The CaFe Experiment:

Isospin Dependence of Short-Range Correlations in Nuclei

C. Yero (On behalf of the CaFe collaboration)

3rd SRC Collaboration Meeting

August 02 - 04, 2022

Proposal: PR12-16-004

Spokespeople: L. Weinstein (ODU), D. Higinbotham (JLab), O. Hen (MIT), E. Cohen (TAU)

- 8-day measurement of *(e, e'p)* cross sections on: *d*, [⁹Be - ¹⁰B - ¹¹B - ¹²C], [⁴⁰Ca - ⁴⁸Ca - ⁵⁴Fe]
- A(e, e'p) at selected kinematics:
 - \triangleright mean-field (MF) nucleons ($k_{\rm rel} < 250 \ {\rm MeV/c}$)
 - ▶ short-range correlated (SRC) pairs ($k_{\rm rel} \gtrsim 250 \, {\rm MeV/c}$)
- what will CaFe extract?
 - absolute & reduced cross sections
 - => distorted spectral function (not observable)
 - single ratios SRC (high-p) / MF (low-p)
 - => proton pairing probability
 - lack double ratios (SRC/MF)_A1 / (SRC/MF)_A2
 - => relative pairing probability of high-p protons in different nuclei

use standard Hall C HMS+SHMS spectrometer pair

mean-field (MF) kinematics:

"Electron scattering off MF nucleon"

($k_{
m r} < k_{
m F}$ \sim 250 MeV/c),

mean-field (MF) kinematics:

"Electron scattering off MF nucleon"

($k_{
m r} < k_{
m F} \sim$ 250 MeV/c),

short-range correlation (SRC) kinematics:

"Electron scattering off SRC nucleon"

($k_{
m r} > k_{
m F}$ \sim 250 MeV/c),

Meson-Exchange Currents (MEC)

suppressed at $Q^2 > 1(\text{GeV/c})^2$

Final State Interactions (FSI)

suppressed at specific θ_{nq} < 40 deg

Isobar Configurations (IC)

suppressed at $x_{\rm Bj} > 1$

Which nucleons form SRC pairs?

SRC pairs:

- account for almost all high momentum nucleons in nuclei
- are predominantly *np*

CaFe will answer:

- Which nucleons form pairs?
- How does adding neutrons speed up protons?
- $\stackrel{\triangleright}{=}$ How does *NN-SRC* pairing change with *A* and *N/Z*?

Which Nuclei to Investigate?

- Which nucleons form pairs?
 - \triangleright How does adding +8 1 $f_{7/2}$ neutrons to a 2s1d closed shell ⁴⁰Ca change the proton pairing?
 - Now does adding +6 $1f_{7/2}$ protons to ⁴⁸Ca change the proton pairing?
 - ▶ What about +1p, +1n nuclei? 9Be $\rightarrow 10B \rightarrow 11B \rightarrow 12C$

Projected CaFe Results

A Closer Look at Calcium 40, 48

- ▶ more NN-SRC pairs formed in Ca-48 compared to Ca-40 (R ~ 1.17)
- inclusive (e, e') data cannot distinguish pp, nn, np-pairs \rightarrow (e, e'p) needed!

D. Nguyen et al. (Hall A Collaboration), PRC 102, 064004 (2020)

Ab-initio Calculations (Medium Nuclei)

CaFe measurement will test validity of *ab-initio* theory calculations

G. Hagen et al., Nature Phys. 12, 186 (2015), 1509.07169.

- above relative momenta ~ 300 MeV/c, CCN2LO calculation predicts ~20% increase in high-p protons (np-dominance)
- \triangleright how adding +6 protons (Ca48 \rightarrow Fe54) change the above result?

Ab-initio Calculations (Light Nuclei)

- CaFe measurement will test validity of *ab-initio* theory calculations
 - D. Lonardoni, A. Lovato, S. C. Pieper, and R. B. Wiringa (2017), 1705.04337

- \triangleright de-couple single +1p from +1n contributions in SRC-pair formation
- \triangleright how adding +1p, +1n in light nuclei compare to +6p, +8n in medium nuclei?

Momentum Distributions

CaFe measurement will test validity of *ab-initio* theory calculations

Summary

- ≥ 8-day (e, e'p) cross-section measurement on light → medium nuclei
- detailed study of NN-SRC pairing by de-coupling proton/neutron contributions (e.g. extract ratios, absolute cross-sections)
- test validity of *ab*-initio theory calculations (ratios and absolute or reduced cross sections)

"This material is based upon work supported by the National Science Foundation under Grant No. 2137604"

Holly Szumila-Vance Florian Hauenstein (Staff) (Staff)

Dien Nguyen (Isgur Fellow)

Mark your calendar Carlos Yero (NSF Fellow)

Noah Swan (PhD student)

• CaFe 4 PAC (8 real days): Sep 20 - Sep 27, 2022

Please visit our <u>CaFe Wiki</u> for more information.

Back-Up Slides

CaFe Central Kinematics

Ebeam (GeV)	E' (GeV)	$ heta_e$ Degree	P _p GeV	θ _p Degree	Pm GeV	Q2_cen ter
10.6	8.55	8.3	1.325	66.4	0.4	2.1
10.6	8.55	8.3	1.820	48.3	0.15	2.1

SRC

MF

CaFe Kinematics Coverage

CaFe Count Rate Estimates

	Beam setup/checkout/MF kinematics	5h PAC 4h PAC	Com + Calib Time
	Calibration (BCM, boiling?, Optics, hydrogen?) SRC kinematics (HMS move and magnet change)	2h PAC	16.5 PAC hours
•	SRC kinematics checkout	3h PAC	+ MF data taking
-	Overall target changes (MF and SRC)	2.5 PAC	4.5 PAC hours

Run plan (PAC hour): SRC data taking (75 PAC hours)

Target	Run Hour SRC (PAC hour)	Number of event (SRC)	Run hour MF (PAC hour)	Number of event (MF)
D2	7	5.3k	0.5	250k
C12	7	5.0k	0.5	52k
Ca48	12	8.7k	0.5	53k
Ca40	12	8.7k	0.5	53k
Fe54	20	8.7k	1.0	55k
Be9	4	4.6k	0.5	98k
B10	6.5	4.5k	0.5	57k
B11	6.5	5.0k	0.5	63k

TOTAL: 16.5 + 4.5 + 75 = 96 PAC hours = 4 PAC days

18