

Measurements and Simulations of (*e,e'n*)/(*e,e'p*) in ³He for High and Low Momentum Nucleons

Erin Marshall Seroka, Holly Szumila-Vance, Axel Schmidt

This work was supported by the US Department of Energy Office of Science, Office of Nuclear Physics, under contract no. DE-SC0016583

Protons "speed up" in neutron-rich nuclei

• Minority (p) moves faster than majority (n) in neutron-rich nuclei

Duer et al. (CLAS Collaboration), Nature 560, 617 (2018)

Neutron Detection in CLAS6

- Experiment e2a (April-May 1999)
- 4.4 GeV e⁻ beam on ³He, ⁴He, ¹²C targets
- Measure
 ³He(e,e'n)/³He(e,e'p)
- Neutron knocks out proton in the EC
- Unlike proton, no DC track or TOF hit

Fast Monte Carlo Simulations

- Used 3-body spectral functions based on Fadeev equations from Ciofi degli Atti and Kaptari
- Unweighted quasielastic generator under PWIA
- No neutron momentum correction/inefficiency

 $\frac{d^6\sigma}{d\Omega_e dE_e d\Omega_N dE_N} = |\vec{p}_N| E_N \sigma_{eN} S_N(E_m, \vec{p}_m)$

Protons in ³He

3

The p-dependent cuts developed for protons don't work for neutrons!

Smearing the Proton Momentum

- Neutron have worse momentum resolution than protons
- Need to apply same cuts to both p and n
- Solution: smear proton momentum and find modified cuts!

Source: Meytal Duer thesis (2018)

Smearing Methodology

- First correct neutron momentum based on mean of $\Delta p/p$
- Find neutron momentum error $\Delta p/p$ vs momentum
- Scale proton momentum by smearing factor drawn from Gaussian with $\sigma = \Delta p$
- Same smearing used in Fast MC

$$\frac{\Delta p}{p} = \frac{p_{miss} - p_{measured}}{p_{measured}}$$

Finding Modified Cuts for Neutrons

Goal: # of smeared protons passing modified cuts = # of unsmeared protons passing original cuts

Cut Optimization

- Minimize difference between false negatives and false positives
- Same cuts for all targets

False Positive Rate

False Negative per smeared passing

Cut Optimization

- Minimize difference between false negatives and false positives
- Same cuts in simulation as data

Results

- Low momentum nucleons behave as expected
- Neutrons speed up in proton-rich nuclei
- Spectral functions good at replicating ³He(e,e'n)/³He(e,e'p) ratios

Updates

- Results submitted for CLAS review (July 2021)
- Comments received (August 2021)
- Set aside to focus on Hall B and D experiments
- Going through full GEANT simulation with CLAS reconstruction (rather than fast MC)
- Working on systematics

Our analysis has two observables

• n/p ratios:

• SRC/MF double ratios

$$\left[\frac{\sigma_{SRC,n}^{A}}{\sigma_{MF,n}^{A}}\right] / \left[\frac{\sigma_{SRC,n}^{A_{0}}}{\sigma_{MF,n}^{A_{0}}}\right],$$

$$\left[\frac{\sigma_{SRC,p}^{A}}{\sigma_{MF,p}^{A}}\right] / \left[\frac{\sigma_{SRC,p}^{A_{0}}}{\sigma_{MF,p}^{A_{0}}}\right]$$

Correcting each individual event is equivalent to correcting the yields.

Sources of Systematic Uncertainty

	Typical Size for Meytal	Size for e2a
 Neutron efficiency 		(preliminary)
• Estimate by comparing change in yields with different ϵ_n models.	0.03 - 0.07	0.04
 Proton efficiency 		
 Compare acceptance maps to GSIM efficiency 	0.01 - 0.03	0.01
 Event selection 	0.04 - 0.05	0.03 - 0.04
 Estimate by varying cuts 		
 Fundamental electron-nucleon cross sections 	Not auoted	Not quoted
 Compare yields using Ye et al., to Kelly et al. 	(Kelly 2004)	(Ye 2018)
 False pos./neg. correction 		(small?)
 Calculate change in yields using data-driven Gaussian smearing vs. GSIM-driven Landau smearing model. 	Not quoted	Small?

Neutron Momentum Reconstruction Accuracy

Comparing measured neutron momentum to missing momentum

GEANT Simulation

generated to reconstructed momentum

Fitting to Landau

eg2 and e2a

 Gaussian fits used for momentum error

Simulation

- Gaussian fits used for FMC
- GSIM indicates Landau error

Neutron Momentum Correction (MPV)

• e2a correction up to 10%

• Sim correction of 5-15%

MPV parameter from landau fit

Neutron Momentum Correction

Before

After

Landau Smearing

- Smearing factor drawn from Landau distribution with $\sigma=\Delta p$

Landau Smearing in Data?

 $\frac{\Delta p}{p}$ for momentum intervals from 0.5 – 1.9 GeV/c

Neutron Detection Efficiency

<u>e2a</u>

- ³He(e,e'ppn)
- Consistent with Meytal's measurements

GEANT Simulation

- Comparing generated to reconstructed neutrons
- Higher than expected

Still to do

- Finalize contribution of neutron and proton efficiency/acceptance
- Find contribution of fundamental cross section uncertainty
- Find systematic uncertainty due to smearing function (using Fast MC and/or GEANT simulation)

Thank You! Questions?