Bound proton structure with BAND

Workshop on Short Range Correlations at the Intersect of Nuclear and Nucleon Structures

August 3, 2022

Tyler Kutz

Inclusive DIS measurements suggest connection between SRCs and EMC effect

SRC-EMC hypothesis:

EMC effect driven by modification of nucleons in SRC pairs

 $e^{-}(k')$

 Inclusive: integrate over all momentum

- Inclusive: integrate over all momentum
- Tagged: detect spectator nucleon to reconstruct initial momentum

- Inclusive: integrate over all momentum
- Tagged: detect spectator nucleon to reconstruct initial momentum

- Inclusive: integrate over all momentum
- Tagged: detect spectator nucleon to reconstruct initial momentum

Deuterium ideal nucleus for tagged DIS

- Know which nucleon was struck (n or p)
- "Simple" two-body system *always correlated*

or p) orrelated

Deuterium ideal nucleus for tagged DIS

- Know which nucleon was struck (n or p)
- "Simple" two-body system always correlated
- But EMC effect is *small*

1.06

- 1.04
- 1.02
- 4
- 1

 $F_2^{d/(F_2^{p}+F_2^{n})}$

- 0.98
- 0.96
- 0.94
- 0.92
- 0.9

or *p*) orrelated

Griffioen et al., PRC (2015)

Deuterium ideal nucleus for tagged DIS

- Know which nucleon was struck (n or p)
- "Simple" two-body system *always correlated*
- But EMC effect is *small*
- SRC hypothesis predicts large modification of (rare) SRC states!

Griffioen et al., PRC (2015)

Overview

- Monte Carlo
- Tagged DIS analysis
- Outstanding issues

- Inclusive DIS analysis

BAND technical note is published online

- Software & framework
- Calibrations
 - Gain matching

 - Time-walk, time offset, global time calibration • Stability of calibrations with run periods
 - Energy calibration
- Good run selection (BAND only)

<u>CLAS12 Note 2022-003</u> covers technical parts of the BAND analysis

Monte Carlo

- Event generators
 - PWIA for tagged DIS (using free F_2^p and F_2^n)
 - 1. Model in DIS limit $(Q^2 \rightarrow \infty)$
 - 2. Model with exact expressions (no DIS limit) Strikman & Weiss, PRC 97, 035209 (2018)
 - 3. Independent generator from W. Cosyn <u>Cosyn & Sargsian, PRC 84, 014601 (2011)</u>
 - Standard inclusive generator (using F_2^d)
 - Various checks performed to ensure reasonable consistency in expected rates between generators

- GEANT4 simulation of detector
 - Standard implementation of CLAS12 in GEMC 4.4.1
 - Implemented geometry for:
 - BAND
 - Upstream material (beam pipes, electronics boxes, etc.)

Inclusive DIS

$E_{beam} = 10.2-10.6 \text{ GeV}$

BAND

CLAS12 (electron) event selection

- Electron ID & fiducials
 - Charge & event builder PID
 - 5σ sampling fraction cut on E_{PCAL} , p
 - Additional E/p cut for p > 4.5 GeV
 - DC fiducial cuts
 - ECAL fiducial cuts
 - -5 cm < z_{vtx} < -1 cm

Additional electron/inclusive DIS cuts

, p V • $p_e > 3 \text{ GeV}$ • $Q^2 > 2 \text{ GeV}^2$. • $W^2 > 4 \text{ GeV}^2$.

Inclusive analysis (electron quantities)

10% or better agreement in electron quantity distributions

Inclusive analysis (DIS quantities)

Overview

- Monte Carlo
- Tagged DIS analysis
- Outstanding issues
- Inclusive DIS analysis

Tagged DIS

$e_{beam} = 10.2-10.6 \text{ GeV}$

 $\sigma_{exp}^{Born} = \frac{Y_{exp}}{Y_{sim}} \sigma_{theory}^{Born} \longrightarrow -\frac{Q}{Q}$

 $R_{tag} = \frac{Y_{exp}(x')/Y_{exp}(x'=x'_{0})}{Y_{sim}(x')/Y_{sim}(x'=x'_{0})} = \frac{\sigma_{exp}(x')/\sigma_{exp}(x'=x'_{0})}{\sigma_{theory}(x')/\sigma_{theory}(x'=x'_{0})}$

σ_{exp}^{Born}	Y_{exp}
σ^{Born}_{theory} -	Y _{sim}

$$\sigma_{exp}^{Born} = \frac{Y_{exp}}{Y_{sim}} \sigma_{theory}^{Born}$$

$$\sigma_{exp}^{Born} = \frac{Y_{exp}}{Y_{sim}} \sigma_{theory}^{Born} \longrightarrow \frac{\sigma_{exp}^{Born}}{\sigma_{theory}^{Born}} = \frac{Y_{exp}}{Y_{sim}}$$

$$R_{tag} = \frac{Y_{exp}(x')/Y_{exp}(x'=x'_0)}{Y_{sim}(x')/Y_{sim}(x'=x'_0)} = \frac{\sigma_{exp}(x')/\sigma_{exp}(x'=x'_0)}{\sigma_{theory}(x')/\sigma_{theory}(x'=x'_0)}$$

- Exact cancellation of luminosity (separately for data & MC)
- Large cancellation of BAND neutron detection efficiency
- Mitigation of FSI

$$\sigma_{exp}^{Born} = \frac{Y_{exp}}{Y_{sim}} \sigma_{theory}^{Born}$$

$$R_{tag} = \frac{Y_{exp}(x')/Y_{exp}(x'=x'_{0})}{Y_{sim}(x')/Y_{sim}(x'=x'_{0})} = \frac{\sigma_{exp}(x')/\sigma_{exp}(x'=x'_{0})}{\sigma_{theory}(x')/\sigma_{theory}(x'=x'_{0})}$$

- Choose to normalize to $x'_0 = 0.3$
- Under traditional assumptions, $\sigma_A / \sigma_B = F_2^A / F_2^B$

$$R_{tag} \propto \frac{F_2^* (Q^2, p_T, Q^2, q_T, Q^2,$$

$$\sigma_{exp}^{Born} = \frac{Y_{exp}}{Y_{exp}}$$
$$\sigma_{theory}^{Born} = \frac{Y_{exp}}{Y_{sim}}$$

 $\alpha_{S}, x' \big) / F_2 \left(Q^2, p_T, \alpha_S, x' \right)$

 $F = x_0) / F_2 (Q^2, p_T, \alpha_S, x' = x_0)$

BAND (neutron) event selection

- Neutron candidate ID & fiducials
 - Charged track veto algorithm applied to events with 2+ hits with E_{dep} > 2 MeVee
 - Kills <10% of events...majority have single BAND hit
 - Fiducial cut on BAND edges/select bars
 - TOF cut applied *after* background subtraction
- bars subtraction

- Additional neutron/tagged
 DIS cuts:
 - $E_{dep} > 10$ MeVee
 - $p_n > 0.25 \,\,{
 m GeV}$
 - $\theta_n < 168.5^\circ$
 - $W' > 1.8 \,\,{\rm GeV}$
 - $\alpha_{s} > 1.2$
 - $\cos \theta_{nq} < -0.8$

BAND background subtraction

- Event-mix off-time neutrons with inclusive electrons
- Account for 4.008 beam bunch structure
- Normalize event-mixed sample to number of off-time background events

BAND event mixing validation

BAND event mixing validation

Direct comparison of variables not sensitive to TOF

Tagged analysis (electron + neutron quantities)

Tagged analysis (DIS quantities)

Tagged analysis (DIS quantities)

Tagged kinematics

This result is consistent with existing (inclusive) measurements of light nuclei...

...and gives a prediction for bound *neutron* structure!

Overview

- Monte Carlo
- Tagged DIS analysis
- Outstanding issues
- Inclusive DIS analysis

Outstanding issues (and what has been/is being done)

- Lower BAND efficiency from RG-B data than expected from simulation • Studied impact of efficiency on double ratio

 - Use higher-statistics RG-M data to map efficiency across BAND acceptance (ongoing)
- Data/MC discrepancy in absolute rate
 - Compared multiple reactions
 - Inclusive data/MC $\approx 0.6-0.7$
 - Tagged data/MC \approx 7-10
 - Compared multiple event generators
 - Double ratio minimizes sensitivity to absolute rate

Outstanding issues (and what has been/is being done)

- Peak in TOF spectrum around 34 ns
 - Spatial dependence...suppressed by eliminating top bars
 - Suppressed by higher E_{dep} cut
 - Compare to empty target data

- Peak in E_{dep} distribution around 10 MeVee
 - Occurs only for $0.25 < p_n < 0.275$ GeV
 - Compare to empty target data

100

50

Impact of BAND efficiency on double ratio

$$R_{\epsilon_n} = \frac{N_{standard}(x') / N_{standard} (x' = x_0)}{N_{reweight}(x') / N_{reweight} (x' = x_0)}$$

Standard MC events

Events reweighted based on true p_n to assess range of efficiency curves

Summary

- First results from BAND show *large* modification of highmomentum, deeply-bound protons
- These results are consistent with existing (inclusive) measurements of light nuclei
- Some open issues remain, though we have chosen an observable
 - that largely mitigates their effects
- CLAS12 analysis review underway

Backup

x_B and x'

CLAS12 event selection

EB electron

- Negatively-charged track in DC with associated ECAL shower
- Minimum energy deposition in PCAL of 60 MeV
- Measured sampling fraction within 5σ of calibrated parameterization
- For p < 4.9 GeV, minimum number of photo-electrons (N_{ph}) greater than 2 correlated with DC track

N_{ph} requirement

SF requirement

Refinement PID

- SF diagonal cut
- Minimum energy deposition in PCAL of 70 MeV
- SF vs. momentum
- SF vs. PCAL energy deposition
- Vertex

Diagonal cut

Pion contamination < 2%

Momentum

Sector 2

0.35

0.2

0.15

0.1<u>-</u>

SЕ

Sector 6

41

Vertex

Vertex

Survival rates

Electron refinement cu

Minimum $E_{dep,PCAL}$ cut "Diagonal" SF cut

SF vs p cut

SF vs $E_{dep,PCAL}$ cut

Vertex cut

Total

(Applied independently, except total)

ıt	Fraction of EB electrons
	99.9%
	81.8%
	86.6%
	87.2%
	60.4%
	48.0%

44

DIS kinematics

The rest of the discussion will be using electrons with these cuts

PCAL fiducial

Medium cut: V, W > 14 [cm] $\rightarrow 92\%$ survival

DC Fiducial

Remove areas with large χ^2/dof

y [cm]

y [cm]

10

0

-10

-30

-40

-59

Result of DC

	RGA (%)	RGB(10.2 GeV) (%)	RGB(10.6 GeV) (%)	GEMC (%)
Region 1	97.7	97.6	97.5	97.6
Region 2	98.4	98.3	98.3	97.7
Region 3	95.7	94.9	94.7	93.9

BAND neutron candidate selection

PMT reconstruction

Any ADCs/TDCs with null information are through away

Bar reconstruction

Needs to pass $t_L - t_R$ requirement

Only stored if $E_{dep} > 2$ MeVee

(except veto layer)

Veto bar reconstruction

Only stored if $E_{dep} > 0.55$ MeVee

At the end, we have a collection of hits

- If exists, pick the "lead" hit for the analysis

Look at hit pattern to identify events with neutral hit

Lead hit identification

Blocking conditions

- $layer_{other} = layer_{me} + 1$
- $y_{other} = y_{me} \pm 8$ [cm]
- $x_{other} = x_{me} \pm 15$ [cm]
- $ToF_{other} = ToF_{me} \pm 3$ [ns]

Cluster reduction

Only treats cases with 2 clusters

Cases we throw out

- More than 2 clusters
- If 2 clusters cannot be combined
- If the remaining "lead" hit is a veto bar

 $\sim 9\%$ of data is thrown away Less simulation is thrown away

Form tagged hits (simulation uses smeared electron)

 $E_{dep} > 10$ $p_n > 0.25$ *W*′ > 1.8 $\alpha_{S} > 1.2$ $\cos\theta_{nq} < -0.8$

BAND background subtraction

BAND background

 Background has time structure associated with 4 ns beam bunches

Event mixing procedure

• For each neutron in specified off-time region:

- 1. Randomly select inclusive electron
- 2. Shift neutron TOF by 4 ns increments until in signal region
- 3. Calculate tagged variables and save mixed event
- Repeat steps 2-3 for each 4 ns interval in signal region
- Repeat steps 1-3 for 10 electrons per off-time neutron

Normalization

- Event mixing generates high-statistics sample N_{mix} that far exceeds the actual number of background events N_{BG}
- When filling histograms, subtract event-mixing counts (scaled by N_{BG}/N_{mix}) from data (i.e. signal + background) counts

• When skimming tagged data files, record number of background events N_{BG} in off-time region

- Simulate background neutrons (flat TOF with square wave pulses) in GEMC

- Run through event mixing and compare background samples

• Merge background neutrons with inclusive electrons to create simulated background events • Merge background events with signal events to get simulated signal + background file

Χ'

0.15 < x' < 0.25

0.45 < x' < 0.55

0.25 < x' < 0.35

0.55 < x' < 0.65

Entries

Mean

1.55

70

Direct off-time/event mixed comparison

- time of flight
- This provides a pure data validation of event-mixing procedure and normalization

• Can directly compare event-mixed to background distributions of variables not sensitive to

Empty target analysis

