SRC studies with hadronic probes

SRC Workshop, MIT 3 August 2022

Julian Kahlbow

R. Cruz-Torres et al., Nature Phys. 17 (2021).

Proton scattering at BNL

np SRCs in ¹²C(p,2p+n)

in agreement with e⁻ scattering

Cross-section scaling

+ Large momentum transfer |t| & |u|

``Selective Attention``

$$\frac{d\sigma}{dt} \propto s^{-8}$$

High-intensity proton beam at HADES/GSI

Open proposal:

- p + nuclear target at ~5 GeV/c/u
- intensity: 1x10⁷ pps
- run 2025/26

High-intensity proton beam at HADES/GSI

Study:

- MF to SRC transition
- NN interaction
- 3N SRCs
- factorization

Statistics estimate: A(p,2pn) ~ 10,000 A(p,2pp) ~ 1,050

cos(γ) (GeV/c)

Proton beam -> Proton target Inverse kinematics experiments

fully exclusive measurement: measure all emerging particles

Overcome distortions due to initial/final state interactions

incoming and outgoing protons interact with other nucleons

- → disturb initial momentum reconstruction
- → extra excitations of the nucleus (break fragment apart)
- \rightarrow eject additional particles (pions, ...)

2018 Experiment at BM@N Setup / JINR

Single-step nucleon knockout proven: access ground-state distributions

Identified SRCs

23 np pairs 2 pp pairs -> np dominance

+ proton-proton opening angle, guided by Generalized Contact Formalism*

* A. Schmidt et al., Nature 578 (2020) R. Cruz-Torres, D. Lonardoni et al., Nat. Phys. 17 (2021) J.R. Pybus et al., PLB 805 (2020)

Pair correlations

strongly correlated pair: nucleon momentum not balanced by *A-1*

NN back-to-back emission

weak interaction between pair and A-2 spectator

\rightarrow Factorization

Follow-up experiment in 2022

Goals:

- study nuclear structure in ¹²C
- obtain absolute cross sections
- study SRC formation processes

using quasi-elastic & hard knockout reactions

by

- longer run time
- better start-time resolution
- improved proton ToF measurement
- proton-pion separation
- improved fragment resolution
- multi-particle tracking

Experimental Setup at BM@N

2020/21: Building new detectors, new LH₂ target, ship equipment, set up experiment

Experimental Setup at BM@N

2020/21: Building new detectors, new LH₂ target, ship equipment, set up experiment

Arm detectors for (p,2p) measurement

New LH₂ target

Dima Klimanskiy et al.

Scintillator

1 ToF layer:

- 15 scint. bars:
 - EJ200 + light guide
 - 200 cm x 10 cm x 6cm
- PMTs: Hamamatsu R13434
- GSI Tacquila electronics

3 Calorimeter layers, each:

- 15 bars: scint+iron sandwich
- PMT readout both ends
- weight ~5,000 kg

1 ToF layer:

- 15 scint. bars:
 - EJ200 + light guide
 - 200 cm x 10 cm x 6cm
- PMTs: Hamamatsu R13434
- GSI Tacquila electronics

3 Calorimeter layers, each:

- 15 bars: scint+iron sandwich
- PMT readout both ends
- weight ~5,000 kg

New ToF-Calorimeter: magnetic shielding

passive shielding from mag. field:

- iron box (1cm)
- mu-metal (ToF layer)

New ToF-Calorimeter: magnetic shielding

passive shielding from mag. field:

- iron box (1cm)
- mu-metal (ToF layer)
- -> no distortions on ToF layer performance

21

Experiment running conditions

- $7^{\text{th}} 13^{\text{th}}$ March 2022: calibration with beam
- $14^{th} 28^{th}$ March 2022: data taking with LH₂ target

Beam:

٠

- ion: Carbon-12
- acceleration: **Booster** + Nuclotron
- intensity: ~ 4x10⁵ ions/spill, ~5s spill
- momenum: 3.75 GeV/c/u

Experiment running

Run plan

- 1 Pb target (3 mm)
- No target
- 3 Pb targets (3 x 3 mm)
- LH₂ target (30 cm)
- main production trigger: Arm-And & Beam (DS 700) & Laser (10 Hz)
- accumulated physics triggers: ~ 3x statistics (2018) (140 Mio. triggers, 60 TB data)

main DAQ + scalers

Trigger Bits

Incoming beam

Fragment Charge ID

2018:

Fragment Momentum

Momentum reconstruction based on multi-dimensional fit:

 $P/Z = f(X_0, Y_0, Z_0, TX_0, TY_0, X_{DCH}, Y_{DCH}, Z_{DCH}, TX_{DCH}, TY_{DCH})$

Tracking in Arms

Alexander Makankin, Göran Johansson

Tracking in Arms

Göran Johansson

Timing in Arms

Summary and Outlook

April – June:

- Incoming beam selection
- Start time determination
- Fragment identification (charge + fragment tracking)

July:

- Vertex tracking with GEM+CSC
- Improving fragment tracking
- ToF GEM/CSC correlation

Vasilisa Lenivenko, Timur Atovullaev, Sergey Nepochatykh (JINR) Göran Johansson (Tel Aviv U)

August – September:

- ToF calibration, timing w/ TOF400, identification leading protons
- Missing momentum / energy / mass reconstruction
- QE selection

Outlook

SRC studies with hadronic probes open a new pathway at European facilities

	BM@N @ JINR (March `22)	HADES @ GSI (2025/26)	R ³ B @ GSI/FAIR (May 2022 +)	HESR @ FAIR (2028 -)
High beam energy	\checkmark	\checkmark		\checkmark
Inverse kinematics	\checkmark			
Radioactive beams			\checkmark	\checkmark
			Ļ	