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● AI/ML nearly everywhere in nuclear physics community 
○ Experimental Applications in hot and cold QCD: a 10000m view

■ Multidimensional problems 
■ Decisions in data streaming 
■ Uncertainty quantification 

● Future experiments (EIC): AI/ML from the beginning 
○ Community (AI4EIC)

● Conclusions

This talk will cover AI/ML used for detector development and data analysis

AI is the capability of a computer system to mimic learning, problem-solving and reasoning. Here is 
defined  to broadly represent the next generation of methods to build models from data and to use these 
models alone or in conjunction with simulation and scalable computing to advance scientific research. 
These methods include (and are not limited to) Machine Learning (ML) — help the computer learn without 
direct instructions, Deep Learning (DL), Statistical Methods, Data Analytics, and Automated Control.
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● Several workshops have identified the scientific challenges and 
opportunities at the intersection between AI and data intensive 
science such as NP, highlighting the tremendous potential of AI 
for new insight and discoveries within NP research

● AI/ML techniques are now actively being used in multiple 
aspects of NP; they will be applied nearly in every system of 
next QCD frontier experiments like the EIC

[1] A. Boehnlein et al., Machine learning in nuclear physics, Rev. Mod. Phys. 94, 031003 (2022) and references therein

Rev. Mod. Phys. 94, 031003 (2022) 

Deep Learning for Deep Inelastic Scattering 
reconstruction of kinematics, EIC

Particle Track Identification CLAS12

DL for calorimetry in GlueX FCAL

Jet Physics at EIC; Heavy-flavor tagging jets / interaction with QGP 
at STAR (with possible extensions to sPHENIX, EIC); 

    *examples from [1]next slides

next slides

next slides

JLab, sPHENIX, EIC

EIC
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UQ?

Example of multi-dimensional feature space: Shower 
reconstruction in GlueX Barrel Calorimeter 

arXiv:2204.08609v1

● AI/ML can cope with multi-dimensional problems, and can handle 
and capture complicated correlations. This, supported by the 
growth of computational power, is thriving research in directions 
previously unexplored due to complexity of problems: challenges 
and limitations for traditional/standard methods are often 
opportunities for AI/ML.  

● AI gives the opportunity to include autonomous control and 
experimentation. This is highly relevant to accelerate science and 
drastically reduce the time between data taking and publication. 
Experiments are pushing for streaming readout and AI for this 
reason [SRO X workshop (2022)]. 

● We, as a community, have the opportunity to take advantage of the full 
potential of AI/ML: this can a have tremendous impact, e.g., 3D imaging of 
quarks and gluons in the nucleon  

● The above can result in a paradigm shift for NP if we understand the 
uncertainties and biases in the approach. There is a breadth of topics in this 
area and our requirements are quite unique and are typically not being 
solved by industry [topical meeting on UQ at AI4EIC].   
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Multiple reconstructed features

Example of need to quantify uncertainty

https://www.jlab.org/streaming-readout-x
https://indico.bnl.gov/event/16073/
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JetVLAD DeepRICH 

[1] C. Fanelli, J. Pomponi, “DeepRICH: learning deeply Cherenkov detectors”, 
Mach. Learn.: Sci. Technol., 1.1 (2020): 015010

[2] S. Joosten (ANL), Bottlenecks in classical simulations:: where AI can help?  AI4EIC, 2021 

● Can learn to generate hit patterns (also trained on high purity sample from 
real data) — calibration, alignment  

● Same performance of best performing reconstruction algorithm with ~4 
orders of magnitude speed-up in inference time on GPU

Cherenkov detectors 
are the backbone 

of PID @EIC

● Focused on identifying jets originating from heavy quarks such as 𝑏 and 𝑐, as 
opposed to lighter quarks and gluons. Trained on jets produced with PYTHIA. 

● JetVLAD takes charged jet constituents with varying quantities as input and 
aggregates to a descriptor vector which can then be used to compare different jet 
populations. This offers a feature space with improved classification 
performance.

● At increased jet momenta found that signal purity ~constant with increased 
background rejection. Studies highlight the importance of a precision vertex 
detector for HF.   

● Work on extending JetVLAD to use meson tagging as opposed to quark tagging 
(reduce dependence on simulation fragmentation). Other ongoing projects on 
simulation-based inference given a jet structure (JETSCAPE Coll)

Vectors of locally aggregated descriptors

Studied for STAR (potential application @sPHENIX, EIC)

Mimic ResNet family, width the same as output of NetVLAD

[1] J. Bielíková et al, “Identifying heavy-flavor jets using vectors of locally aggregated 
descriptors”, 2021 JINST 16 P03017

● Need to speed-up  simulations

● Complex hit patterns, sparse 
data, response as a function of 
the kinematics – DIRC detector 
produce the most complex hit 
patterns — need accurate and 
fast reconstruction 

● DeepRICH: Deeply Learning the 
Reconstruction of Imaging 
Cherenkov detectors Possibility 
to learn at the event-level rather 
than at the track/particle level.

Courtesy of R. K. Elayavalli (Vanderbilt)

https://iopscience.iop.org/article/10.1088/1748-0221/15/04/C04054/meta?casa_token=AeL1p24mZ7gAAAAA:6Hv7zu9cRuoTh7PXmJ2znysqDhzyH9RMP8hBE6rDtGEDRvFyIFDRPi5b8klxo3TyWRAi5Elvkuj9
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The development of streaming readout (SRO) for 
the NP driven by research initiatives:

● Streaming Grand Challenge [1] and the facility for 
“Innovation in Nuclear Data Readout and Analysis” 
(INDRA) at JLab 

● BNL LDRD "High Throughput Advanced Data 
Acquisition for eRHIC, Particle Physics and 
Cosmology Experiments" 

● PHENIX, STAR and sPHENIX (BNL), 
KM3NeT(INFN), BDX (JLAB) and CBM (FAIR)  

[1] A. Boehnlein, R. Ent, and R. Yoshida, Grand Challenge in Readout and Analysis for Femtoscale Science, 2018
[2] F. Ameli, et al., Streaming readout for next generation electron scattering experiments, Eur. Phys. J. Plus, 2022

[3] M. Diefenthaler et al., Diefenthaler, Markus, et al. Evaluation & Development of Algorithms & Techniques for Streaming Detector Readout. No. 2020-LDRD-LD2014. 2020.
[4] T. Jeske, et al. "AI for Experimental Controls at Jefferson Lab." JINST 17.03 (2022): C03043. — AI4EIC proceedings

[5] T. Britton, B. Nachman. "Accelerator and detector control for the EIC with machine learning." JINST 17.02 (2022): C02022. — AI4EIC proceedings
[6] S. Furletov et al., Machine learning on FPGA for event selection — AI4EIC proceedings

SRO for next generation electron scattering [2]
ML deployed on stream of real data CLAS + EPSCI @JLab

Courtesy of M. Battaglieri (JLab)
SRO Grand Challenge [1]

Aim to remove separation of data readout and analysis 
 take advantage of modern electronics, computing, and analysis

Many active projects regarding SRO at JLab: 
INDRA/ASTRA [3], AIEC (AI for Experimental Control) [4], Hydra 
(Online monitoring) [5], SRO with ML on FPGA [6]
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Courtesy of J. Huang (BNL) [1]

Identify D/B hadrons with real-time ML
● Topology of D/B decays
● Monitor collision vertex
● Feedback for improvement

The challenges:
Very high p+p collision rate: ~3MHz

Low rate of rare signals: ~150Hz (beauty for eg) 

Limited DAQ trigger bandwidth: ~15 kHz 

 (or 0.5% of p+p collisions)

No effective conventional triggers available

FastML: Fast Data Processing and Autonomous Detector Control for sPHENIX and Future EIC Detectors

Courtesy of Ming Liu (LANL)

[1] Huang, Yi, et al. "Efficient Data Compression for 3D Sparse TPC via Bicephalous Convolutional Autoencoder." 2021 20th IEEE (ICMLA). IEEE, 2021.
[2] F. Fahim, et al., “HLS4ML” arXiv:2103.05579 (2021)

Intelligent Experiment Through Real-Time AI 
(DOE FOA funded 2022-2023) 

Collaboration of NP, HEP and CS:
LANL, MIT, FNAL, NJIT, ORNL, UNT, CCNU

Talk @ QNP2022 AI/ML for SRO

https://indico.jlab.org/event/344/contributions/10499/attachments/8253/11854/AI%20in%20StreamingDAQ.pdf
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Uncertainty Quantification Robustness

Courtesy of B. Nachman (LBNL) Courtesy of M. Williams (MIT/IAIFI)

[1] O. Kitouni, N. nolte, M. Williams “Robust and Provably 
Monotonic Networks”, arXiv:2112.00038

● The Lipschitz constant of the map between the input and output 
space represented by a neural network is a natural metric for 
assessing the robustness of the model.

● This new method constrains the Lipschitz constant of dense DL 
models (can also be generalized to other architectures). The  
method relies on a simple weight normalization scheme during 
training that ensures the Lipschitz constant of every layer is below 
an upper limit specified by the analyst. 

● The algorithm was used to train a powerful, robust, and 
interpretable discriminator for heavy-flavor decays in the LHCb 
realtime data-processing system.

● LHCb has adopted this for the major selection algorithms, and 
looking at it for PID, fake-track killers.

statistical (aleatoric) / systematic (epistemic)
model biasdecrease with more events

[1] B. Nachman, “UQ for ML Applied to Data Analysis”, talk at 
AI4EIC Meeting on Uncertainty Quantification

[2] B. Nachman, How to achieve optimality and account for 
uncertainty, arXiv:1909.03081

“If the network architecture is not flexible enough it may be that the likelihood ratio is not 
well-approximated. This means that the procedure will be suboptimal and will not achieve the 

best possible precision. However, if the classifier is well-modeled by the simulation, then 
p-values computed from the classifier may be accurate, which means that the results are 

unbiased. Conversely, a well-trained network may result in a biased result if the simulation 
used to estimate the p-value is not accurate.”

inference/uncertainty-aware approaches 

https://indico.bnl.gov/event/16073/
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AI for Design 
ECCE [2]

[1] R. Abdul Khalek, et al. “EIC yellow report." Nuclear Physics A 1026 (2022): 122447.--- Chap. 11.12 on AI for EIC
[2] C. Fanelli, et al. (ECCE), "AI-assisted Optimization of the ECCE Tracking System at the Electron Ion Collider."  arXiv:2205.09185 (2022).

[3] W. Deconinck et al., “The EIC Software Stack: Designing a Scientific Software Environment for the 2030s”, APS Meeting, NP Division, Fall 2022

Adaptive Multi-objective Optimization of the EIC Detector Design

https://eic.ai

AI/ML Sector of the EICUG SW WG

AI considered since the very beginning in EIC, cf. [1]

ePIC SW stack [3]
The ePIC Collaboration is developing a modern SW stack that embraces the EIC 
SW statement of principles, with forward-looking aspects favorable for AI/ML 
implementation and utilization of heterogeneous computing 

with new EPIC SW (underway) 

(EIC schedule shown at 1st AI4EIC Workshop, 2021)

https://meetings.aps.org/Meeting/DNP22/Session/MK.8
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Unfolding     Lepton-jet correlation in DIS at H1 [1]
Courtesy of B. Nachman Courtesy of M. Arratia (UCR), B. Nachman

● First example of ML-assisted unfolding 
(MultiFold method): enables simultaneous 
and unbinned unfolding in high 
dimensions. 

● This development will allow us to do 
unbinned cross-section measurements

● Similarly, this could be applied at EIC

[1] V. Andreev et al. (H1 Collaboration), “Measurement of 
Lepton-Jet Correlation in Deep-Inelastic Scattering with 
the H1 Detector Using Machine Learning for Unfolding” 

Phys. Rev. Lett. 128, 132002

Using ML for differential cross section measurements 
(OmniFold and otherwise).  These tools for recent 
measurements with DIS from HERA data and the 

same tools could be used at the EIC.

OmniFold [1]

A. Andreassen, P. T. Komiske, E. M. Metodiev, B. 
Nachman, and J. Thaler “OmniFold: A Method to 

Simultaneously Unfold All Observables”  Phys. 
Rev. Lett. 124, 182001  2020

In the “opposite” direction, it could be exciting 
thinking about data-driven learning that relies 

less on simulations, with tools like, e.g., 
one-class classification / anomaly-detection 

[1] and weak supervision / topic modeling [2]. 

[1] C. Fanelli, J. Giroux, and Z. Papandreou. 
“Flux+ Mutability": A Conditional Generative Approach to 
One-Class Classification and Anomaly Detection." 
arXiv:2204.08609 (2022).
[2] M. LeBlanc, B. Nachman, and C. Sauer. "Going off topics to 
demix quark and gluon jets in αS extractions." 
arXiv:2206.10642 (2022).

Flux+Mutability [1] cAE + cMAF + HDBSCAN

Same architecture applied to n/γ showers reconstruction in GlueX
and BSM dijet signatures at LHC

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.128.132002
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.124.182001
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.124.182001
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● The “A.I. for Nuclear Physics” workshop (2020) and report [1], along with a hackathon of 8 teams each with 4 
participants, contributed to create a proto-community around AI for NP; this has been followed by the AI4NP winter 
school (369 registered participants), and the 1st AI4EIC workshop (2021) (243 registered participants).   All 
huge successes. 

[1] P. Bedaque, et al. "AI for nuclear physics." The European Physical Journal A 57.3 (2021): 1-27.
[1] R. Abdul Khalek, et al. “EIC yellow report." Nuclear Physics A 1026 (2022): 122447.--- Chap. 11.12 on AI for EIC

● Starting from the Yellow Report [1], and as clear from the 1st AI4EIC 
workshop, AI is being integrated in all aspects of the EIC  

● AI4EIC (https://eic.ai) is a working group of the EICUG dedicated to AI 
for the EIC community; good forum to address important 
cross-cutting aspects (accelerator, detector, theory, DS/CS)

● It organizes regular monthly meetings (typically topic-oriented), annual 
workshops, hackathons and data challenges, tutorials and schools; it 
contributes to disseminate AI in the EIC community 

https://eic.ai

AI/ML Sector of the EICUG SW WG

● Upcoming 2nd workshop — October 10-14, 2022, William & Mary; the workshop will have sessions on 
accelerator/detector design, theory/experiment connections, reconstruction/PID, AI/ML infrastructure and frontiers, 
streaming readout; it will also host tutorials (experts from academia, industry, national labs) as well as an 
(international) hackathon event. More info at https://indico.bnl.gov/e/AI4EIC  

https://eic.ai
https://eic.ai/ai-ml-references
https://indico.bnl.gov/e/AI4EIC


Conclusions

12

   AI is a perfect fit for experimental applications in hot and cold QCD: 

● Need support for interdisciplinary research and develop multi-disciplinary workforce: 

○ engage with data science community; providing FAIR dataset; collaborations in HPC exascale systems and AI/ML; take full 
advantage of exciting possibilities offered by new HW and SW and AI/ML within the NP community through educational and 
training activities. 

● Take full advantage of SRO and AI using heterogeneous computing. This can improve near real-time analysis and control (e.g., 
“intelligent” and automated detectors). 

○ A common theme is applying AI-methods with well-understood UQ (both systematic and statistic). If we understand the 
uncertainties and biases, near real-time analysis with SRO can result in a paradigm shift for NP with faster turnaround time to 
produce scientific results. 

● Transitioning from prototyping to deployment in production environments — How do solutions/prototyping from LDRD projects end up in 
production environments in our experiments?  E.g. Fast simulations; SRO. 

○ AI/ML Infrastructure: looking ahead, we shall adopt actual MLOps (end-to-end pipelines CI-CD-CT-CM); this is connected to Data 
Management, particularly provenance and reproducibility; another important topic is distributed strategies for training.

● Need for problem-specific tools: the most interesting challenges that can be approached in NP and AI will require approaches that go 
beyond industry standard tools.

● Other cross-cutting themes: Robustness, Explainability, also very important features for applications in our field. 

[1] Computational Nuclear Physics and AI/ML Workshop, 6-7 Sep 2022 
[2] P. Bedaque, et al. "AI for nuclear physics." The European Physical Journal A 57.3 (2021): 1-27.
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Deeply Learning DIS Courtesy of M. Diefenthaler (JLab)

[1] M. Diefenthaler, et al. “Deeply Learning DIS Kinematics”  arXiv:2108.11638
[2] M. Arratia, et al., “Reconstructing the kinematics of DIS with DL”, NIM-A 1025 (2022): 166164

● Use of DNN to reconstruct the kinematic observables Q2  and x in the study 
of neutral current DIS events at the ZEUS experiment at HERA.

● The performance compared to electron, Jacquet-Blondel and the 
double-angle methods using data-sets independent from training

● Compared to the classical reconstruction methods, the DNN-based 
approach enables significant improvements in the resolution of Q2 and x

DIS fundamental 
process @EIC

(Born level)

https://arxiv.org/abs/2108.11638
https://www.sciencedirect.com/science/article/pii/S0168900221010445
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[1] T. Jeske, et al. "AI for Experimental Controls at Jefferson Lab." JINST 17.03 (2022): C03043. — AI4EIC proceedings

[2] T. Britton, B. Nachman. "Accelerator and detector control for the EIC with machine learning." JINST 17.02 (2022): C02022. — AI4EIC proceedings

AIEC: AI for Experimental Control [1]

Use GP regression and Uncertainty to make an action

AI predicted Gain Correction Factors compared to existing GCFs 
for 2018 and 2020. Able to predict the existing GCFs using input 
features readily available via EPICS system during data taking.

Hydra: Online Monitoring Tasks [2]

● Take off-the-shelf ML technologies and deploy in near real-time 
monitoring tasks for GlueX in Hall D. 

● It was the online monitoring coordinator’s job to sift through 
hundreds of images produced in the previous 24 hours, looking for 
missed anomalies. This “human-in-the-loop” method prone to errors.   

● Hydra was created to tackle these challenges. Hydra is an AI system 
that leverages Google’s Inception v3 for image classification. 

It uses for training the collection of monitoring plots that GlueX had previously 
recorded.  A webpage was created to label the collected images and the entire 

system is driven by a database. Hydra is able to spot problems missed by humans 
and has been shown to perform better than humans at diagnosing problems. N. Jarvis (CMU) T. Jeske, D. McSpadden  (JLab)

T. Britton, D. Lawrence, K. Rajput (JLab)

Most probable value from Landau fit to experimental data as function of event number for 
the GP-controlled (blue) and constant 2125 HV (orange) sections of the CDC."
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� NP Physics studies diversified event topology with stringent systematics control. → Streaming DAQ; example 
adoption in sPHENIX and EIC 

� Streaming DAQ require large data reduction computationally 
→ Opportunity for real-time AI, e.g. feature extraction, lossy compression

� Multiple effort in building specialized AI algorithm for reliable and high-performance data reduction, and testing on 
emerging hardware for high-throughput AI computing, examples: 

In-memory computing at ASIC     |      DNN on FPGA      |         AI-chips w/ non-von-Neumann Architecture

[Miryala, 
CPAD21]

[Cerebras web 
doc.]

Streaming DAQ and real-time AI
Courtesy of J. Huang (BNL)
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Intelligent Experiment Through Real-Time AI: (DOE FOA funded 2022-2023) Fast Data 
Processing and Autonomous Detector Control for sPHENIX and Future EIC Detectors

Courtesy of Ming Liu (LANL)
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Timeline and Outlook
Courtesy of Ming Liu (LANL)
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Trigger AI Algorithm R&D
Courtesy of Ming Liu (LANL)



20

A Toy Model Hardware Implementation
Courtesy of Ming Liu (LANL)Courtesy of Ming Liu (LANL)
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[1] Y. Alanzi et al.,”ML-based event generator for e-p scattering”  arXiv:2008.03151

[2] Y. Alanzi et al., “A survey of ML-based physics event generation”, arXiv:2106.00643 

Courtesy of M. Battaglieri, A. Hiller Blin (JLab)

https://arxiv.org/abs/2008.03151
https://arxiv.org/abs/2106.00643

