Interpretation Uncertainties in Inclusive Scattering at $x>1$
 Axel Schmidt
 2022 SRC Collaboration Meeting
 August 3, 2022

Inclusive measurements as a way of learning about np dominance

In conclusion, we have presented a novel measurement on the mirror nuclei ${ }^{3} \mathrm{H}$ and ${ }^{3} \mathrm{He}$ which provided a clean extraction of the relative contribution of np- and pp-SRCs with uncertainties an order of magnitude smaller than existing two-nucleon knockout measurements.

[^0]
Inclusive measurements as a way of learning about np dominance

- Measure inclusive cross section ratio at $x>1.5$ (SRC-dominated region) for two nuclei with same (or similar) A, but different N/Z.
- Determine the value of the "plateau."

Inclusive measurements as a way of learning about np dominance

- Measure inclusive cross section ratio at $x>1.5$ (SRC-dominated region) for two nuclei with same (or similar) A, but different N/Z.
- Determine the value of the "plateau."

Inclusive measurements as a way of learning about np dominance

- Measure inclusive cross section ratio at $x>1.5$ (SRC-dominated region) for two nuclei with same (or similar) A, but different N/Z.
- Determine the value of the "plateau."

$$
R \equiv \frac{\sigma_{1}}{\sigma_{2}}=\frac{N_{1}^{p p} \cdot 2 \sigma_{e p}+N_{1}^{n p} \cdot\left(\sigma_{e n}+\sigma_{e p}\right)+N_{1}^{n n} \cdot 2 \sigma_{e n}}{N_{2}^{p p} \cdot 2 \sigma_{e p}+N_{2}^{n p} \cdot\left(\sigma_{e n}+\sigma_{e p}\right)+N_{2}^{n n} \cdot 2 \sigma_{e n}}
$$

Inclusive measurements as a way of learning about np dominance

- Measure inclusive cross section ratio at $x>1.5$ (SRC-dominated region) for two nuclei with same (or similar) A, but different N/Z.
- Determine the value of the "plateau."

$$
R \equiv \frac{\sigma_{1}}{\sigma_{2}}=\frac{N_{1}^{p p} \cdot 2 \sigma_{e p}+N_{1}^{n p} \cdot\left(\sigma_{e n}+\sigma_{e p}\right)+N_{1}^{n n} \cdot 2 \sigma_{e n}}{N_{2}^{p p} \cdot 2 \sigma_{e p}+N_{2}^{n p} \cdot\left(\sigma_{e n}+\sigma_{e p}\right)+N_{2}^{n n} \cdot 2 \sigma_{e n}}
$$

- Make assumptions about how $N_{1} s$ are related $N_{2} s$.
- Isospin multiplets are especially helpful.

Inclusive measurements as a way of learning about np dominance

- Measure inclusive cross section ratio at $x>1.5$ (SRC-dominated region) for two nuclei with same (or similar) A, but different N/Z.
- Determine the value of the "plateau."

$$
R \equiv \frac{\sigma_{1}}{\sigma_{2}}=\frac{N_{1}^{p p}}{N_{2}^{p p} \cdot 2 \sigma_{e p}+N_{1}^{n p} \cdot\left(\sigma_{e n}+\sigma_{e p}\right)+N_{1}^{n n} \cdot 2 \sigma_{e n}}
$$

- Make assumptions about how $N_{1} s$ are related $N_{2} s$.
- Isospin multiplets are especially helpful.

Inclusive measurements as a way of learning about np dominance

- Measure inclusive cross section ratio at $x>1.5$ (SRC-dominated region) for two nuclei with same (or similar) A, but different N/Z.
- Determine the value of the "plateau."
- In the $A=3$ doublet $\left({ }^{3} \mathrm{H},{ }^{3} \mathrm{He}\right)$:

$$
R \equiv \frac{\sigma^{3} H}{\sigma^{3} H e}=\frac{N_{3^{3} H}^{n p} \cdot\left(\sigma_{e n}+\sigma_{e p}\right)+N_{3^{3}}^{n n} \cdot 2 \sigma_{e n}}{N_{3_{3} H e}^{p p} \cdot 2 \sigma_{e p}+N_{3}^{n p} H e}
$$

Inclusive measurements as a way of learning about np dominance

- Measure inclusive cross section ratio at $x>1.5$ (SRC-dominated region) for two nuclei with same (or similar) A, but different N/Z.
- Determine the value of the "plateau."
- In the $A=3$ doublet $\left({ }^{3} \mathrm{H},{ }^{3} \mathrm{He}\right)$:

$$
\left.\begin{array}{c}
R \equiv \frac{\sigma_{3} H}{\sigma^{3} H e}=\frac{N_{3^{3}}^{n p}}{N_{3}^{p p}} \cdot\left(\sigma_{e n}+\sigma_{e p}\right)+N_{3^{3}}^{n n} \cdot 2 \sigma_{e n} \\
\sigma_{e p}+N_{3}^{n p} H e
\end{array}\left(\sigma_{e n}+\sigma_{e p}\right)\right]
$$

Inclusive measurements as a way of learning about np dominance

- Measure inclusive cross section ratio at $x>1.5$ (SRC-dominated region) for two nuclei with same (or similar) A, but different N/Z.
- Determine the value of the "plateau."
- In the $\mathrm{A}=3$ doublet $\left({ }^{3} \mathrm{H},{ }^{3} \mathrm{He}\right)$:

$$
R \equiv \frac{\sigma^{3} H}{\sigma^{3} H e}=\frac{\alpha\left(\sigma_{e n}+\sigma_{e p}\right)+2 \beta \sigma_{e n}}{\alpha\left(\sigma_{e n}+\sigma_{e p}\right)+2 \beta \sigma_{e p}}
$$

$$
\begin{aligned}
& \alpha \equiv N_{3}^{n p}=N_{3}^{n p}{ }^{n p} \\
& \beta \equiv N_{3_{H} H}^{n n}=N_{3}{ }^{p p}
\end{aligned}
$$

Inclusive measurements as a way of learning about np dominance

- Measure inclusive cross section ratio at $x>1.5$ (SRC-dominated region) for two nuclei with same (or similar) A, but different N/Z.
- Determine the value of the "plateau."
- In the $\mathrm{A}=3$ doublet $\left({ }^{3} \mathrm{H},{ }^{3} \mathrm{He}\right)$:

$$
R \equiv \frac{\sigma^{3} H}{\sigma_{3} H e}=\frac{1+\frac{\sigma_{e p}}{\sigma_{e n}}+2\left(\frac{\beta}{\alpha}\right)}{1+\frac{\sigma_{e p}}{\sigma_{e n}}+2\left(\frac{\beta}{\alpha}\right) \frac{\sigma_{e p}}{\sigma_{e n}}}
$$

Inclusive measurements as a way of learning about np dominance

- Measure inclusive cross section ratio at $x>1.5$ (SRC-dominated region) for two nuclei with same (or similar) A, but different N/Z.
- Determine the value of the "plateau."
- In the $\mathrm{A}=3$ doublet $\left({ }^{3} \mathrm{H},{ }^{3} \mathrm{He}\right)$:

$$
\begin{gathered}
R \equiv \frac{\sigma_{3} H}{\sigma^{3} H e}=\frac{1+\frac{\sigma_{e p}}{\sigma_{e n}}+2\left(\frac{\beta}{\alpha}\right)}{1+\frac{\sigma_{e p}}{\sigma_{e n}}+2\left(\frac{\beta}{\alpha}\right) \frac{\sigma_{e p}}{\sigma_{e n}}} \\
\frac{\sigma^{3} H}{\sigma^{3} H e}=0.850 \pm 0.009, \frac{\sigma_{e p}}{\sigma_{e n}}=2.55 \pm 0.05 \\
1 \%
\end{gathered}
$$

What this method fails to capture

- CM motion does residually affect the ratio.
- The plateau doesn't have to be flat.
- The number of $n p$ and pp pairs is kind of a fuzzy quantity
- Depends on the momentum range probed.
- Contamination from non-SRC events

Interrogating inclusive scattering with more sophisticated theory

- Spectral Function Calculations
- Detailed calculations for light nuclei, e.g., A=3 from Kaptari and Ciofi degli Atti
- Variational Monte Carlo
- New spectral functions that separate "correlated" and "mean field" contributions
- $3 \mathrm{H}, 3 \mathrm{He}, 4 \mathrm{He}, 12 \mathrm{C}$, for AV-18
- Not all the kinks are worked out.
- Generalized Contact Formalism
- Can't address mean-field contribution
- Allows twiddling model input parameters

Interrogating inclusive scattering with more sophisticated theory

- Spectral Function Calculations
- Detailed calculations for light nuclei, e.g., A=3 from Kaptari and Ciofi degli Atti
- Variational Monte Carlo
- New spectral functions that separate "correlated" and "mean field" contributions
- $3 \mathrm{H}, 3 \mathrm{He}, 4 \mathrm{He}, 12 \mathrm{C}$, for AV-18
- Not all the kinks are worked out.
- Generalized Contact Formalism
- Can't address mean-field contribution
- Allows twiddling model input parameters

$\sigma_{C M}$ and E^{*} affect a2 plateaus.

R. Weiss et al., PRC 103, L031301 (2021)

$\sigma_{C M}$ and E^{*} affect a2 plateaus.

R. Weiss et al., PRC 103, L031301 (2021)

$\sigma_{C M}$ and E^{*} affect a2 plateaus.

R. Weiss et al., PRC 103, L031301 (2021)

A=3 pn/pp ratio in Contact Formalism

pn/pp determined by Contacts, determined by fits to VMC distributions (by R. Cruz-Torres)

- Includes fit uncertainty

AV18
N2LO (1.0fm) N2LO (1.2fm)
Norfolk

Figure by A. Denniston

A=3 pn/pp ratio in Contact Formalism

pn/pp determined by Contacts, determined by fits to VMC distributions (by R. Cruz-Torres)

- Includes fit uncertainty

Randomly sample:

- $\sigma_{C M}, C_{\alpha}$
(shading of the data points)

AV18
N2LO (1.0fm) N2LO (1.2fm)
Norfolk

Figure by A. Denniston

A=3 pn/pp ratio in Contact Formalism

pn/pp determined by Contacts, determined by fits to VMC distributions (by R. Cruz-Torres)

- Includes fit uncertainty

Randomly sample:

- $\sigma_{C M}, C_{\alpha}$
(shading of the data points)
Errors represent full range of ratio in $1.5<x<1.9$
- Plateaus aren't so flat

AV18
N2LO (1.0fm) N2LO (1.2fm) Norfolk

Figure by A. Denniston

A=3 pn/pp ratio in Contact Formalism

pn/pp determined by Contacts, determined by fits to VMC distributions (by R. Cruz-Torres)

- Includes fit uncertainty

Randomly sample:

- $\sigma_{C M}, C_{\alpha}$
(shading of the data points)

Errors represent full range of ratio in $1.5<x<1.9$

- Plateaus aren't so flat

Figure by A. Denniston

A=3 pn/pp ratio in Contact Formalism

pn/pp determined by Contacts, determined by fits to VMC distributions (by R. Cruz-Torres)

- Includes fit uncertainty

Randomly sample:

- $\sigma_{C M}, C_{\alpha}$
(shading of the data points)
Errors represent full range of ratio in $1.5<x<1.9$
- Plateaus aren't so flat

Depending on assumptions, a measured $\sigma_{T} / \sigma^{3} H e$, could mean a wide range of $\mathrm{pn} / \mathrm{pp}$ ratios.

AV18
N2LO (1.0fm)
N2LO (1.2fm)
Norfolk

Figure by A. Denniston

Interrogating inclusive scattering with more sophisticated theory

- Spectral Function Calculations
- Detailed calculations for light nuclei, e.g., A=3 from Kaptari and Ciofi degli Atti
- Variational Monte Carlo
- New spectral functions that separate "correlated" and "mean field" contributions
- $3 \mathrm{H}, 3 \mathrm{He}, 4 \mathrm{He}, 12 \mathrm{C}$, for AV-18
- Not all the kinks are worked out.
- Generalized Contact Formalism
- Can't address mean-field contribution
- Allows twiddling model input parameters

Quasi-elastic (QE) scattering in the Plane-Wave Impulse Approximation (PWIA)

Inclusive cross sections

Beam E $=4.33 \mathrm{GeV}$
Electron angle: 20.88°

Inclusive cross sections

Beam E $=4.33 \mathrm{GeV}$
Electron angle: 20.88°

- CK calculation is not flat.
- Also fails to reproduce $x=1$ region.

Interrogating inclusive scattering with more sophisticated theory

- Spectral Function Calculations
- Detailed calculations for light nuclei, e.g., A=3 from Kaptari and Ciofi degli Atti
- Variational Monte Carlo
- New spectral functions that separate "correlated" and "mean field" contributions
- $3 \mathrm{H}, 3 \mathrm{He}, 4 \mathrm{He}, 12 \mathrm{C}$, for AV-18
- Not all the kinks are worked out.
- Generalized Contact Formalism
- Can't address mean-field contribution
- Allows twiddling model input parameters

Spectral Functions by Argonne VMC group

Alessandro Lovato

Noemi Rocco

$$
\left.P_{\tau_{k}}(\mathbf{k}, E)=\sum_{n}\left|\left\langle\Psi_{0}^{A}\right| a_{k}^{\dagger}\right| \Psi_{n}^{A-1}\right\rangle\left.\right|^{2} \delta\left(E+E_{0}^{A}-E_{n}^{A-1}\right)
$$

Evaluated in two "parts."

- Mean-field:
e.g.:

$$
P_{p}^{\mathrm{MF}}(\mathbf{k}, E)=n_{p}^{\mathrm{MF}}(\mathbf{k}) \delta\left(E-B_{4_{\mathrm{He}}}+B_{3_{\mathrm{H}}}-\frac{k^{2}}{2 m_{3_{\mathrm{H}}}}\right)
$$

- Correlated:
e.g.:

$$
\begin{aligned}
P_{p}^{\mathrm{corr}}(\mathbf{k}, E) & =\sum_{n} \int \frac{d^{3} k^{\prime}}{(2 \pi)^{3}}\left|\left\langle\Psi_{0}^{A}\right|\left[|k\rangle\left|k^{\prime}\right\rangle\left|\Psi_{n}^{A-2}\right\rangle\right]\right|^{2} \\
& \times \delta\left(E+E_{0}^{A}-e\left(\mathbf{k}^{\prime}\right)-E_{n}^{A-2}\right)
\end{aligned}
$$

${ }^{12} \mathrm{C}$ Spectral Function

${ }^{12} \mathrm{C}$ Spectral Function

${ }^{4} \mathrm{He}$ Spectral Function

He-4 Normalization

$$
\int \frac{d^{3} p_{m}}{(2 \pi)^{3}} d E_{m} S_{p}\left(p_{m}, E_{m}\right)=Z
$$

Mean-Field Integral:
 Correlated Integral:

The calculation predicts the spectroscopic factor, i.e., the occupancy of the s-shell state.

The correlated part is just the difference.
1.999867

C-12 Normalization

$$
\int \frac{d^{3} p_{m}}{(2 \pi)^{3}} d E_{m} S_{p}\left(p_{m}, E_{m}\right)=Z
$$

Mean-Field Integral:	4.610938	76.7%
Correlated Integral:	1.398381	23.3%

Total Integral: 6.009318

He-4 Momentum Distributions

C-12 Momentum Distributions

A=3 Momentum Distributions

Why are the VMC Spectral functions inconsistent?

- Noemi and Alessandro "re-used" a calculation in which not all of the information was saved.
- They assume a form for the distribution of angles between q and Q, and tune to approximate 1d momentum distribution
- Clearly not perfect.

Inclusive Scattering at $x>1$

Event Generator: https://github.com/schmidta87/QE Generator

$$
\frac{d \sigma}{d \Omega_{e} d x_{B} d E_{m} d p_{m} d \phi_{q N}}=\frac{E_{e^{\prime}} \omega}{E_{e} x_{B} q} \cdot E_{N} p_{m} \cdot \sigma_{e N} \cdot S\left(p_{m}, E_{m}\right)
$$

Possible additional Jacobian based on the different missing energy conventions

$$
\mathcal{J}=\frac{E_{m, 1}+m_{A}-m_{N}}{E_{m, 2}+m_{A}-m_{N}}
$$

I am just neglecting this, because I'm not sure it's needed and it's very close to 1.

Inclusive Scattering at $x>1$

Event Generator: https://github.com/schmidta87/QE Generator

$$
\frac{d \sigma}{d \Omega_{e} d x_{B} d E_{m} d p_{m} d \phi_{q N}}=\frac{E_{e^{\prime}} \omega}{E_{e} x_{B} q} \cdot E_{N} p_{m} \cdot \sigma_{e N} \cdot S\left(p_{m}, E_{m}\right)
$$

- $A\left(e, e^{\prime}\right)$, integrating over all possible leading protons and neutrons.
- Kinematics corresponding to Fomin et al., PRL (2012)
- 5.766 GeV beam
- 18° electron scattering angle
- Spectra plotted in terms of x_{B}

Helium / Deuterium Yields

Helium / Deuterium Ratio

Helium / Deuterium Ratio

Breakdown by MF/SRC

The $x_{B} \leftrightarrow p_{m}$ correspondence

Total contribution

The $x_{B} \leftrightarrow p_{m}$ correspondence

The $x_{B} \leftrightarrow p_{m}$ correspondence

The $x_{B} \leftrightarrow p_{m}$ correspondence

Carbon / Deuterium Yields

Carbon / Deuterium Ratio

Breakdown by MF/SRC

A=3 Ratio

A=3 Ratio

Summary

Inclusive ratios are sensitive to:

- CM motion and E^{*}, which may not be precisely known.
- Flatness of plateaus
- The momentum range probed
- Contamination from non-SRC events

Summary
 Inclusive ratios are sensitive to:

- CM motion and E^{*}, which may not be precisely known.
- Flatness of plateaus
- The momentum range probed
- Contamination from non-SRC events

Summary Inclusive ratios are sensitive to:

- CM motion and E^{*}, which may not be precisely known.
- Flatness of plateaus
- The momentum range probed

Summary
 Inclusive ratios are sensitive to:

- CM motion and E^{*}, which may not be precisely known.
- Flatness of plateaus
- The momentum range probed

Do a study in which we vary Q2, vary xB range, show that the same contacts or same spectral function can lead to different "plateau" value.

- Contamination from non-SRC events

Summary

Inclusive ratios are sensitive to:

- CM motion and E^{*}, which may not be precisely known.
- Flatness of plateaus
- The momentum range probed
- Contamination from non-SRC events

BACK-UP

Dien's Ca-40/Ca-48 result

"Novel observation of isospin structure of short-range correlations in calcium isotopes" D. Nguyen et al., Phys. Rev,. C 102, 064004 (2020)

Caution: Missing energy can be defined a couple of different ways.

Most common approach:

$$
E_{m} \equiv \omega-T_{L e a d}-T_{A-1}
$$

Missing energy of two-body break-up states is fixed

An alternative approach:

$$
E_{m} \equiv \omega-T_{\text {Lead }}
$$

Missing energy of two-body break-up states changes with p_{m}

Absolute Cross Sections for $A=3$

$\mathrm{C}\left(\mathrm{e}, \mathrm{e}^{\prime}\right)$: the $x_{B} \leftrightarrow p_{m}$ correspondence

Total contribution

$\mathrm{C}\left(\mathrm{e}, \mathrm{e}^{\prime}\right)$: the $x_{B} \leftrightarrow p_{m}$ correspondence

$\mathrm{C}\left(\mathrm{e}, \mathrm{e}^{\prime}\right)$: the $x_{B} \leftrightarrow p_{m}$ correspondence

$\mathrm{C}\left(\mathrm{e}, \mathrm{e}^{\prime}\right)$: the $x_{B} \leftrightarrow p_{m}$ correspondence

[^0]: "A precise measurement of the isospin structure of short-range correlations using inclusive scattering from the mirror nuclei ${ }^{3} \mathrm{H}$ and ${ }^{3} \mathrm{He}^{\prime \prime}$
 S. Li et al., to appear in Nature, 2022

