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Al/ML in the context of QCD theory

Machine learning is a class of tools for optimising the parameters of
complex models

® Given data: describe/model/approximate data, identify correlations/features, ...

® \Without data: approximate known or unknown functions, reinforcement-based
optimisation...

Applications of Al/ML target almost all facets of QCD theory

‘ Data analysis
i.e., global fits, classitication, interpretation, ...

o ) First-principles theory
.e., Lattice QCD, perturbative QCD, EFT, nuclear many-body, ...
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Al/ML in the context of QCD theory

Applications of Al/ML target almost all facets of QCD theory

® No time for a review (or even summary) of the state-of-the-art:
examples only. See many focused workshops on this issue
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@ AI/ML for data analysis (theory)

Data analysis example #1:
Global fits to parton distribution functions
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[Eur.Phys.J.C 82 (2022), 2109.02653; Eur. Phys. J. C 79 (2019), 1904.00018]
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@ AI/ML for data analysis (theory)

Data analysis example #2:
Detect nature of QCD transition in heavy-ion collisions

Classification
particle 16 32 flattened fc output EOS
. spectra features features 128 layer
® Neural network trained to 15x48 15x48 8x24
identify nature of equation-of- N
: . XK/
- SOUMR
state from heavy-ion collision ~ By
data
® Successful proof-of-principle ] (]
. . . . 8x8 conv, 16 7x7x16 conv, 32
using hydrodynamics simulation  dropout(0.2)  dropout(0.2) dropout(0.5)
bn, PRelLu bn, avgpool, PRelLu bn,sigmoid
data
. o In: Final-state particle distributions in longitudinal
® Based on |dent|fy|ng Complex momentum (rapidity), transverse momentum and
correlations in input data azimuthal angle

Out: Identification of class of equation-of-state

[Nature Commun. 2 (2018) 1, 210, 1612.04262]
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Data analysis example #3:
Learn parton branching mechanism from simulated data

Interpretation

® Generative network trained using DGLAP-
based parton shower Monte Carlo event
generator

® Explainable/"white-box"” architecture
identifies physics of individual splitting
processes

® Future applications incl. modification of the

vacuum parton shower in heavy-ion collision

or electron-nucleus collisions at EIC

[Phys.Lett.B 829 (2022), 2012.06582]
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@ AI/ML for data analysis (theory)
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& Al/ML for first-principles theory

Compute exact results from known theory
Use AI/ML to do it faster

e.g., Lattice QCD, perturbative QCD, EFT, nuclear many-body, ...

Require mathematical guarantees of exactness to preserve rigour of
first-principles calculations

No room for approximations, errors, modelling, or any uncertainties
which cannot be systematically improved

Al/ML algorithm poorly trained ===l Results correct, but slower
Al/ML algorithm well trained sss==fi»- Results correct, but faster

Potential for transformative impact by enabling calculations that
would otherwise be computationally intractable
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Al/ML for first-principles theory

Compute exact results from known theory
Use AI/ML to do it faster

° Do the calculation the “same way” but faster

e.g., Tune parameters of existing algorithm using Al

[Free parameters of algebraic multigrid for solving linear systems,

automatic differentiation rather than stochastic optimisation]

% Al-accelerated algorlthm %
-

NOILVINDTVO
SOISAHd
1VOILIHOIHL
1OV XIAIIVAOUd

Standard algorithm

8 Phiala Shanahan, MIT



Al/ML for first-principles theory

Compute exact results from known theory
Use AI/ML to do it faster

Transform to a computationally easier problem with the same
solution

e.g., Preconditioning of any type
[Numerical solver e.g., matrix inversion, faster convergence after preconditioning]

e.g. Change-of-variables
[Deformation of complex integration contour leaves observables unaltered but

modifies variance]
4 "
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NOILVINDTVD
SOISAHd
TVOILIHOIHL
1IOVXIA18VAOUd
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Al/ML for first-principles theory

Compute exact results from known theory
Use AI/ML to do it faster

e.g., Learn a map from one observable to another, bias-
correct [sloppy and high-precision solutions of linear systems]

e.g. Sample nearby probability distribution,
reweight/resample

Al-accelerated algorithm %
I

NOILVIND1VO
SOISAHd
TVIILIHOIHL
1DV X3IA19VAOUd

Standard algorithm
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2 Al/ML for first-principles theory

First-principles theory example #1:
Contour deformation of complex integrals

Problem transformation

® ML -based deformation of integration contours: different integral with same
solution but better signal-to-noise properties/ faster evaluation

® | attice field theory:
Exponentially improved signal

-to-noise in proof-of-principle /\’j / f(2) dz
applications

® Perturbative QCD: f Nz) dz
Acceleration of multi-loop L f(z) dz =0 L"\v/‘,"
Feynman integrals ’ "

[Phys. Rev. D 103, 094517 (2021), 2101.12668; SciPost Phys. 12, 129 (2022), 2112.09145]
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Al/ML for first-principles theory

First-principles theory example #2:

Accelerate gauge field generation (sampling) in lattice QCD

Generative modeling

® Generative models used to accelerate

porovably-exact sampling of lattice
QCD gauge fields

® Success in proof-of-principle examples

® Requires custom model architectures
with physics built in

® Example of successful partnership with
industry

[Phys.Rev.Lett. 125 (2020) 12, 121601, 2003.06413]
12

10000

int

TQ

Cost per independent sample

1000 +
100 E

10-§

13

il

Q DeepMind

. * HB '.n‘
* Flow '
""
N
o
L0
............................ X
o S xx
*:::-.-_ ‘ ........ "
T T
1 2 3 4 5 6 7

Parameter of theory

Google

A1 1AIFI

Phiala Shanahan,

AURORA|

Conventional

approaches

} ML algorithm

EARLY SCIENCE

PROGRAM FO
DATA & LEARNI

MIT



Exploiting Al/ML for QCD theory: needs

Capitalising on great potential for transformative impact on QCD theory
requires targeted action

BUT Planning is difficult given rapidly changing and diverse requirements!

® Advances to be made at every level of complexity and scale
Complexity: Existing tools Custom approaches
Scale: Laptop Exascale hardware

® Many applications are in an early phase of development

® \\Ve have not yet explored the full space of possibilities:
new paradigms certainly still to come in next decade

Strong overlap with approaches and challenges on experimental side, but
also unique demands and opportunities
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Exploiting Al/ML for QCD theory: needs

Capitalising on great potential for transformative impact on QCD theory
requires targeted action

® Full exploitation requires true “ground-up” ML/AI for physics problems

® Requires support (people+hardware) for exploratory and developmental
research at both universities and labs

® Must train and retain talent at physics/Al intersection
Collaborations with AI/ML "“experts” external to physics community are
necessary but not sufficient

® Computational workflow of Al/ML problems can be different to other

algorithmic problems

® Demands supporting Al/ML workflows in hardware purchasing and
computing allocation policies
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Computational Nuclear Physics and Al/ML Workshop

Computational nuclear physics: needs

« Organized by:

» 60 registered participants (40 in person, 20 on line), including DOE

Alessandro Lovato (ANL)

Joe Carlson (LANL)

Phiala Shanahan (MIT)
Bronson Messer (ORNL)
Witold Nazarewicz (FRIB/MSU)
Amber Boehnlein (JLab)

Peter Petreczky (BNL)

Robert Edwards (JLab)

David Dean (JLab)

6-7 September 2022 at SURA in Washington, DC

https://indico.jlab.org/event/581/

All talks archived
Short white paper being prepared for the LRP

Computational
Nuclear Physics
and AI/ML
Workshop

6-7 September, 2022 / SURA headquarters

Organized by:

Alessandro Lovato — Joe Carlson (LANL), Phiala Shanahan (MIT), Bronson Messer (ORNL)
Witold Nazarewicz (FRIB/MSU), Amber Boehnlein (JLab), Peter Petreczky (BNL)

Robert Edwards (JLab), David Dean (JLab)

Admin support: Jae Cho jcho@jlab.org Tea Jojua tjojua@sura.org Sherry Thomas sthomas@ijlab.org

Schedule
Registration, schedule, and other information can be found at: https://indico.jlab.org/event/581/

Tuesday, 6 September

1:00—1:05 Welcome, David Dean and Sean Hearne

1:05-1:20 DOE remarks, Tim Hallman

1:20-2:00 QCD, William Detmold (JLab) and Swagato Mukherjee (BNL)
2:00—-2:40 Quantum many-body problems, Thomas Papenbrock (UT/ORNL)
2:40-3:00 BREAK

3:00-3:40 Fundamental Symmetries,Emanuele Mereghetti (LANL)
3:40-4:20 Astrophysics, George Fuller (UCSD)

4:20-5:00 AI/ML, Amber Boehnlein (JLab)

5:00—-5:40 Preliminary list of recommendations discussion (Peter Petreczky, lead)
5:40-7:30 Reception

Wednesday, 7 September

7:45—-8:30 Continental Breakfast

8:30—10:00 Breakout Sessions
1. QCD (Phiala Shanahan, lead)
2. Nuclear Structure and fundamental symmetries (Alessandro Lovato, lead)
3. Astrophysics (Bronson Messer, lead)

10:00 — 10:30 Break

10:30—12:00 Breakout reports

12:00-1:00 Lunch

1:00-2:30 Recommendations discussion and next steps

Jagerton b ECE
mas Jefferson National Accelerator Facility
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Computational nuclear physics: needs

Workshop Resolution

High-performance computing is essential to advance nuclear physics on the experimental and theory frontiers.
Increased investments in computational nuclear physics will facilitate discoveries and capitalize on previous
progress. Thus, we recommend a targeted program to ensure the utilization of ever-evolving HPC hardware
via software and algorithmic development, which includes taking advantage of novel capabilities offered by
Al/ML.

The key elements of this program are to:

1)  Strengthen and expand programs and partnerships to support immediate needs in HPC and Al/ML, and
also to target development of emerging technologies, such as quantum computing, and other
opportunities.

i.e., it is critical to support software and algorithm development, as well as
maintenance, sustainability e.g., DOE SciDAC, ECP, NSF Al institutes, CSSI programs

2) Take full advantage of exciting possibilities offered by new hardware and software and Al/ML within the
nuclear physics community through educational and training activities.

3) Establish programs to support cutting-edge developments of a multi-disciplinary workforce and cross-
disciplinary collaborations in high-performance computing and Al/ML.

4) Expand access to computational hardware through dedicated and high-performance computing
resources. | ¢  dedicated resources are needed to catalyse use of leadership-class

e.g., expansion of successful USQCD program across nuclear theory
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