Ultra-peripheral collisions measurements (high-energy photons in nuclear physics) *Spencer Klein, LBNL*

Presented at the Town Meeting on Hot & Cold QCD Sept. 23-25, 2022, MIT

What have we learned The next ~ 5 years LHC Runs 5+ and the EIC era

This is a huge subject; I apologize to everyone whose nice results I do not have time to cover. The focus will be on hot and cold QCD, since it is the focus of this meeting.

UPCs: the photon energy frontier

- Energies up to 500 TeV (lab frame)/5,000 PeV (target frame)
- Gluons (mostly) in nuclei at low Bjorken –x
 - Reaching x <~10⁻⁶ over a range of Q²
 - Gluon densities and transverse distributions
 - Baryon stopping in photoproduction, anisotropy etc.
- Dilepton production (QED studies)
- Beyond standard model physics
 - Light-by-light scattering and axion-like particle searches
 - τ anomalous magnetic moment, magnetic monopoles etc.

Energy	AuAu RHIC	pp RHIC	PbPb LHC	pp LHC
Photon energy (target frame)	0.6 TeV	~12 TeV	500 TeV	~5,000 TeV
CM Energy W _{γp}	24 GeV	~80 GeV	700 GeV	~3000 GeV
Max γγ Energy	6 GeV	~100 GeV	200 GeV	~1400 GeV

*LHC at full energy √s=14 TeV/5.6 TeV

Parton measurements: x and Q²

Bjorken-x depends on final state mass and rapidity

- For pp or AA, 2-fold photon directional ambiguity
 - + $x=M_V/2\gamma M_p \exp(\pm y)$
 - Resolve ambiguity using VM accompanied by neutron emission or peripheral collisions, at a statistical cost
- Q² depends on probe

- Vector meson: $Q^2 \sim (M_V/2)^2$
- ♦ Dijets: Q² ~ M_{jj}²
- ♦ Open charm: Q² ~ M_{cc}²
- 2008 predictions (right) ~ fulfilled
 - Except for Z⁰
- Higher energy and far forward detectors can push downward in x
- RHIC can probe polarized protons

A. J. Baltz *et al.,* Phys. Rept. **458** (2008) 1

J/ψ photoproduction & gluon distributions in protons

- LHCb (in pp collisions) and ALICE (in pA collisions) data
- **2-gluon** exchange -> $\sigma \sim g(x)^2$
 - Current data down to x ~ few 10⁻⁶ at $Q^2 \sim (M_{J/\psi}/2)^2$
- Consistent with a power law σ ~ W_{γp}^δ (ALICE) or a slight downturn at high energies (LHCb)
 - At lowest order, the power law is equivalent to a power law for gluon density xg(x)~x ^{-∆}
 - Shadowing should lead to a downturn

Λ

Gluon shadowing in lead targets

- J/ψ and ψ ' photoproduction
 - γp is implicit/explicit reference

- γp is implicit/explicit reference
 Moderate shadowing
 Consistent w/ leading twist approximation γρ
- Near best-fit values of nuclear parton distribution but with much smaller error bars
- Consistent w/ many dipole model calcs.

Data on $d\sigma/dt$ or studies with other mesons differentiate

Theoretical issues in vector meson photoproduction

- 2-gluon exchange is more complex than 1-gluon exchange
 - VMs really probe generalized (skewed) parton distributions
 - Shuvayev transform bridges the gap (with assumptions)
- A new next-to-leading order calculation brought many surprises, with large `corrections'
 - The quark contribution is significant
 - Large scale uncertainty
- These factors mostly cancel when comparing lead/gold and protons
- Despite these issues, vector mesons are an important probe of low-x gluons
 - Theoretical progress expected!

K. Eskola et al., arXiv:2203.11613; xkcd.com

Beyond gluon densities: spatial distribution and fluctuations

- The Good-Walker formalism links coherent and incoherent production to the average nuclear configuration and event-byevent fluctuations respectively
 - Configuration = position of nucleons, gluonic hot spots etc.
- Coherent: Sum the amplitudes, then square -> average over different configurations
- Incoherent = Total coherent; total: square, then sum crosssections for different configurations

$$\frac{\mathrm{d}\sigma_{\mathrm{tot}}}{\mathrm{d}t} = \frac{1}{16\pi} \left\langle \left| A(K,\Omega) \right|^2 \right\rangle \qquad \text{Average cross-sections } (\Omega)$$
$$\frac{\mathrm{d}\sigma_{\mathrm{coh}}}{\mathrm{d}t} = \frac{1}{16\pi} \left| \left\langle A(K,\Omega) \right\rangle \right|^2 \qquad \text{Average amplitudes } (\Omega)$$
$$\frac{\mathrm{d}\sigma_{\mathrm{inc}}}{\mathrm{d}t} = \frac{1}{16\pi} \left(\left\langle \left| A(K,\Omega) \right|^2 \right\rangle - \left| \left\langle A(K,\Omega) \right\rangle \right|^2 \right) \qquad \text{Incoherent is difference}$$

Mantysaari and Schenk, PRD 94, 034042 (2016)

from $d\sigma/dt$ to transverse profiles

dσ/dp_T encodes the transverse distribution of interactions
 The 2-d Fourier transform of dσ/dt gives F(b)

$$F(b) \propto \frac{1}{2\pi} \int_0^\infty dp_T p_T J_0(bp_T) \sqrt{\frac{d\sigma}{dt}}$$
 *flips sign after each diffractive minimum

- STAR fit $d\sigma_{incoherent}/dt$ for $\pi^+\pi^-$ at large |t| to a dipole form factor, extrapolated and subtracted, leaving $d\sigma_{coherent}/dt$
 - Large variation at small |b| is likely windowing (finite t range)
- Neglected photon p_T, bidirectional interference, & other factors, but this is a nice proof of principle

Fitting for the hadronic nuclear radius

- Fit dσ/dt to a model, with a floating nuclear radius
 - Including interference between the two photon directions
 - -> angular correlation between $\rho^0 p_T$ and pion daughter p_T
- Hadronic radius of ¹⁹⁷Au = 6.53 ± 0.03 (stat.) ± 0.05 (syst.) fm
 - Neutron skin thickness = 0.17 ± 0.03 (stat.) ± 0.08 (syst.) fm
- Hadronic radius of ²³⁸U = 7.29 ± 0.06 (stat.) ± 0.05 (syst.) fm
 - Neutron skin thickness = 0.44 ± 0.05 (stat.) ± 0.08 (syst.) fm
- Precision measurements!

$d\sigma/dt$ for coherent J/ ψ photoproduction

Slope of do/dt measures effective target size

- Multiple interactions in a target can lead to larger effective source sizes
- dσ/dt for coherent J/ψ falls
 off more steeply than the
 Woods-Saxon nuclear form
 factor
- Consistent with dipolemodel calculations that include nuclear shadowing and/or gluon saturation

$\gamma\gamma$ ->dileptons

- High-statistics, precision measurements from STAR and ATLAS
- "Observation of Breit-Wheeler scattering"
- Is lowest order QED good enough?
 - Coulomb corrections?
 - Is the ATLAS high-acoplanarity tail consistent with final state radiation?
 - Sudakov resumnation?
 - important benchmark for testing/probing photon emission

Photoproduction and γγ reactions in peripheral collisions

- Coherent J/ψ photoproduction and γγ->dileptons in peripheral collisions have been observed by STAR, ALICE, ATLAS & LHCb
- For $\gamma\gamma$ ->II, there is pair p_T broadening
 - ♦ b and p_T are conjugate; constraints on b -> larger <p_T>
- Questions for J/ψ photoproduction,
 - Does the coherent target region include participants as well as spectators?
 - How do slow-moving long-lived J/ ψ survive the expanding fireball?
- Coherent J/ψ production is an independent measure of the reaction plane.
 - Connection to hot QCD studies

N. Lewis (STAR), RHIC/AGS Users meeting

γ A/p reactions and baryon stopping

- In baryon junction models, baryon number is carried by a nonperturbative configuration: the baryon junction
- In these (and other?) models, baryon stopping can be explained by via the exchange of Reggeons which carry baryon number
- γA collisions are a simpler laboratory than AA
 - STAR measures the pbar:p ratio in γA collisions, and sees a drop at low p_T (compared to AA), consistent with baryon stopping
- Backward (u-channel) meson production at high energies
 - e. g. γp-> Vp,
 - proton at mid-rapidity,
 - V is far forward
 - STAR forward detector (?)or EIC

N. Lewis (STAR), RHIC/AGS Users meeting; J. D. Brandenburg et al., arXiv:2205.05685; D. Cebra et al., Phys. Rev. C 106, 015204 (2022)

The next 5 years

- LHC Runs 3 and 4 will provide a flood of new data
 - All experiments are undergoing significant upgrades
 - The ALICE streaming DAQ offers a huge improvement, by eliminating the main bottleneck for UPCs: the trigger
 - sPHENIX would have a similar advantage for UPCs
- Higher beam energies and more forward instrumentation reach down further in Bjorken-x
- Vastly improved statistics will allow much finer binning, rare decays, Y states, searches for exotica etc.

PbPb								
	σ	All	~ALICE	~ATLAS/	~ALICE	~LHCb		
Meson		Total	Central	CMS	μ arm			
$\rho \to \pi^+ \pi^-$	5.2b	68 B	5.5 B	21B	4.9 B	13 B		
$\rho' \to \pi^+ \pi^- \pi^+ \pi^-$	730 mb	9.5 B	210 M	2.5 B	190 M	1.2 B		
$\phi \to \mathrm{K}^{+}\mathrm{K}^{-}$	0.22b	2.9 B	82 M	490 M	15 M	330 M		
$J/\psi ightarrow \mu^+\mu^-$	1.0 mb	14 M	1.1 M	5.7 M	600 K	1.6 M		
$\psi(2S) \rightarrow \mu^+ \mu^-$	30µb	400 K	35 K	180 K	19 K	47 K		
$Y(1S) \rightarrow \mu^+ \mu^-$	$2.0 \ \mu b$	26 K	2.8 K	14 K	880	2.0 K		

Z. Citron et al., arXiv:1812.06772

Vector mesons – the next 5 years

- Much improved measurements of cross-sections and do/dt for coherent and incoherent production of multiple vector mesons
 - Q² from vector meson masses
 - Radius measurements over a range of x and Q²
 - Nuclear fluctuations, from geometric fluctuations and nuclear hot spots
 - 1st LHC data shown at right
- Better theory, especially regarding soft nuclear breakup
- A few more nuclei
 - ◆ Oxygen may allow the measurement of incoherent do/dt over the full t range

Z. Citron et al., arXiv: 1812.06772 V. Pozdynakov (ALICE), Moriond 2022

Dijets and open charm

GeV

- Dijets and open charm are produced via single gluon exchange, so there is less theoretical uncertainty
- $Q^2 \sim M_{jj}^2$ or M_{cc}^2
- ATLAS preliminary dijet results (from QM2017) look promising, covering a wide range of x, Q²
 - Also CMS results on asymmetries
- Open charm has high rates, and can reach lower x and Q² values than dijets
- Several experiments are pursuing dijets and/or open charm
 - Good progress expected over next
 5 years

ATLAS, Quark Matter 2017

The ALICE FoCal

- A forward calorimeter to study low-x partons
 - ~ 2.3 < η < 5.8
 - Highly segmented
- J/ψ and ψ ' photoproduction
 - Larger |η| -> Lower x
 - J/ψ reach below 10⁻⁶
- The ψ':J/ψ ratio is sensitive to saturation models

A. Bylinkin et al. "UPC measurements with FoCal", in preparation.

Light-by-light scattering

- Box diagram is sensitive to all charged particles, standard model and BSM
 - Seen by ATLAS and CMS
 - Cross-section will set limits on BSM processes
- An axion-like particle produces a peak in M_{γγ} at the axion mass
 - ATLAS and CMS have set 2-d limits: coupling and axion mass
- With higher luminosity, CMS and ATLAS will search for axions with lower couplings
- ALICE 3 (and maybe ALICE) will set limits on lighter ALPs, filling in the gap between fixed-target experiments and CMS/ATLAS

ATLAS JHEP 03 (2021) 243; D. D'Enterria (CMS) arXiv:1808.03524; ALICE 3 Lol

ALICE 3

- A large-acceptance general purpose heavy-ion detector
 - -4 < η < 4
 - Charged and neutral particles down to low p_T
 - PID
 - Low radius vertex detector

Large acceptance more complex UPCs

- Dijets, open charm, 4/6/+ prong events, final states with photons
- ρ'->4π acceptance is 19 times that of current ALICE
- ♦ do/dy over wide range
- Much improved background rejection
 - Key for γγ–>γγ at low M γγ
- Installation for Run 5; data in ~ 2035

The EIC (a UPC-centric perspective)

Study vector meson photoproduction under diverse conditions

- Systematic mapping of many different vector mesons w/ different wave functions
- Wide range of photon Q²
- Good forward instrumentation to effectively separate coherent and incoherent production
 - Was the nucleus excited?
 - Map out transverse distribution of gluons in nuclei
- Multiple other probes of gluons:
 - Open charm
 - Dijets

Evolution of structure functions...

UPCs in the EIC era

- The EIC will collect high-precision data on the production of a wide range of vector mesons at a wide range of Q²
 - With excellent subsystems to detect the products of nuclear breakup, to separate coherent and incoherent production.
- Even during the EIC era, there is still a need for UPCs, to:
 - Probe partons down to the lowest Bjorken-x values
 - ⋆ x< 10⁻⁶ for protons
 - x<10⁻⁵ for nuclei
 - Precision shadowing measurements and test for saturation
 - Photoproduction of heavy hadrons
 - Study BSM physics
 - γγ->γγ, BSM charged particles and limits on axion-like particles
 - + $\gamma\gamma$ -> $\tau^+\tau^-$ and the tau anomalous magnetic moment
 - γγ-> heavy exotic hadrons
- ALICE 3 will provide an enormous boost to UPC studies

Some things I do not have time to discuss..... UPCs are a technique that gives access to a very wide range of topics

- Limits on an anomalous τ magnetic moment from $\gamma\gamma \rightarrow \tau^+\tau^-$
- Measurements of azimuthal asymmetry in γA collisions (STAR and ATLAS)
- Other vector mesons (φ, ρ', Y states)
- A-scaling of ρ photoproduction (ALICE: Xe and Pb)
- J/ψ photoproduction on deuteron targets (STAR)
- J/ψ production w/ proton dissociation on proton targets (ALICE)
- Coulomb excitation in UPCs (ALICE)
- A possible future small very-low-threshold (10 MeV?) ALICE forward calorimeter for testing Low's theorem, including in UPCs
- Use of interactions with Coulomb excitation for impact-parameter engineering

Conclusions and future prospects

- UPCs probe low-x parton distributions, study baryon stopping in simple systems and probe BSM physics
- In the next ~ 5 years, STAR and the LHC experiments will*:
 - Map the target distribution in nuclei, and better probe event-by-event fluctuations in nuclear configuration, at different x and Q²
 - Multiple probes vector mesons, dijets and open charm
 - Study baryon stopping and other aspects of 'general' γA collisions
 - Probe BSM physics via light-by-light scattering and set limits on axion-like particles
- The EIC and UPCs are complementary, respectively providing precision measurements for different photon Q² and probes of verylow x gluons. Both are needed.
- (My) UPC future priorities are:
 - Trigger bandwidth and resources to analyze data
 - New instrumentation, including FoCal and ALICE 3
 - FoCal reaches gluons with the lowest x values
 - ALICE 3 will have more than ten times better performance than ALICE 2
 * I do not know of sPHENIX plans to study UPCs

And finally...

