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Inclusive measurements as a way of learning 
about np dominance
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Given our measurement of �3H/�3He and taking of the424

average value of Rpn = 2.55± 0.05 for the kinematics of
our measurement, we find ↵/� = 4.39 ± 0.36, i.e. there426

are 4-5 times more np pairs than pp in 3He.
The extracted ratio of np- to pp-SRCs is more than 6428

standard deviations above the isospin-independent pair
counting estimate of ↵/� = 2, based on the presence of430

2 np pairs and 1 pp-SRC in 3He. It represents a factor
of 2.2 enhancement for np-SRCs over pp-SRCs, demon-432

strating that np pairs have a strongly enhanced contri-
bution, but that the contribution from pp or nn pairs is434

not negligible. This supports previous observations of np
dominance, discussed below, but with significantly im-436

proved uncertainties and without the need to correct for
large final-state interactions.438

To compare to other extractions, we look at the ratio of
pp- to np-SRCs, �/↵ = 0.225± 0.020. This is more con-440

venient as other extractions have large uncertainties on
the number of pp-SRCs, yielding large and asymmetric442

uncertainties when looking at ↵/�.
Measurements of the 3He(e,e0p)/3H(e,e,p) cross section444

ratio at large missing momenta [26, 31] can be examined
in a similar fashion. The average 3He/3H cross section446

ratio for missing momenta (reconstructed initial nucleon
momentum) from 250-400 MeV is 1.6 ± 0.2, but this448

does not include corrections for final-state interactions
(FSI). Applying FSI corrections (excluding single charge450

exchange (SCX) FSI) to these data gives a cross section
ratio for 3He(e,e0p)/3H(e,e0p) of 1.55 ± 0.2. Expanding452

this ratio in terms of the number of np and pp (nn) pairs
for each nucleus yields �/↵ = 0.275 ± 0.10. This is be-454

low the isospin-independent expectation of 0.5 (ratio of
protons in 3H to 3He), suggesting an enhancement of np-456

SRCs over pp-SRCs, but only at the 2� level. Ref. [31]
suggests that SCX corrections may be significant, and be-458

cause these directly modify the comparison between 3H
and 3He, there is an additional poorly-constrained model460

dependence in the extraction from the coincidence data
on 3He.462

These results can also be compared to triple-
coincidence A(e,e0pN) measurements on 12C [13, 14] and464

4He [15]. These are not directly comparable to �/↵ ex-
tracted for 3He, as the number of potential np and pp466

pairs depends on A and Z, but we can compare the ob-
served pp/np fraction to the simple pair-counting esti-468

mate to examine the enhancement of np pairs. For 4He,
pp/np = 5.5 ± 3%, compared to the naive expectation470

from pair counting of 25% (1 pp pair and 4 np pairs).
For 12C, the pp/np ratio was 5.6 ± 1.8%, compared to472

the naive expectation of 15/36 = 42%.
Figure 5 shows the relative contribution of np- to pp-474

SRCs (↵/�), normalized to the ratio of total pp to np
pairs in the nucleus, (Z(Z-1)/2)/(NZ), as a measure of476

the enhancement of np-SRCs relative to pp-SRC beyond
the expectation from simple pair counting. The result478

from our measurement (red square) is significantly more

FIG. 5. Ratio of np-SRCs over pp-SRCs relative to number
of np and pp pairs, for di↵erent measurements on light nu-
clei. Note that the (e,e0p) extraction for A=3 does not include
charge-exchange FSI, which would be expected to modify the
extracted enhancement factor. Not shown is the measure-
ment for 48Ca [20], which gave a 95% CL lower limit on the
enhancement factor of 2.9.

precise than previous extractions, and the comparison of480

3He, 4He, and 12C suggests that the enhancement of np
pairs at high momentum is stronger in heavier nuclei.482

This could be related to nucleons filling di↵erent shells
in carbon, which would modify the likelihood of protons484

and neutrons overlapping. It could also be related to the
A dependence of the average distance between nucleons,486

especially for the di↵use 3He nucleus, which would mod-
ify the relative importance of the di↵erent components488

of the NN potential. However, the uncertainty on the
extracted enhancement factor for heavier nuclei makes it490

di�cult to make a clear conclusion about the A depen-
dence. A more precise extraction in 4He may allow a492

determination of whether 3He or 12C is the outlier.

In conclusion, we have presented a novel measurement494

on the mirror nuclei 3H and 3He which provided a clean
extraction of the relative contribution of np- and pp-496

SRCs with uncertainties an order of magnitude smaller
than existing two-nucleon knockout measurements. Our498

results are consistent with the A(e,e0p) measurements
for 3H and 3He, but with much smaller uncertainties500

and without the additional model dependence associ-
ated with single charge exchange final-state interactions.502

The smaller enhancement observed in 3He compared to
heavier nuclei suggests an unexpected and, as yet unex-504

plained, A dependence in light nuclei.

We acknowledge the contribution of the Je↵erson506

Lab target group and technical sta↵ for design and
construction of the Tritium target and their sup-508

port running this experiment. This work was sup-
ported in part by the Department of Energy’s Of-510

fice of Science, O�ce of Nuclear Physics, under con-

“A precise measurement of the isospin structure of short-range correlations using inclusive scattering 
from the mirror nuclei 3H and 3He”
S. Li et al., to appear in Nature, 2022

In conclusion, we have presented a novel
measurement on the mirror nuclei 3H and
3He which provided a clean extraction of the
relative contribution of np- and pp-SRCs
with uncertainties an order of magnitude
smaller than existing two-nucleon knockout
measurements.



Inclusive measurements as a way of learning 
about np dominance
• Measure inclusive cross section ratio at x >1.5 (SRC-dominated region) for two 

nuclei with same (or similar) A, but different N/Z.
• Determine the value of the “plateau.”
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We chose the x bin size to be 0.025 and 0.05 for the346

Quasi-elastic (QE) peak and x > 1 kinematics, respec-
tively, to ensure that the bin size is at least twice as348

large as the resolution. Figure 2 shows the 3He/2H cross
section ratios for our measurements and for JLab exper-350

iment E02-019 [7]. These measurements all show consis-
tent plateaus for x > 1.4 GeV2, as expected when x and352

Q2 are large enough to isolate the contribution of 2N-
SRCs. In this region, the underlying two-body physics354

should be identical for all nuclei, and the identical x and
Q2 dependence for all nuclei yields ratios that are inde-356

pendent of both.
Figure 3 shows the ratio of the cross section per nu-358

cleon from 3H, 3He to 2H from the Q2 = 1.4 GeV2 data
set. The relative contribution from SRCs for a heavy360

nucleus compared to the deuteron is generally quanti-
fied by calculating a2(A), the weighted average of the362

A/2H cross section ratio over the plateau region, taken
to be 1.4  x  1.7 for this experiment. The uncer-364

tainty in a2 includes the 0.73% (1.15%) uncertainty on
the relative normalization of 3H (3He) to 2H. Combin-366

ing the measurements from 1.4 and 1.9 GeV2, we obtain
a2 = 1.774±0.014 for 3H and a2 = 2.082±0.025 for 3He,368

as indicated by the solid lines. We examined the impact
of varying the x region used to extract a2 and for reason-370

able cut ranges, the cut dependence was negligible. The
figure also shows the unweighted average of the 3H and372

3He ratios to deuterium, to provide an isoscalar average
value of a2 for an ‘isoscalar’ A=3 nucleus. We used the374

unweighted average to avoid biasing the average towards
the data set with better statistical (or normalization) un-376

certainties.

378

FIG. 3. A/2H ratios of the per-nucleon cross section for A =
3H, 3He, and (3H+3He)/2 from the Q2 = 1.4 GeV2 data. The380

solid lines indicate the combined a2 value from the Q2 = 1.4
and 1.9 GeV2 data sets. Error bars for the 3H and 3He ratios382

represent the combined statistical and uncorrelated system-
atic uncertainty. The ‘isoscalar’ average comes from taking384

the unweighted average of the 3H/2H and 3He/2H ratios and
is shown without uncertainties.386

In the SRC-dominated region (x > 1.4 for our data),
we expect an identical number of np-SRCs for both nu-388

clei, with additional pp (nn) SRC contributions in 3He
(3H). Because the e-p elastic cross section is significantly390

larger than the e-n cross section, we expect the 3He/2H
ratio to be larger than the 3H/2H ratio due to the in-392

creased contribution from the pp-SRC in 3He compared
to the nn-SRC in 3H. A simpler measure of the relative394

contribution of np-SRCs and pp(nn)-SRCs comes from a
direct comparison of 3H and 3He cross section. Figure 4396

shows the 3H/3He cross section ratio. While the ratios to
the deuteron show a significant dip near x = 1 due to the398

narrow QE peak in deuterium, the nearly identical QE
peaks yield a much smaller dip in the ratio of 3H/3He.400

The ratio in the SRC-dominated region is 0.850 ± 0.009
for 1.4 < x < 1.7, with a negligible dependence on the402

cut used to define the plateau region.

404

FIG. 4. 3H/3He cross section ratios vs. x. Q2 values are
quoted at the QE peak. Error bars represent the combined406

statistical and uncorrelated systematic uncertainty. There is
an additional 1.15% normalization uncertainty (not shown).408

The inclusive cross section from 2N-SRCs is propor-
tional to the sum of quasi-elastic scattering from the nu-410

cleons in the correlated pair. Because of the tensor com-
ponent of the NN interaction, np pairs are more likely to412

form 2N-SRCs than pp or nn pairs. If the 3He (3H) wave
function includes ↵ np-SRCs and � pp-SRCs (nn-SRCs),414

the cross section ratio will be

�3H/�3He = (↵�np + ��nn)/(↵�np + ��pp) (1)416

where �NN is the cross section for scattering from an NN-
SRC, taken to be proportional the sum of the quasielastic418

scattering cross section for the two nucleons. This can be
rewritten such that the target ratio depends only on the420

ratio of the o↵-shell elastic e-p to e-n cross section ratio,
Rpn = �p/�n, at our kinematics and the ratio �/↵:422

�3H/�3He = (1+Rpn+2�/↵)/(1+Rpn+2�/↵Rpn) (2)
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What this method fails to capture

• CM motion does residually affect the ratio.

• The plateau doesn’t have to be flat.

• The number of np and pp pairs is kind of a fuzzy quantity
• Depends on the momentum range probed.

• Contamination from non-SRC events



Interrogating inclusive scattering with more 
sophisticated theory

• Spectral Function Calculations
• Detailed calculations for light nuclei, e.g., A=3 from Kaptari and Ciofi degli Atti

• Variational Monte Carlo
• New spectral functions that separate “correlated” and “mean field” contributions
• 3H, 3He, 4He, 12C, for AV-18
• Not all the kinks are worked out.

• Generalized Contact Formalism
• Can’t address mean-field contribution
• Allows twiddling model input parameters
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𝜎!" and 𝐸∗affect a2 plateaus.

R. Weiss et al., PRC 103, L031301 (2021) 
R. WEISS et al. PHYSICAL REVIEW C 103, L031301 (2021)

FIG. 1. The minimum possible momentum of the nucleon ab-
sorbing the virtual photon, kmin, in inclusive scattering as a function
of xB, for Q2 = 2 GeV2. The black line shows kmin for the deuteron,
while the colored lines show kmin for SRC pairs in 12C, for
different A − 2 excitation energies, E∗

A−2, and for different pair
center-of-mass momenta, denoted by | #pc.m.|. The gray region shows
the initial momentum range, k ! kmin, for d (e, e′). The horizontal
dashed line corresponds to the Fermi momentum for heavy nuclei,
kF ≈ 0.25 GeV/c.

dramatically affect kmin (see Fig. 1) which can significantly
affect the simplistic interpretation of a2.

In addition, final-state interaction (FSI) can contribute to
the measured (e, e′) cross sections and disrupt this simplistic
interpretation of a2. While such contributions grow with xB
and can reach up to 50%, it was argued by several calculations
[35,41–46] (but not all [45]) that they are confined to within
SRC pairs and cancel to first approximation in the A/d ratio.
The main inputs for the FSI calculations are measured NN
scattering cross sections and these calculations are done in a
high-resolution reaction model using one-body reaction oper-
ators, similar to the reaction scheme employed by our GCF
calculations.

As more and better a2 data are becoming available [47],
and as studies utilizing a2 values as SRC abundances demand
higher precision [39], it is timely to examine the quantitative
impact of realistic SRC modeling on the classical interpreta-
tion of a2. Such modeling is also important for establishing
a direct connection between inclusive electron scattering and
ab initio many-body structure calculations [5,18,48–53].

Here we study the interpretation of a2 scaling using the
GCF to calculate high-xB high-Q2 inclusive scattering cross
sections. By comparing measured and GCF-calculated cross
sections using different model parameters we provide a new,
quantitative, understanding of the model dependence of SRC
pair abundance extraction.

The GCF is a realistic effective model of SRCs, used
to connect experimental data and ab initio nuclear structure
calculations [8,16,18]. Building on the scale separation of
nucleons in SRC pairs from the surrounding nuclear envi-
ronment, it models nucleons in SRC pairs using universal

(i.e., nucleus independent) two-particle functions, and system-
and state-dependent contact terms that describe the abundance
of SRC pairs. This scale-separated approach successfully re-
produced ab initio calculated nucleon distributions at short
distance and high momentum, enabling a meaningful extrac-
tion of nuclear contact terms [8,16,18]. More recently, it was
extended to model nuclear spectral and correlation functions
[17,19], enabling a successful reproduction of a wide range of
(e, e′N ) and (e, e′NN ) measurements [8,9,15,19,20,54]. The
GCF thus provides an established and robust formalism to de-
scribe experimental data using effective parameters obtained
from many-body calculations.

To quantify the impact of these effects we perform GCF
calculations of inclusive cross-section ratios using various pa-
rameters and compare them to each other and to experimental
data. We used both nonrelativistic instant-form (IF) and light-
cone (LC) GCF formulations, to see the effect of relativistic
corrections for these high-momentum nucleons. We integrated
the previously derived GCF (e, e′N ) and (e, e′NN ) cross sec-
tions over the knocked-out nucleons, to obtain the inclusive
(e, e′) cross section.

Within the plane-wave impulse approximation (PWIA), the
IF GCF (e, e′NN ) cross section for the breakup of an SRC pair
is given by [54]

d8σA

dEed"ed3 #pc.m.d"rel

= κIF

∑

N1N2,β

sσeN1C
A,β
N1N2

∣∣ϕ̃β
N1N2

( #prel )
∣∣2

nA,β
N1N2

( #pc.m.)

≡
∑

N1N2,β

CA,β
N1N2

× σ
β
N1N2,IF, (1)

where Ee and "e are the energy and solid angle of the scat-
tered electron, and #pc.m. and #prel are the c.m. and relative
momenta of the initial-state SRC pair, respectively. σeN1 is the
off-shell electron-nucleon cross section, s is a symmetry factor
(s = 1 for np and pn and s = 2 for nn and pp), and κIF ≡

1
32π4

p3
relE

′
1E2

|(E2 #p′
1+E ′

1 #p2 )· #prel| is a phase-space factor, where ( #p′
1, E ′

1)
and ( #p2, E2) are the knocked-out and spectator nucleon four-
momenta, respectively. |prel| is fixed by energy-momentum
conservation.

CA,β
N1N2

are nucleus-dependent nuclear contacts, measuring
the probability to find an N1N2 SRC pair (pp, nn, np, or pn)
in nucleus A with quantum numbers β. β = 1 denotes spin-
1 deuteronlike pairs, and β = 0 is for the spin-zero s-wave
pairs. nA,β

N1N2
( #pc.m.) is the SRC pairs c.m. momentum distri-

bution, approximated by a three-dimensional Gaussian with
an A-dependent width σc.m. [40,44,55]. ϕ̃

β
N1N2

are the universal
two-body functions of the relative momentum distribution of
nucleons in SRC pairs, obtained by solving the zero-energy
two-body Schrödinger equation with a given NN interaction
model (e.g., AV18, N2LO, etc.).

We stress that the contact values are fixed by comparison
with ab initio calculations [18] and σc.m. was measured in
Ref. [40]. The unmeasured average excitation energy of the
residual system E∗

A−2 is limited by the typical excitation en-
ergy of the system (0 " E∗

A−2 " 30 MeV). The uncertainties
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FIG. 1. The minimum possible momentum of the nucleon ab-
sorbing the virtual photon, kmin, in inclusive scattering as a function
of xB, for Q2 = 2 GeV2. The black line shows kmin for the deuteron,
while the colored lines show kmin for SRC pairs in 12C, for
different A − 2 excitation energies, E∗

A−2, and for different pair
center-of-mass momenta, denoted by | #pc.m.|. The gray region shows
the initial momentum range, k ! kmin, for d (e, e′). The horizontal
dashed line corresponds to the Fermi momentum for heavy nuclei,
kF ≈ 0.25 GeV/c.

dramatically affect kmin (see Fig. 1) which can significantly
affect the simplistic interpretation of a2.

In addition, final-state interaction (FSI) can contribute to
the measured (e, e′) cross sections and disrupt this simplistic
interpretation of a2. While such contributions grow with xB
and can reach up to 50%, it was argued by several calculations
[35,41–46] (but not all [45]) that they are confined to within
SRC pairs and cancel to first approximation in the A/d ratio.
The main inputs for the FSI calculations are measured NN
scattering cross sections and these calculations are done in a
high-resolution reaction model using one-body reaction oper-
ators, similar to the reaction scheme employed by our GCF
calculations.

As more and better a2 data are becoming available [47],
and as studies utilizing a2 values as SRC abundances demand
higher precision [39], it is timely to examine the quantitative
impact of realistic SRC modeling on the classical interpreta-
tion of a2. Such modeling is also important for establishing
a direct connection between inclusive electron scattering and
ab initio many-body structure calculations [5,18,48–53].

Here we study the interpretation of a2 scaling using the
GCF to calculate high-xB high-Q2 inclusive scattering cross
sections. By comparing measured and GCF-calculated cross
sections using different model parameters we provide a new,
quantitative, understanding of the model dependence of SRC
pair abundance extraction.

The GCF is a realistic effective model of SRCs, used
to connect experimental data and ab initio nuclear structure
calculations [8,16,18]. Building on the scale separation of
nucleons in SRC pairs from the surrounding nuclear envi-
ronment, it models nucleons in SRC pairs using universal

(i.e., nucleus independent) two-particle functions, and system-
and state-dependent contact terms that describe the abundance
of SRC pairs. This scale-separated approach successfully re-
produced ab initio calculated nucleon distributions at short
distance and high momentum, enabling a meaningful extrac-
tion of nuclear contact terms [8,16,18]. More recently, it was
extended to model nuclear spectral and correlation functions
[17,19], enabling a successful reproduction of a wide range of
(e, e′N ) and (e, e′NN ) measurements [8,9,15,19,20,54]. The
GCF thus provides an established and robust formalism to de-
scribe experimental data using effective parameters obtained
from many-body calculations.

To quantify the impact of these effects we perform GCF
calculations of inclusive cross-section ratios using various pa-
rameters and compare them to each other and to experimental
data. We used both nonrelativistic instant-form (IF) and light-
cone (LC) GCF formulations, to see the effect of relativistic
corrections for these high-momentum nucleons. We integrated
the previously derived GCF (e, e′N ) and (e, e′NN ) cross sec-
tions over the knocked-out nucleons, to obtain the inclusive
(e, e′) cross section.

Within the plane-wave impulse approximation (PWIA), the
IF GCF (e, e′NN ) cross section for the breakup of an SRC pair
is given by [54]

d8σA

dEed"ed3 #pc.m.d"rel

= κIF

∑

N1N2,β

sσeN1C
A,β
N1N2

∣∣ϕ̃β
N1N2

( #prel )
∣∣2

nA,β
N1N2

( #pc.m.)

≡
∑

N1N2,β

CA,β
N1N2

× σ
β
N1N2,IF, (1)

where Ee and "e are the energy and solid angle of the scat-
tered electron, and #pc.m. and #prel are the c.m. and relative
momenta of the initial-state SRC pair, respectively. σeN1 is the
off-shell electron-nucleon cross section, s is a symmetry factor
(s = 1 for np and pn and s = 2 for nn and pp), and κIF ≡

1
32π4

p3
relE

′
1E2

|(E2 #p′
1+E ′

1 #p2 )· #prel| is a phase-space factor, where ( #p′
1, E ′

1)
and ( #p2, E2) are the knocked-out and spectator nucleon four-
momenta, respectively. |prel| is fixed by energy-momentum
conservation.

CA,β
N1N2

are nucleus-dependent nuclear contacts, measuring
the probability to find an N1N2 SRC pair (pp, nn, np, or pn)
in nucleus A with quantum numbers β. β = 1 denotes spin-
1 deuteronlike pairs, and β = 0 is for the spin-zero s-wave
pairs. nA,β

N1N2
( #pc.m.) is the SRC pairs c.m. momentum distri-

bution, approximated by a three-dimensional Gaussian with
an A-dependent width σc.m. [40,44,55]. ϕ̃

β
N1N2

are the universal
two-body functions of the relative momentum distribution of
nucleons in SRC pairs, obtained by solving the zero-energy
two-body Schrödinger equation with a given NN interaction
model (e.g., AV18, N2LO, etc.).

We stress that the contact values are fixed by comparison
with ab initio calculations [18] and σc.m. was measured in
Ref. [40]. The unmeasured average excitation energy of the
residual system E∗

A−2 is limited by the typical excitation en-
ergy of the system (0 " E∗

A−2 " 30 MeV). The uncertainties
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Fig. S3: Same as figure 2-top for 4He/d with Instant Form (left) and Light Cone (right) , compared with 
the data of Fomin et al. 

 

  
Fig. S4: Same as figure 2-top for 12C/d with Instant Form (left) and Light Cone (right), compared with 
the data of Fomin et al. 

 

  
Fig. S5: Same as figure 2-top for 12C/d with Instant Form (left) and Light Cone (right), compared with 
the data of Schmookler et al. 
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FIG. 4. Likelihood map for the correlation between the extracted ratio of spin-1 pn contacts in 48Ca over 40Ca, C48Ca
pn,s=1/C40Ca

pn,s=1, and !E∗ =
E∗

46K − E∗
38K (left) and !σc.m. = σ 48Ca

c.m. − σ 40Ca
c.m. (right). The parameters likelihoods are determined by fitting the 40Ca(e, e′)/ 48Ca(e, e′) cross-

section ratio data of Ref. [39] with GCF calculations in the xB range of 1.5 ! xB ! 1.9. The calculation used the GCF light-cone formulations
with the AV18 NN interaction [56]. The color scale represents the likelihood of the fit parameters given the data, with the white solid (dashed)
contours indicating the 68.3% (95.5%) confidence regions. See text for details.

precision measurements [47] of the nuclear mass and asym-
metry dependence of a2, especially for light nuclei. While the
cross-section ratio a2 can be measured precisely, supplemental
(e, e′N ) and (e, e′NN ) measurements and detailed cross-
section calculations are needed for its accurate interpretation.
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Fig. S3: Same as figure 2-top for 4He/d with Instant Form (left) and Light Cone (right) , compared with 
the data of Fomin et al. 

 

  
Fig. S4: Same as figure 2-top for 12C/d with Instant Form (left) and Light Cone (right), compared with 
the data of Fomin et al. 

 

  
Fig. S5: Same as figure 2-top for 12C/d with Instant Form (left) and Light Cone (right), compared with 
the data of Schmookler et al. 
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Interrogating inclusive scattering with more 
sophisticated theory

• Spectral Function Calculations
• Detailed calculations for light nuclei, e.g., A=3 from Kaptari and Ciofi degli Atti

• Variational Monte Carlo
• New spectral functions that separate “correlated” and “mean field” contributions
• 3H, 3He, 4He, 12C, for AV-18
• Not all the kinks are worked out.

• Generalized Contact Formalism
• Can’t address mean-field contribution
• Allows twiddling model input parameters



Quasi-elastic (QE) scattering in the 
Plane-Wave Impulse Approximation (PWIA)

A
A – 1

e

e'

Lead

𝑑'𝜎
𝑑Ω&(𝑑𝐸&(𝑑Ω)&*+𝑑𝐸)&*+

= (𝑝)&*+𝐸,&*+) ⋅ 𝜎&- ⋅ 𝑆 𝐸., 𝑝.

• Kinematic factor (i.e., a Jacobian)
• 𝜎&- is the single-nucleon cross section
• 𝑆 𝐸., 𝑝. is the “Spectral Function,” probability to find a 

nucleon characterized by:
• Initial momentum, 𝑝. ≡ �⃗�)&*+ − �⃗�
• Separation energy, 𝐸.
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Definitions

The spectral function (SF), i.e. the probability distribution of removing a
nucleon with momentum k and isospin ⌧k = p, n from the target nucleus,
leaving the residual (A � 1) system with an excitation energy E, can be
written as [1]

P⌧k(k, E) =
X

n

|h A
0
|[|ki | A�1

n i]|2�(E + E
A
0
� E

A�1

n ) . (1)

In the above equation | A
0
i is the ground state of the Hamiltonian, such that

H| A
0
i = E0| A

0
i, whereas | A�1

n i are the eigenstates and energies of the
(A� 1)-nucleon system, H| A�1

n i = E
A�1

n | A�1

n i.
Note that in Eq. (1) we have utilized a first-quantization picture, in which

the state |ki represent a single-particle plane wave with momentum k and
isospin ⌧k (we average over the spin). To make contact with second quanti-
zation definitions, introducing the annihilation and creation operators ak, a

†
k,

the definition of the SF reads

P⌧k(k, E) =
X

n

|h A
0
|a†k| 

A�1

n i|2�(E + E
A
0
� E

A�1

n ) . (2)

The single nucleon momentum distribution corresponds to the integral of
the spectral function over the removal energy

n⌧k(k) = h A
0
|a†kak| 

A
0
i =

Z
dEP⌧k(k, E) . (3)

Thorough these notes we assume the following normalization
Z

dE
d
3
k

(2⇡)3
Pp(k, E) =

Z
d
3
k

(2⇡)3
np(k) = Z

1

Evaluated in two “parts.”
• Mean-field:

e.g.: 

• Correlated:
e.g.:

��Θ��Κ��ϯ��ϵ��φ��Ј��φ��ϵ��ϯ

� � � � � �

ԝ 	Ԛ
U7
K

ϯ V

Ԛ U7KV

ԝϽεͨԝεΑ

Figure 1: VMC mean-field and full momentum distributions of 4He.

Z
dE

d
3
k

(2⇡)3
Pn(k, E) =

Z
d
3
k

(2⇡)3
nn(k) = A� Z , (4)

where Z is the number of protons and A is the number of nucleons of a given
nucleus. This normalization is consistent with the one of the variational
Monte Carlo (VMC) single-nucleon momentum distribution reported in [2].

Spectral function of
4
He

For clarity, let us deal with the proton spectral function first. The single-
nucleon (mean-field) contribution P

MF

p (k, E) corresponds to identifying | A�1

n i
with | 3

H

0
i, the ground-state of 3H

P
MF

p (k, E) = n
MF

p (k)�
⇣
E � B4He +B3H � k

2

2m3H

⌘
. (5)

where B4He ' 28.30 MeV and B3H ' 8.48 MeV are the binding energies of
4He and 3H, respectively and m3H is the mass of the recoiling nucleus. In the
above equation we introduced the mean-field proton momentum distribution

n
MF

p (k) = |h 4
He

0
|[|ki ⌦ | 3

H

0
i]|2 , (6)

in which h 4
He

0
|[|ki ⌦ | 3

H

0
i is the Fourier transform of the single-nucleon

radial overlap that can be computed within both VMC and Green’s function
Monte Carlo (GFMC) [3].

2

As shown in Fig. 1, at small values of k, the mean-field momentum dis-
tribution obtained from the VMC radial overalps coincides with the full mo-
mentum distribution, also computed within VMC. We also observe signifi-
cant missing strength at larger momenta, consistently with the fact that the
spectroscopic factors are quenched

Z
d
3
k

(2⇡)3
n
MF

p (k) ' 1.64 < Z . (7)

The missing strength has mostly to be ascribed to contributions from
correlated pairs of nucleons, as argued in Ref. [1] and, more recently, in
the context of the contact formalism [4]. This amounts to a three-body fi-
nal state with a high-momentum nucleon and a leftover pair of nucleons:
| A�1

n i ! |k0i | A�2

n i with H| A�2

n i = E
A�2

n | A�2

n i. Note that we have
neglected the correlations between the struct nucleon |k0i and the pair of
spectator nucleons. As a consequence, the state |k0i | A�2

n i in not orthogo-
nal to the ground state of 3H, entering the mean-field piece of the spectral
function.

The corresponding two-body (correlation) contribution to the SF is given
by

P
corr

p (k, E) =
X

n

Z
d
3
k
0

(2⇡)3
|h A

0
|[|ki |k0i | A�2

n i]|2

⇥ �(E + E
A
0
� e(k0)� E

A�2

n ) . (8)

Assuming that the (A � 2)-nucleon binding energy is narrowly distributed
around a central value B̄A�2, we can use the completeness of the final states
of the | A�2

n i to get

P
corr

p (k, E) = cp

X

⌧k0=p,n

Z
d
3
k
0

(2⇡)3
np,⌧k0 (k,k

0)

⇥ �

⇣
E + E

A
0
� e(k0)� B̄A�2 +

(k+ k
0)2

2mH2

⌘
. (9)

where 2mH2 ' (A� 2)m is the mass of the recoiling two-body system. VMC
estimates of the two-nucleon momentum distribution, defined as

n⌧k,⌧k0 (k,k
0) = h A

0
|a†kaka

†
k0ak0 | 

A
0
i , (10)

can be found online [5]. Note that we choose the following normalizations
Z

d
3
k

(2⇡)3

Z
d
3
k
0

(2⇡)3
np,p(k,k

0) =
Z(Z � 1)

2

3



12C Spectral Function
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4He Spectral Function
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He-4  Normalization

!
𝑑!𝑝"
2𝜋 ! 𝑑𝐸"𝑆# 𝑝" , 𝐸" = 𝑍

Mean-Field Integral: 1.673786
Correlated Integral: 0.326078

Total Integral: 1.999867

The correlated part is just the difference.

The calculation predicts the spectroscopic factor, 
i.e., the occupancy of the s-shell state.



C-12 Normalization

!
𝑑!𝑝"
2𝜋 ! 𝑑𝐸"𝑆# 𝑝" , 𝐸" = 𝑍

Mean-Field Integral: 4.610938
Correlated Integral: 1.398381

Total Integral: 6.009318

76.7%

23.3%



He-4 Momentum Distributions

!𝑑𝐸" 𝑆 𝑝" , 𝐸" = 𝑛(𝑝")

10�10

10�8

10�6

10�4

10�2

100

102

0 200 400 600 800 1000 1200 1400 1600

n
(p

m
)

[fm
3
]

Momentum [MeV/c]

Total
Mean-field
Correlated

ANL website

https://www.phy.anl.gov/theory/research/momenta/

https://www.phy.anl.gov/theory/research/momenta/


C-12 Momentum Distributions

https://www.phy.anl.gov/theory/research/momenta/
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A=3 Momentum Distributions

https://www.phy.anl.gov/theory/research/momenta/
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Why are the VMC Spectral functions 
inconsistent?
• Noemi and Alessandro “re-used”  a calculation in which not all of the 

information was saved.
• They assume a form for the distribution of angles between q and Q, 

and tune to approximate 1d momentum distribution
• Clearly not perfect.
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Inclusive Scattering at x > 1

Event Generator: https://github.com/schmidta87/QE_Generator

𝑑𝜎
𝑑Ω$𝑑𝑥%𝑑𝐸"𝑑𝑝"𝑑𝜙&'

=
𝐸$!𝜔
𝐸$𝑥%𝑞

⋅ 𝐸'𝑝" ⋅ 𝜎$' ⋅ 𝑆(𝑝" , 𝐸")

Jac
obian

 fro
m 𝑑𝐸

&
!
→
𝑑𝑥 /

Jaco
bian fro

m 𝑑𝐸
-
𝑑𝑐
𝑜𝑠
𝜃 -
→
𝑑𝐸

.
𝑑𝑝.

Possible additional Jacobian based on the 
different missing energy conventions

𝒥 =
𝐸.,1 +𝑚2 −𝑚-

𝐸.,3 +𝑚2 −𝑚-

I am just neglecting this, because I’m not 
sure it’s needed and it’s very close to 1.

https://github.com/schmidta87/QE_Generator


Inclusive Scattering at x > 1

Event Generator: https://github.com/schmidta87/QE_Generator

𝑑𝜎
𝑑Ω$𝑑𝑥%𝑑𝐸"𝑑𝑝"𝑑𝜙&'

=
𝐸$!𝜔
𝐸$𝑥%𝑞

⋅ 𝐸'𝑝" ⋅ 𝜎$' ⋅ 𝑆(𝑝" , 𝐸")

• 𝐴(𝑒, 𝑒’), integrating over all possible leading protons and neutrons.
• Kinematics corresponding to Fomin et al., PRL (2012)
• 5.766 GeV beam
• 18˚ electron scattering angle
• Spectra plotted in terms of 𝑥I

https://github.com/schmidta87/QE_Generator


Helium / Deuterium Yields
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Helium / Deuterium Ratio
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Breakdown by MF/SRC
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The 𝑥$ ↔ 𝑝% correspondence
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The 𝑥$ ↔ 𝑝% correspondence
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The 𝑥$ ↔ 𝑝% correspondence
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The 𝑥$ ↔ 𝑝% correspondence
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Carbon / Deuterium Yields
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Carbon / Deuterium Ratio
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Breakdown by MF/SRC
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A=3 Ratio
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A=3 Ratio
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spectral functions are inconsistent.



Summary
Inclusive ratios are sensitive to:

• CM motion and 𝐸∗, which may not be precisely known.

• Flatness of plateaus

• The momentum range probed

• Contamination from non-SRC events
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Summary
Inclusive ratios are sensitive to:

• CM motion and 𝐸∗, which may not be precisely known.

• Flatness of plateaus

• The momentum range probed

• Contamination from non-SRC events

Do a study in which we vary Q2, vary xB range, 
show that the same contacts or same spectral 
function can lead to different “plateau” value.



Summary
Inclusive ratios are sensitive to:
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• The momentum range probed
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Dien’s Ca-40/Ca-48 result 4

to-point and 3.0% normalization uncertainties.
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FIG. 2. Ratio of the cross section per nucleon for
48
Ca and

40
Ca for three scattering angles. Uncertainties shown include

statistical and point-to-point systematic uncertainties; an ad-

ditional normalization uncertainty of 1% is not shown.

The per nucleon cross-section ratio of 48Ca to 40Ca
is presented in Figure 2 for each of the three scattering
angles and in Figure 3 after combining of the data sets.
Because the cross section and experimental conditions
are very similar for the two targets, many of the uncer-
tainties in the cross sections cancel or are reduced in the
ratio. The systematic uncertainty on the ratios is 0.9%,
dominated by the model dependence in the extraction
(0.5%), measurement of the beam charge (0.5%) and the
radiative correction (0.5%). An additional 1% normaliza-
tion uncertainty, associated with the uncertainty in the
relative target thicknesses, is not shown. When combin-
ing the angles for Fig. 3, we combine the statistics of the
individual sets and then apply the 0.9% point-to-point
uncertainty (and 1% normalization uncertainty) to the
combined result.

Note that the rise from x = 1 to x = 1.6 looks
slightly di↵erent from previously observed A/2H ratios.
This is expected as the shape in the A/2H ratios is
driven by the deuterium cross section, which is nar-
rowly peaked at and roughly symmetric about x=1. The
line in Fig. 3 indicates the value of RSRC, the aver-
age in the plateau region: 1.5 < x < 2. The fit gives
R = 0.971(3)(6)(10) = 0.971(12) where the error contri-
butions come from the point-to-point uncertainties, the
cut dependence of the extracted RSRC, and the normal-
ization uncertainty of the ratios. The cut dependence is
taken to be the RMS scatter of RSRC values fit sepa-
rately to the three scattering angles for three di↵erent
minimum x values, xmin = 1.5, 1.6 and 1.7.

The observed value of RSRC = 0.971(12) is more than
three sigma above the prediction for isospin independence
(RSRC = 0.93 for these kinematics). So while inclusive
scattering cannot isolate contributions from protons and
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FIG. 3. Ratio of the cross section per nucleon for
48
Ca and

40
Ca combining all three data sets. A 1% normalization un-

certainty is not shown. The line indicates the fit for the cross

section ratio in the SRC region

neutrons, comparing Calcium isosoptes with di↵erent is
sensitive enough to provide evidence for an enhancement
of np pairs over pp and np pairs.
To interpret this ratio in terms of relative np, pp, and

nn SRC contributions, and to compare these results to
observables from previous measurements, we use a sim-
ple model to estimate the inclusive, exclusive, and two-
nucleon knockout ratios in terms of a few parameters. We
take the number of 2N-SRCs to be a product of the num-
ber of total pairs, the probability for any two nucleons to
be close enough together to interact via the short-range
NN interaction (fsr), and the probability that the NN in-
teraction generates a high-momentum pair (pNN ). The
total number of np, pp, and nn pairs are NZ, Z(Z�1)/2,
and N(N � 1)/2, respectively. The fraction of nucle-
ons at short distance, fsr, depends on the nucleus and
is assumed to be identical for nn, np, and pp pairs. The
probability that these nucleons generate high momentum
pairs, pnp and ppp = pnn, depends on the momentum
range of the initial nucleons, �Pi, defined by the experi-
ment for coincidence measurements or by the kinematics
in inclusive scattering. Given this, we can express the
number of np and pp SRCs as:

Nnp = NZ · fsr(A) · pnp(�Pi) (1)

Npp = Z(Z � 1)/2 · fsr(A) · ppp(�Pi) (2)

While pnp and ppp may depend strongly on �Pi, we
assume that their ratio has a much weaker dependence,
as observed in Ref. [14], and so their ratio extracted from
di↵erent measurements should be qualitatively compara-
ble. This leaves only fsr(A) as an unknown. In compar-
ing di↵erent observables on the same nucleus, e.g. taking
the ratio of A(e,e’pp) to A(e,e’pn), fsr(A) cancels out. In
the limit of large nuclei, any given nucleon will be sen-
sitive to short-range interactions with nucleons in some

4

to-point and 3.0% normalization uncertainties.
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The per nucleon cross-section ratio of 48Ca to 40Ca
is presented in Figure 2 for each of the three scattering
angles and in Figure 3 after combining of the data sets.
Because the cross section and experimental conditions
are very similar for the two targets, many of the uncer-
tainties in the cross sections cancel or are reduced in the
ratio. The systematic uncertainty on the ratios is 0.9%,
dominated by the model dependence in the extraction
(0.5%), measurement of the beam charge (0.5%) and the
radiative correction (0.5%). An additional 1% normaliza-
tion uncertainty, associated with the uncertainty in the
relative target thicknesses, is not shown. When combin-
ing the angles for Fig. 3, we combine the statistics of the
individual sets and then apply the 0.9% point-to-point
uncertainty (and 1% normalization uncertainty) to the
combined result.

Note that the rise from x = 1 to x = 1.6 looks
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neutrons, comparing Calcium isosoptes with di↵erent is
sensitive enough to provide evidence for an enhancement
of np pairs over pp and np pairs.
To interpret this ratio in terms of relative np, pp, and

nn SRC contributions, and to compare these results to
observables from previous measurements, we use a sim-
ple model to estimate the inclusive, exclusive, and two-
nucleon knockout ratios in terms of a few parameters. We
take the number of 2N-SRCs to be a product of the num-
ber of total pairs, the probability for any two nucleons to
be close enough together to interact via the short-range
NN interaction (fsr), and the probability that the NN in-
teraction generates a high-momentum pair (pNN ). The
total number of np, pp, and nn pairs are NZ, Z(Z�1)/2,
and N(N � 1)/2, respectively. The fraction of nucle-
ons at short distance, fsr, depends on the nucleus and
is assumed to be identical for nn, np, and pp pairs. The
probability that these nucleons generate high momentum
pairs, pnp and ppp = pnn, depends on the momentum
range of the initial nucleons, �Pi, defined by the experi-
ment for coincidence measurements or by the kinematics
in inclusive scattering. Given this, we can express the
number of np and pp SRCs as:

Nnp = NZ · fsr(A) · pnp(�Pi) (1)

Npp = Z(Z � 1)/2 · fsr(A) · ppp(�Pi) (2)

While pnp and ppp may depend strongly on �Pi, we
assume that their ratio has a much weaker dependence,
as observed in Ref. [14], and so their ratio extracted from
di↵erent measurements should be qualitatively compara-
ble. This leaves only fsr(A) as an unknown. In compar-
ing di↵erent observables on the same nucleus, e.g. taking
the ratio of A(e,e’pp) to A(e,e’pn), fsr(A) cancels out. In
the limit of large nuclei, any given nucleon will be sen-
sitive to short-range interactions with nucleons in some

“Novel observation of isospin structure of short-range correlations in calcium isotopes”
D. Nguyen et al., Phys. Rev,. C 102, 064004 (2020)



Caution: Missing energy can be defined a 
couple of different ways.
Most common approach:

𝐸" ≡ 𝜔 − 𝑇)$*+ − 𝑇,-.

Missing energy of two-body break-up states is fixed

An alternative approach:
𝐸" ≡ 𝜔 − 𝑇)$*+

Missing energy of two-body break-up states changes with 𝑝"



Absolute Cross Sections for A=3
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C(e,e’): the 𝑥$ ↔ 𝑝% correspondence
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C(e,e’): the 𝑥$ ↔ 𝑝% correspondence
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