. 

The figure is  from Sargsian, Day,Frankfurt MS 2019 

Onset of 3N dominance at α~ 1.6 ?
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Going back to Fig. 14 we notice that the plateau due to 2N-SRCs is clearly visible for

1.3  ↵3N  1.5. In this region ↵3N ⇡ ↵2N , where ↵2N is the LC momentum fraction of

the nucleon in the 2N-SRC. Because of this, we refer to the magnitude of this plateau as

R2(A,Z) defined in Eq.(26).
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197Au

α3N

FIG. 16: Per-nucleon cross section ratios for 9Be, 12C, 64Cu, 197Au to 3He. Horizontal lines

indicating a2(A)

a2(
3He)

in the 2N-SRC region.

The horizontal line in the region of 1.3  ↵3N  1.5 is given by the right hand side

of Eq. (26), in which the values of a2(3He) and a2(A) are taken from the last column of

Table II in Ref. [57], an average of the SLAC, JLAB Hall C and JLAB Hall B results. The

magnitude of the horizontal solid line in the region of 1.6  ↵3N  1.8, is the prediction

of R3N(A,Z) ⇡ R
2

2N
(A,Z) which was explained in the previous section (Eq.(27)). We

assigned a 10% error to this prediction (dashed lines) related to the uncertainty of a2(A,Z)

magnitudes across di↵erent measurements.

With the same 3He cross sections in Fig. 16 we evaluated ratios of cross sections, 3�
A

A�3He

for the nuclei (4He, 9Be, 12C, 64Cu and 197Au). Despite large errors the ratios indicate

visible enhancements at ↵3N � 1.6 which are qualitatively similar to that of 3�
4He

4�3He ratios

in Fig.14. Additionally in this figure, we evaluated the magnitudes of a2(A)

a2(
3He)

(taken from

Ref. [6]) which are indicated by horizontal lines for 1.3  ↵3N  1.5 where the plateau due

27
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to 2N-SRCs is observed.
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FIG. 17: (a) The A dependence of the experimental evaluation of R3 compared with the prediction

of Eq.27. (b) The A dependence of a3(A,Z) parameter compared to a2(A,Z) of Ref.[6].

As can be seen from these figures the data indicate the strong enhancement in the ratio,

R3(A) as soon as ↵3N & 1.6 which are in qualitative agreement with the prediction of

Eq.(27). To test quantitatively the prediction of Eq. (27) in Fig. 17(a) we evaluated the

weighted average of Rexp

3
(A,Z) for ↵3N > 1.6 and compared them with the magnitude of

( a2(A,Z)

a2(3He)
)2 in which a2(A,Z)’s are taken from Ref. [57]. In these evaluations 3He cross sections

were taken from the F (y) fit to the SLAC data. Numerical data of Fig. 17 are presented

also Table I. The comparison in Fig. 17(a) shows good agreement with the prediction of

Eq.(27) for the full range of nuclei. We investigated the sensitivity of the weighted average

of R3(A,Z) on the lower limit of ↵3N (before rebinning) and found that the results shown

in Fig. 17(a) remain unchanged within errors which grow with a larger ↵3N > 1.6 cut.

The agreement presented in Fig.17(a) represents the strongest evidence yet for the pres-

ence of 3N-SRCs. If it is indeed due to the onset of 3N-SRCs then one can use the measured

R
exp

3
ratios and Eq.(21) to extract the a3(A,Z) parameters characterizing the 3N - SRC

probabilities in the nuclear ground state. The estimates of a3(A,Z) and comparisons with

a2(A,Z) are given in Fig.17(b) (see also Table I). These comparisons show a faster rise for

a3(A,Z) with A, consistent with the expectation of the increased sensitivity of 3N-SRCs to

the local nuclear density[32]. If this result is verified in the future with better quality data

and a wider range of nuclei then the evaluation of the parameter a3(A,Z) as a function of

nuclear density and proton/neutron asymmetry together with a2(A,Z) can provide an im-

portant theoretical input for the exploration of the dynamics of super dense nuclear matter

28

where in the last part of the equation we used the fact that the variables ↵2N and ↵3N

have nearly same magnitudes in the 2N-SRC region (see in Fig.(9)) to relate the ratios of

a2 parameters to experimentally measured ratio:

R2(A,Z) =
3

A

�eA

�e3H

|1.3<↵3N<1.5=
a2(A)

a2(3He)
. (26)

In the following section we will analyze experimental data at Q2 ⇠ 3 GeV2 for which �ep ⇡

3�en. This, according to Eq.(25) yields:

R3(A,Z) ⇡
54

56
R2(A,Z)

2 ⇡ R2(A,Z)
2
. (27)

Equations (25) and (27) present a remarkable prediction, that the ratios of inclusive nuclear

cross sections (R2 and R3) measured at di↵erent domains of ↵3N will be related by simple

quadratic relation if the scattering in the ↵3N > ↵
0

3N
region probes type 3N-I SRCs.

VI. EXPERIMENTAL EVIDENCE FOR 3N SRCS

Conclusive evidence for two-nucleon SRCs first appeared in 1993[1] from the analysis of

data from di↵erent experiments at SLAC. The SLAC data sets for light nuclei did not share

common kinematics with the data for heavy nuclei[48] and it was necessary, after re-binning

into common x-bins, to interpolate the deuteron data across Q2 to form the ratios of inclusive

cross sections for nuclei A and the deuteron ( 2�A

A�D

). The plateau for the available nuclei in

these ratios had a weak A dependence for A� 12. The ratios were smaller for 3He and 4He

(with large error bars). The 3�A

A�3He

ratios from Hall B at JLab showed similar plateaus[2, 3].

These measurements provided persuasive evidence for the presence of 2N SRCs yet were

limited in their precision and/or the desired expansive range in x and Q2. E02-019[6, 36]

produced high quality data in the 2N-SRC region - these are reproduced in Fig. 10.

The data available to study 3N-SRCs are sorely limited. 3He data (SLAC[15], Hall B

[2, 3], Hall C [6] and Hall A [33] at Je↵erson Lab) provided good agreement for the height

of the 2N-SRC plateau for x < 1.5 < 2.0 yet there are significant disagreements in the x > 2

region. These arise from the fact that the SLAC and data from Je↵erson Lab’s Hall A[33]

are at the lower limit of the range of Q2 necessary to study 3N correlations and the same

is true for a fraction of the data from CLAS[2, 3]. The reliability of the observed scaling in

the x > 2 region for CLAS data was questioned in Ref.[34] which observed that the modest

20

Further studies are necessary of  LC scaling of the ratios, etc. Recoil 
structure more complicated than in 2N case 

We checked that R3exp does not change when we vary minimal value of x and hence α3 

(a) The A dependence of the experimental evaluation of R3 compared with the prediction of Eq.27.  
(b) The A dependence of a3(A,Z) parameter compared to a2(A,Z) of Ref.[6].  
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p A→ p (backward) + p (backward) +X
measurements of Bayukov et al 86

�i = 120o

�i

pi ⇡ 0.5GeV,↵ ⇡ 1.4, pt ⇡ .25GeV
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Possible evidence for 3N SRC from a correlation experiment



pBe

pU

R2 =
1

�in
pA

d�(p + A� pp + X)/d3p1d3p2

d�(p + A� p + X)/d3p1d�(p + A� p + X)/d3p2

|p1| = |p2| � 500MeV/c

Curves are the  experimental fit.

the pattern of ψ dependence of R2 can  be reproduced
24



Study 3N correlations in A(e,e’ p +2 backward nucleons)  &A(p,p’ p +2 backward nucleons). 

Fast nucleus kinematics - nucleons with momenta >1.4 pN

p (n)

p (e)
p(n)

e(p)

p(n)

Start with 3He, followed by 4He, C. Expectations: 

(a)   
(b)  ppn ~ nnp >> nnn, ppp 
(c) e+A → e+ 2N +X stronger angular dependence and larger 
R2(ψ=-180o) than in pA  (for the case when in pA A is large 
enough for ψ=-180o not be close to 0.

�1 Back.Nucl + �2 Back.Nucl + �3 Forw.Nucl � 3

Can inverse kinematics help? Lumi ?
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Reminder: for the neutron star dynamics mostly isotriplet nn, nnn,..   SRC are relevant.
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Summary - discoveries through precision and through new processes

Precision theoretical and experimental  studies of the lightest nuclei, 
including relativistic dynamics

Tests of realistic modeling of FSI

Tests of factorization (comparing electron, photon, nucleon- nucleus SRC sensitive processes.

☛

☛

☛

☛ Tests of dynamic assumptions of LC many nucleon approximation (Misak’s talk).

☛ Calculating and looking for 3N SRC

Including in the calculation of WF  explicitly Δ-isobars and  looking for them and 
other non-nucleonic degrees of freedom in nuclei

☛

☛ Separation of S and D waves in SRCs

Example: 3N - to release α=1.7 nucleon without strong suppression due to fsi need to hit 
both recoiling nucleons with α2 ~ α3~0.65. No such suppression for production of say pion in 
the projectile - α=1.7 interaction.


