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Inclusive measurements as a way of learning
about np dominance
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In conclusion, we have presented a novel
measurement on the mirror nuclei 3H and
3He which provided a clean extraction of the
relative contribution of np- and pp-SRCs
with uncertainties an order of magnitude
smaller than existing two-nucleon knockout
measurements.

“A precise measurement of the isospin structure of short-range correlations using inclusive scattering

from the mirror nuclei 3H and 3He”
S. Li et al., to appear in Nature, 2022



Inclusive measurements as a way of learning
about np dominance

* Measure inclusive cross section ratio at x >1.5 (SRC-dominated region) for two
nuclei with same (or similar) A, but different N/Z.
 Determine the value of the “plateau.”
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Inclusive measurements as a way of learning
about np dominance

* Measure inclusive cross section ratio at x >1.5 (SRC-dominated region) for two
nuclei with same (or similar) A, but different N/Z.
 Determine the value of the “plateau.”
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Inclusive measurements as a way of learning
about np dominance

* Measure inclusive cross section ratio at x >1.5 (SRC-dominated region) for two
nuclei with same (or similar) A, but different N/Z.
 Determine the value of the “plateau.”
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* Make assumptions about how N;s are related N,s.
* |sospin multiplets are especially helpful.
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Inclusive measurements as a way of learning
about np dominance

* Measure inclusive cross section ratio at x >1.5 (SRC-dominated region) for two
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Inclusive measurements as a way of learning
about np dominance

* Measure inclusive cross section ratio at x >1.5 (SRC-dominated region) for two
nuclei with same (or similar) A, but different N/Z.

 Determine the value of the “plateau.”

* |nthe A=3 doublet (3H, 3He):
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What this method fails to capture

* CM motion does residually affect the ratio.
* The plateau doesn’t have to be flat.

* The number of np and pp pairs is kind of a fuzzy quantity
* Depends on the momentum range probed.

e Contamination from non-SRC events



Interrogating inclusive scattering with more
sophisticated theory

e Spectral Function Calculations
* Detailed calculations for light nuclei, e.g., A=3 from Kaptari and Ciofi degli Atti

* Variational Monte Carlo
* New spectral functions that separate “correlated” and “mean field” contributions

 3H, 3He, 4He, 12C, for AV-18
 Not all the kinks are worked out.

e Generalized Contact Formalism
e Can’t address mean-field contribution
* Allows twiddling model input parameters



Interrogating inclusive scattering with more
sophisticated theory

e Spectral Function Calculations
* Detailed calculations for light nuclei, e.g., A=3 from Kaptari and Ciofi degli Atti

* Variational Monte Carlo
* New spectral functions that separate “correlated” and “mean field” contributions

 3H, 3He, 4He, 12C, for AV-18
 Not all the kinks are worked out.

e Generalized Contact Formalism
e Can’t address mean-field contribution
* Allows twiddling model input parameters




Momentum [GeV/c]

o~y and E*affect a2 plateaus.

R. Weiss et al., PRC 103, L031301 (2021)

o
o

©
I

Deuterium /
Cajrbon-lz /’
|pc.m.| [GeV/c] ¢

0 <0.2

.0 1.2 1.4 1.6 1.8



o
o

o
I

.

Minimum Momentum [GeV/c]
N

o
O

o~y and E*affect a2 plateaus.

R. Weiss et al., PRC 103, L031301 (2021)

Deuterium ! K .
Carbon-12 o g " Instant Form " Light Cone
|Pc.m. | [GeV/c]
0 <0.2
— 8
~ 6
%QQ Data AV4' A;V18 4
g S 4_0 ¢ ¢ ¢

N2LO(1.0fm)

N2LO(1.0fm)

0 : : : : 0 : : : :
15 16 17 18 19 20 15 16 17 18 109




o~y and E*affect a2 plateaus.

R. Weiss et al., PRC 103, L031301 (2021)
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pn/pp determined by Contacts,

A=3 pn/pp ratio in Contact Formalism

determined by fits to VMC

distributions (by R. Cruz-Torres)

Includes fit uncertainty
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A=3 pn/pp ratio in Contact Formalism

pn/pp determined by Contacts,

determined by fits to VMC

distributions (by R. Cruz-Torres)

* Includes fit uncertainty

Randomly sample:

OcMm, CCZ
(shading of the data points)

bm
0 0.95 -

bm
S 0.95-

1.10
1.05 -

0.90 ~

Non-relativistic k-Space

M

Light Cone k-Space

s

M

1.10
1.05 -

. :q:_, 1.00-

0.90 -

Non-relativistic r-Space

R
it

< >

Light Cone r-Space

oo b

>

5

10 15 20 25

5

10 15 20 25

pn to pp Contact Ratio

Figure by A. Denniston

AV18

N2LO (1.0fm)
N2LO (1.2fm)
Norfolk



A=3 pn/pp ratio in Contact Formalism

pn/pp determined by Contacts,
determined by fits to VMC
distributions (by R. Cruz-Torres)
* Includes fit uncertainty

Randomly sample:

OcMm, CCZ
(shading of the data points)

Errors represent full range of
ratioin 1.5 <x < 1.9
* Plateaus aren’t so flat
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pn/pp determined by Contacts,
determined by fits to VMC
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A=3 pn/pp ratio in Contact Formalism

pn/pp determined by Contacts,
determined by fits to VMC
distributions (by R. Cruz-Torres)
* Includes fit uncertainty

Randomly sample:

OcMm, CCZ
(shading of the data points)

Errors represent full range of
ratioin 1.5 <x < 1.9
* Plateaus aren’t so flat

Depending on assumptions, a
measured o7 /03y,, could mean a
wide range of pn/pp ratios.
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Interrogating inclusive scattering with more
sophisticated theory

e Spectral Function Calculations
* Detailed calculations for light nuclei, e.g., A=3 from Kaptari and Ciofi degli Atti

* Variational Monte Carlo
* New spectral functions that separate “correlated” and “mean field” contributions
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Quasi-elastic (QE) scattering in the
Plane-Wave Impulse Approximation (PWIA)

do

dQeldEeldQLeaddELead

— (pLeadElead) : . S(Em)pm)

* Kinematic factor (i.e., a Jacobian)

Lead

is the single-nucleon cross section

* S(E,,, p,,) is the “Spectral Function,” probability to find a

nucleon characterized by:
* Initial momentum, p,;; = Pread — 4
* Separation energy, E,,



Inclusive cross sections

Beam E =4.33 GeV
Electron angle: 20.88°
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Inclusive cross sections

Beam E =4.33 GeV
Electron angle: 20.88°
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Spectral Functions by Argonne VMC group

P (k,E) =) [(Uglap| v, ") PO(E + By — E;7)

Evaluated in two “parts.”

* Mean-field:
e.g.:
PMF(k ) = MFk(S(E Bu + Boy — )
7 'll\‘\ D ( ) )_np ( ) — D4He 3H 2m3H
Alessandro Lovato Noemi Rocco
* Correlated:
e.g.:
So far, | have received calculations of:
L P B) = 3 [ SR ) et )
3He p ) . (2ﬂ)3 0 n

e 4H
. 1ac % O(E + EA — (k) — EA-2).



12C Spectral Function
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12C Spectral Function
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“*He Spectral Function
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“*He Spectral Function
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“*He Spectral Function
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“*He Spectral Function
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He-4 Normalization

d3p
| GBS, (o En) = 7

(2m)3
] The calculation predicts the spectroscopic factor,
Mean-Field Integral: 1.67378 i.e., the occupancy of the s-shell state.
Correlated Integral: 0.326078

The correlated part is just the difference.

Total Integral: 1.999867



C-12 Normalization

d° P

Zmy? “FmSp B Fm) =2
Mean-Field Integral: 4.610938 76.7%
Correlated Integral: 1.398381 23.3%

Total Integral: 6.009318
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He-4 Momentum Distributions
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C-12 Momentum Distributions
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A=3 Momentum Distributions

Helium-3

100000 =
10000 ;
1000 ;
100 ;

L

0.1 L

Pmiss [GGV]

f dE S (P Evy) = (D)

https://www.phy.anl.gov/theory/research/momenta/



https://www.phy.anl.gov/theory/research/momenta/

Why are the VMC Spectral functions
inconsistent?

* Noemi and Alessandro “re-used” a calculation in which not all of the
information was saved.

* They assume a form for the distribution of angles between g and Q,
and tune to approximate 1d momentum distribution
* Clearly not perfect.

Helium-3
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Inclusive Scattering at x > 1

Event Generator: https://github.com/schmidta87/QE Generator

do

Eerw

dQedxgdE,dpmddoy  Eoxpq

) ENpm "OeN - S(pm:Em)

Possible additional Jacobian based on the
different missing energy conventions

Em,l +my —my

Em,z +my —my

| am just neglecting this, because I’'m not
sure it’s needed and it’s very close to 1.


https://github.com/schmidta87/QE_Generator

Inclusive Scattering at x > 1

Event Generator: https://github.com/schmidta87/QE Generator

do E, w

= Y b Oony - S E
dQedxpdEndpmddgn  Eexpq wPm* Oen 5 (P Em)

* A(e, €'), integrating over all possible leading protons and neutrons.

e Kinematics corresponding to Fomin et al., PRL (2012)

* 5,766 GeV beam
» 18" electron scattering angle
e Spectra plotted in terms of xp


https://github.com/schmidta87/QE_Generator

Helium / Deuterium Yields
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Helium / Deuterium Ratio

— PWIA with VMC SF
e— Fomin 2012 }




Helium / Deuterium Ratio

— PWIA with VMC SF VMC Momentum Distribution Ratio
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Cross section per bin [nb]
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The xg < p,, correspondence
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The xg < p,, correspondence
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Carbon / Deuterium Yields
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Carbon / Deuterium Ratio
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A=3 Ratio
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A=3 Ratio
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Ssummary
Inclusive ratios are sensitive to:

 CM motion and E*, which may not be precisely known.
* Flatness of plateaus

* The momentum range probed

e Contamination from non-SRC events
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* CM motion and E™, which may not be precisely known.
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Ssummary
Inclusive ratios are sensitive to:

 CM motion and E*, which may not be precisely known.

— PWIA with VMC §F
Fe— Fomin 2012

* Flatness of plateaus

* The momentum range probed

e Contamination from non-SRC events
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Ssummary
Inclusive ratios are sensitive to:

 CM motion and E*, which may not be precisely known.

* Flatness of plateaus

Do a study in which we vary Q2, vary xB range,
show that the same contacts or same spectral

° The momentum ran ge prObEd function can lead to different “plateau” value.

e Contamination from non-SRC events



Ssummary
Inclusive ratios are sensitive to:

 CM motion and E*, which may not be precisely known.

* Flatness of plateaus !
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BACK-UP



Dien’s Ca-40/Ca-48 result
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“Novel observation of isospin structure of short-range correlations in calcium isotopes”
D. Nguyen et al., Phys. Rev,. C 102, 064004 (2020)



Caution: Missing energy can be defined a
couple of different ways.

Most common approach:
Em =W — TLead o TA—l

Missing energy of two-body break-up states is fixed

An alternative approach:
Em =W — TLead

Missing energy of two-body break-up states changes with p,,
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C(e,e’): the xg © p,,, correspondence

Total contribution
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C(e,e’): the xg © p,,, correspondence

Correlated contribution
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