SRC collaboration meeting, Aug-4, 2022

Tagged SIDIS study

Erez O. Cohen, Ofer Aviv, Igor Korover, Dien T. Nguyen, Florian Hauenstein, Eli Piasetzky

S_{RC}^{IDIS} @BAND | Executive summary

- We study SRC via $d(e, e'\pi)$ measurements tagged by a fast recoil *n*
- Within the Parton model terminology, data show structure modification for high-virtuality *p*
- The effect is large
- The effect is flavor dependent
- Nucleons in pairs are not in extreme configuration

Motivation and

goals

S_{RC}^{IDIS} @BAND | DIS π^+/π^- production cross-section ratio

• The *u* and *d* quark structure functions in a bound *p* are potentially different from these in free *p*

• Structure modification can be associated with *u* or *d* using π^+/π^- production cross-section ratio at high *z* $(\pi^+ \text{ is } u\bar{d}, \pi^- \text{ is } d\bar{u})$

S_{RC}^{IDIS} @BAND | Motivation to study ECM/SRC in close

- Some of the modification can be attributed to SRC
- We study this ratio for a "tagged p" from a SRC pairs

(using a deuteron with CLAS)

L. Weinstein, et al., PRL 106, 052301 (2011)O. Hen, et al., PRC 85, 047301 (2012)J. Arrington, et al., PRC 86, 065204 (2012)

 S_{RC}^{IDIS} @BAND | Extracting the cross-section super-ratio

• This super-ratio is less sensitive to some of the experimental uncertainties:

 $\left(\frac{\sigma(e, e'\pi^+)}{\sigma(e, e'\pi^-)}\right)_{all \ events}$

- •*n*-detection efficiency
- • π^+/π^- detection differences

Mainly scatter off a high-virtuality p in $\left(\frac{\sigma(e, e'\pi^{+})}{\sigma(e, e'\pi^{-})}\right)_{n>275 \text{ MeV/c}}$ *np*-SRC

Scatter off

n or p in d

Expectation

from naive

Parton model

S_{RC}^{IDIS} @BAND | What should we expect?

• The Mott cross section for the scattering off a quark

$$\xi \text{ is } \sigma_{(e,e'\xi)} \propto q_{\xi}^2 f_{\xi}$$
 function

• For a π^+ production off a p, this means

 $\sigma_p^{\pi^+}(x,z) \propto \left[4D^+(z) + D^-(z)\right] \left[u_v(x) + d_v(x)\right] + (sea \ contributions)$

S_{RC}^{IDIS} @BAND | What should we expect?

• Denote $r = D^{-}/D^{+}$ - the ratio unfavored/favored

fragmentation probability, to get

S_{RC}^{IDIS} @BAND | What should we expect for scattering off a d?

- We assume isospin symmetry, i.e. $u_n = d_p, d_n = u_p$
- With this, we can write

$$\sigma_p^{\pi^+} \propto 4u_v + rd_v + (sea \ contributions)$$

$$\sigma_p^{\pi^-} \propto 4ru_v + d_v + (sea \ contributions)$$

$$\sigma_n^{\pi^+} \propto 4d_v + ru_v + (sea \ contributions)$$

$$\sigma_n^{\pi^-} \propto 4rd_v + u_v + (sea \ contributions)$$

• For d = p + n,

$$\sigma_d^{\pi^+} = \sigma_p^{\pi^+} + \sigma_n^{\pi^+} \sim (4+r)(u_v + d_v) + (sea \ contributions)$$

$$\sigma_d^{\pi^-} = \sigma_p^{\pi^-} + \sigma_n^{\pi^-} \sim (4r+1)(d_v + u_v) + (sea \ contributions)$$

 S_{RC}^{IDIS} @BAND | Untagged π^+/π^- ratio - expectation from naive model

• Neglecting sea contributions, the π^+/π^- crosssection ratio gets a simple form

$$\sigma_d^{\pi^+} / \sigma_d^{\pi^-} \sim \frac{4+r}{4r+1}$$

BAND Data

S_{RC}^{IDIS} @BAND | Motivation to study SRC with CLAS and BAND

• BAND is a dedicated detector to tag SRC events with a backward recoiling neutron

e and π Particle ID

e and π fiducial cuts (PCAL, DC)

Calorimetry energy deposition

 $5^{\circ} < \theta_e$, $\theta_{\pi} < 35^{\circ}$

 $|v_z^e - v_z^{\pi}| < 20$ cm (to be tightened)

 $1.25 < p_{\pi} < 5.0 \text{ GeV/c} (\pi/\text{K separation})$

0.3 < z < 1.0

 π^+/π^- acceptance matching in $p - \theta$ plane

 $3 \text{ GeV/c} < p_e < p_{\text{beam}}$

2.5 GeV < $M_x(e, e'\pi)$

DIS

2 (GeV/c)² < Q^2 < 10 (GeV/c)² 2.5 (GeV/c)² < W $y = \frac{\omega}{E_{beam}}$ < 0.75 (avoid QE)

S_{RC}^{IDIS}@BAND | Example: *e*-PID "refinement"

[Diehl & Joo, "A ...study of SIDIS..." v. 4 Dec-1,2020]

S_{RC}^{IDIS} @BAND | Example: π -PID "refinement"

[Diehl & Joo, "A …study of SIDIS…" v. 4 Dec-1,2020] [Avakian, Baltzell et al., "CLAS RG-A - Analysis note…" v. 3 Nov-4,2020]

 $C(\pi^+) = 0.88, C(\pi^-) = 0.93$

S_{RC}^{IDIS} @BAND | Example: π^+ and π^- acceptance matching

 π^+/π^- acceptance matching/correction is in principle a multidimensional function depending on the momenta and angles of the pion and the electron.

S_{RC}^{IDIS} @BAND | Event statistics

2.8k events $\sigma(e, e'\pi^+n)$ 0.9k events $\sigma(e, e'\pi^-n)$ $\sigma(e, e'\pi^+$ $\sigma(e, e'\pi^{-})$ 21.3M events 12.7M events

S_{RC}^{IDIS} @BAND | Neutron hit position in BAND

RGB + BAND: 10.2 GeV all data (Does not include 10.4 and 10.6 data)

 $(e, e'\pi^{-}n)$

25

Kinematics

 S_{RC}^{IDIS} @BAND | Kinematical distributions - momentum transfer

S_{RC}^{IDIS} @BAND | Kinematical distributions - Bjorken scaling

S_{RC}^{IDIS} @BAND | Hadronic mass: standing d

 $d_{rest} = (0, 0, 0, m_d)$

S_{RC}^{IDIS} @BAND | Hadronic mass: standing p

S_{RC}^{IDIS} @BAND | Kinematical distributions - π energy fraction

S_{RC}^{IDIS} @BAND | Hadronic invariant mass vs. missing mass

S_{RC}^{IDIS} @BAND | Hadronic invariant mass: W' vs W

S_{RC}^{IDIS} @BAND | Hadronic invariant mass vs. missing mass

S_{RC}^{IDIS} @BAND | Kinematical distributions - transverse momentum to q

S_{RC}^{IDIS} @BAND | π azimuthal angle in the q - frame

S_{RC}^{IDIS} @BAND | π azimuthal angle in the q - frame

S_{RC}^{IDIS} @BAND | Recoil neutron momentum distribution

S_{RC}^{IDIS} @BAND | Transverse neutron momentum

S_{RC}^{IDIS} @BAND | Recoil neutron direction in lab frame

S_{RC}^{IDIS} @BAND | Recoil neutron direction in q frame

S_{RC}^{IDIS} @BAND | neutron direction in the lab (bins of *z* and *x_B*)

Results

(Preliminary)

- These data do not include acceptance corrections
- Nor they account for recoil neutron random subtraction

Within Parton model terminology:

- The structure of free and high-virtuality *p* are different
- The effect is large
- Expected if EMC is dominated by 10-20% of the nucleons:

$$\sim 10\% \times (5 - 10) \sim 100\%$$
 effect

- Most of the medium-modified quarks have moderate x_B
- The effect is flavor-dependent $u^*/d^* \sim 2u/d$

 S_{RC}^{IDIS} @BAND | Summary - 2

- The EMC/SRC in deuteron changes F_2^n/F_2^p and extracted u/d, MARATHON data agree.
- Are our new SIDIS results at small *x_B* consistent with this picture?
- How can we explain the *u/d* modification in the Parton model?

- Acceptance correction
- Recoil random-*n* subtraction
- Add free proton data (RGA)
- Add 10.6 and 10.4 GeV
- Publication plans:
 - •untagged cross-section ratio
 - tagged cross-section ratio
 - •tagged/untagged cross-section super ratio
 - asymmetry

S_{RC}^{IDIS}@BAND | ToDo list

Task	Responsibility	Priority	Estimated Time
p_T of the pion with respect to the virtual photon for each x_B and z bin in the final results	Erez	1	1 week
W' vs. M_X - for the untagged and tagged data, to see if we are in the resonance region or in the DIS one	Erez	2	1 day
Analyze first free-proton file from RGA	Erez	3	1 day
z vs. z _{light-cone} (z') - for untagged and tagged data	Erez	4	1 week
The invariant mass of the un-detected system: $(q + d - n - \pi)^2$	Erez	5	1 month
Analyze (e,e') data to extract ratio of $(e,e'\pi^+) + (e,e'\pi^-)$ to (e,e')	Erez	6	3 months
Subdivide p_n distribution to the two separate x_B bins for the tagged data	Erez	7	1 day
Tagged neutron hit position in the BAND detector	Erez	Done	1 day
θ_n and φ_n for each bin x_B and z in the final results	Erez	Done	1 week
Raise the cut on W to > 2.5 for the untagged to match the tagged data kinematics	Erez	Done	1 hr
W vs. W' - for the moving proton (tagged data)	Erez	Done	1 day
untagged Nπ+ vs. Nπ- and Nπ+/Nπ- vs Q ² untagged Nπ+ vs. Nπ- and Nπ+/Nπ- vs W tagged Nπ+ vs. Nπ- and Nπ+/Nπ- vs Q ² tagged Nπ+ vs. Nπ- and Nπ+/Nπ- vs W	Erez	Done	1 day
Analyze 10.6 GeV data	Erez		1 month
Analyze 10.4 GeV data	Erez		1 month
Produce neutron skimming files with a relaxed cut on $p_n > 150$ MeV/c	Florian/Igor		?
Correct for random neutrons	MIT		?
Correct for random pions	MIT		?
Estimate systematic uncertainties (Results with modified cuts)	MIT		?
Analyze all available data from RGA	Erez		1 month
Polish comparison plots (Reference u/d to other data / refs. Instead of Chinese)	Ofer		?
Produce asymmetry plots	Ofer		?
Apply acceptance corrections	MIT		?
Write analysis note	Erez		2 months
Write paper draft	Eli		?

Thanks for

your time

65

S_{RC}^{IDIS}@BAND | References

Free p-JLAB2012	PRC 85, 015202 (2012)
Deuteron-JLAB2012	PRC 85, 015202 (2012)
r parameterization	N. Kalantarians, Thesis U. Houston (2008)Nucl. Phys. A 782 142T. Navasardyan, Thesis U. Yerevan (2007)
<i>uld</i> parameterization	PhysRevLett.128.132003

Backup

S_{RC}^{IDIS} @BAND | What should we expect for scattering off a p?

• Again, we write the cross sections in the naive Parton model

$$\sigma_p^{\pi^+} \propto 4u_v + rd_v + (sea \ contributions)$$

 $\sigma_p^{\pi^-} \propto 4ru_v + d_v + (sea \ contributions)$

• And neglecting see contribution we obtain for a free proton

$$\sigma_p^{\pi^+} / \sigma_p^{\pi^-} \sim \frac{4(u_v / d_v) + r}{4r(u_v / d_v) + 1}$$

• For a bound proton in a deuteron, we simply write

$$\sigma_{p \text{ in } d}^{\pi^+} / \sigma_{p \text{ in } d}^{\pi^-} \sim \frac{4(u_v^*/d_v^*) + r}{4r(u_v^*/d_v^*) + 1}$$

S_{RC}^{IDIS} @BAND | Kinematical distributions - π momentum

