The Future of Experimental Hot QCD

QCD Town Hall for the U.S. Long Range Plan for Nuclear Physics

Dennis V. Perepelitsa (University of Colorado Boulder) MIT, 24 September 2022

StabilityDiffusion AI generated images of "quark gluon plasma"

Our field is the study of emergent, often unexpected, many-body physics phenomena - lots to study!

INSPIRE HEP

Our field is the study of emergent, often unexpected, many-body physics phenomena - lots to study!

2023-2031 will be a period of reductionism

Our field is the study of emergent, often unexpected, many-body physics phenomena - lots to study!

2023-2031 will be a period of reductionism

Martyn Shuttleworth 68.4K reads

Scientific Reductionism - Reducing Complex Interactions in Research

Scientific reductionism is the idea of reducing complex interactions and entities to the sum of their constituent parts, in order to make them easier to study.

phenomena - lots to study!

2023-2031 will be a period of **reductionism**

New experimental capabilities Multi-dimensional measurements Qualitatively new channels Increased precision & control

Our field is the study of emergent, often unexpected, many-body physics

Isolate & identify underlying microscopic mechanisms

Our field is the study of emergent, often unexpected, many-body physics phenomena - lots to study!

2023-2031 will be a period of reductionism

New experimental capabilities Multi-dimensional measurements Qualitatively new channels Increased precision & control

This is the long-term goal of all scientific fields!

Isolate & identify underlying microscopic mechanisms

Collected Data

Run-14 200 GeV RHIC Au+Au PHENIX sampled 7/nb

Collected Data

RHIC Au+Au

Run-14 200 GeV PHENIX sampled 7/nb

LHC Pb+Pb

LHC p+Pb

LHC light ions

Run 2 5.02 TeV 2.2/nb

Run 2 8.16 TeV 170/nb

Run 2 5.44 TeV Xe+Xe $3/\mu$ b

Collected Data

RHIC Au+Au

Run-14 200 GeV PHENIX sampled 7/nb

LHC Pb+Pb

LHC p+Pb

LHC light ions

Run 2 5.02 TeV 2.2/nb

Run 2 8.16 TeV 170/nb

Run 2 5.44 TeV Xe+Xe $3/\mu$ b

Collected Data

RHIC Au+Au

Run-14 200 GeV PHENIX sampled 7/nb

LHC Pb+Pb

LHC p+Pb

LHC light ions

Run 2 5.02 TeV 2.2/nb

Run 2 8.16 TeV 170/nb

Run 2 5.44 TeV Xe+Xe $3/\mu$ b

Future Data

Runs 23+25 200 GeV sPHENIX sampled 32/nb

Runs 3+4 5/5.5 TeV 14/nb

Runs 3+4 8.16 TeV 1200/nb

Runs 3+4 0+0 Run 5+ light ions

Unique forward instrumentation: tracking + calorimetry in $2.5 < |\eta| < 4$ + other upgrades (increased TPC rate, etc.)

Start of Super-RHIC: 2023 SPHENIX

Completely re-imagined as dedicated detector for jet, heavy flavor, upsilon physics

Large rate, hermetic calorimetry, precision tracking

sPHENIX Inner Hadronic Calorimeter installation into OHCal+Magnet

ALICE 2: improved tracking system, muon capability, triggering & data rates

U.S. involvement in Barrel Tracking Upgrade (TPC + ITS2) for Run 3 and FoCal for Run 4

Unique SMOG2 program - novel small and intermediate nuclei in fixed target mode

ALICE 3: a next-generation detector with high-rate, large acceptance, precision tracking and particle ID

LHCb Upgrade II: re-imagining all sub-detectors for high luminosity No more centrality limitation in AA High precision flavor physics

Progress since the last Long-Range Plan, and future prospects

First tests of SS quantities Relative shape only Smeared *pp*/Pythia references

0.6

0.4

dd/q 1.2 1 0.8

0.8

0.4

0.6

0.1 0.5 0.2 P.5 0.4 0.3 0.4 Zg $300 < p_{T,jet} < 500 \text{ GeV}$ 1.4

dd/q_d 1 0.8

0.8

0.6

ALICE, PRL 128 (2022) 102001

Prong structure?

ALICE, PRL 128 (2022) 102001

Prong structure?

Color charge?

ALICE, PRL 128 (2022) 102001

Prong structure?

Color charge?

Parton mass?

ALICE, PRL 128 (2022) 102001

Prong structure?

Color charge?

Parton mass?

Path length vs. fluctuations?

Tomography with calibrated probes (χ/Z)

ATLAS, PRL 123 (2019) 042001

The aftermath of a jet's passage

Recoiling boson

Yang et al, PRL. 127 (2021) 082301

Study thermalization process with a source of deposited energy after QGP formation

Jet

The aftermath of a jet's passage

Recoiling boson

Yang et al, PRL. 127 (2021) 082301

 $R_{D(p_{T}, r)}$

Study thermalization process with a source of deposited energy after QGP formation

Map out flow of lost energy into "mediumlike" angular & momentum modes

(also: Large-R jets)

The aftermath of a jet's passage

big experimental challenge

Scale-dependent QGP structure

How does largewavelength phenomena emerge from QCD degrees of freedom?

Scale-dependent QGP structure

9

?

How does largewavelength phenomena emerge from QCD degrees of freedom? Molière scattering: opportunity to **identify intermediate scale structure of the QGP** Probe Integrates Over a Range of Q²

Scale-dependent QGP structure

9

?

How does largewavelength phenomena emerge from QCD degrees of freedom?

Molière scattering: opportunity to identify intermediate scale structure of the QGP

Do this measurement at RHIC - lower Q^2 and smaller competing vacuum/wake effects

New opportunities with W^{\pm} ...

ATLAS, EPJC 79 (2019) 935

Experimentally demonstrated control in Run 2 Pb+Pb

 $W^{\pm} \rightarrow l^{\pm} \nu$ is 8 times more numerous than $Z \rightarrow l^{+} l^{-}$!

New opportunities with W^{\pm} ...

ATLAS, EPJC 79 (2019) 935

Experimentally demonstrated control in Run 2 Pb+Pb

 $W^{\pm} \rightarrow l^{\pm} \nu$ is 8 times more numerous than $Z \rightarrow l^+ l^-$!

3) Boosted $W \rightarrow q\bar{q}$ to control opening angle θ between emitters

to

a

1) "Standard"

quenching

С

s,d

0000000

g

New opportunities with W^{\pm} ... and even $t\bar{t}$

Top quark-initiated jet quenching: time-delayed decay chain for $t \rightarrow jets$

New opportunities with W^{\pm} ... and even $t\bar{t}$

Top quark-initiated jet quenching: time-delayed decay chain for $t \rightarrow jets$

Apolinário, et al, PRL 120 (2018) 232301

unquenched $\tau_m = 1.0 \text{ fm/c}$ $\tau_m = 2.5 \text{ fm/c}$ $\tau_m = 5 \text{ fm/c}$

 $\tau_m = 10 \text{ fm/c}$

CMS, PRL 125 (2020) 222001

Observation in Pb+Pb! But $t \rightarrow jets$ probably only in Run 5+

First forays into AI/ML methods for jet quenching: observable design, precision measurement, interpretation, ...

Identifying quenched jets in heavy ion collisions with machine learning

Lihan Liu,^a Julia Velkovska,^a Marta Verweij^b

Jet Tomography in Heavy-Ion Collisions with Deep Learning

Yi-Lun Du^D,^{1,*} Daniel Pablos^D,^{2,†} and Konrad Tywoniuk^{1,‡} ¹Department of Physics and Technology, University of Bergen, Postboks 7803, 5020 Bergen, Norway ²INFN, Sezione di Torino, via Pietro Giuria 1, I-10125 Torino, Italy

Deep learning jet modifications in heavy-ion collisions

Yi-Lun Du, Daniel Pablos and Konrad Tywoniuk

Probing heavy ion collisions using quark and gluon jet substructure

Yang-Ting Chien^{*a*} and Raghav Kunnawalkam Elayavalli^{*b,c*}

The information content of jet quenching and
machine learning assisted observable design

Yue Shi Lai,^a James Mulligan,^{a,b} Mateusz Płoskoń,^a Felix Ringer^{a,c,d}

Machine-learning-based jet momentum reconstruction in heavy-ion collisions

Rüdiger Haake¹ and Constantin Loizides²

¹Yale University, Wright Laboratory, New Haven, Connecticut, USA ²ORNL, Physics Division, Oak Ridge, Tennessee, USA

(Received 3 November 2018; revised manuscript received 17 April 2019; published 17 June 2019)

Explainable machine learning of the underlying physics of high-energy particle collisions

Yue Shi Lai^{a,*}, Duff Neill^b, Mateusz Płoskoń^a, Felix Ringer^a

^a Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA ^b Theoretical Division, MS B283, Los Alamos National Laboratory, Los Alamos, NM 87545, USA

Deep Learning for the classification of quenched jets

L. Apolinário,^{*a,b*} N.F. Castro,^{*a,c*} M. Crispim Romão,^{*a*} J.G. Milhano,^{*a,b*} R. Pedro^{*a*} and F.C.R. Peres^{*a,d,e*}

AI/ML methods have really come of age and are becoming broadly used in a variety of fields

Clear technical priority area for agencies & lots to learn from HEP / broader data science community

Full steam ahead, but expect "growing pains" as with any new technology

(defining the right problems, applicability, model dependence, bias, etc.)

Thermalization of charm and bottom

Detailed confirmation of fully thermalized charm

Thermalization of charm and bottom

Detailed confirmation of fully thermalized charm

https://boundino.github.io/hinHFplot/

Open access tool for compilations of HF data by Jing Wang (MIT)

(also: b-jets)

Next: Observe and control charm diffusion

 $4 < p_{-}^{D} < 20 \text{ GeV/c}$ $|p^{jet}| > 60 \text{ GeV/c}$ + PYTHIA 0.4 0.5

Use jet axis to set reference direction - nearing direct evidence of the Brownian motion of charm?

Next: high-statistics jet/ $h + D^0$, $\gamma + D^0$, $D - \overline{D}$ correlations

Tag direct production vs. identify late $g \rightarrow c\bar{c}$ splitting w/ jet sub-structure \Rightarrow control charm production time

Next: Isolate medium-induced radiation

In Pb+Pb, radiation in the dead cone is unambiguously induced by the medium \Rightarrow confirmation of key theoretical picture of QCD in-medium radiation

Next: bottom with charm-level precision

<u>CERN Yellow Report on HI in Runs 3+4</u>

The Quark-Gluon Plasma Cafe -Make-Your-Own-Jet Menn Radiation pattern: Initiating parton: 🗍 1 emitter D Gluon □ 2 emitters n Wd/s quark П з+ emítters D C quark B quark ... with what opening angle? Path length: $r_{g} =$ \Box <4 fm ... with what shared □ 4-8 fm momentum fraction? $\square > 8 \, \text{fm}$ $Z_{q} =$

Grand Opening 2023!! pT before quenching: 1 40-60 Gev **1**100-200 GeV □ >500 GeV ... with what rapidity? $\gamma =$ Delay production time? T Yes NO

Calibrate the thermometer in the region of strongest dissociation

observation of sequential suppression in charmonia?

Unexpected (small) survival of $\Upsilon(3S)$

Addressing recombination and feed-down

Addressing recombination and feed-down

Addressing recombination and feed-down

How do hadrons assemble themselves?

Medium-enabled production of rare hadrons

Dramatic difference in relative abundance of X(3872) tetraquark in AA

Medium-enabled production of rare hadrons.

 T^+_{cc}

Dramatic difference in relative abundance of X(3872) tetraquark in AA

Medium-enabled production of rare hadrons.

 T^+_{cc}

С

Dramatic difference in relative abundance of X(3872) tetraquark in AA

3-D imaging of nuclear collisions

Longitudinal decorrelations out to \approx beam rapidity @ RHIC-STAR

Use balance functions to track conserved charges out to $\Delta y \approx 6$ @ CMS Run 4

Measurements that leverage unique forward capabilities

Bulk properties of the Quark-Gluon Plasma

Campaign to understand how QGP transfers: global vorticity \rightarrow local fluid cell vorticity \rightarrow angular momentum of final-state baryons?

Multi-differential di-lepton measurements - Time evolution of thermally radiating QGP

ALICE, Nature Physics 13 (2017) 535

Progress in small systems

Suggestion of a smooth continuum from $AA \rightarrow pA \rightarrow pp$

Established geometry + final-state interactions as the clear origin of collective motion for soft particles

0.25

0.20

What are the limits of QGP formation?

Charm vs. bottom emerging as key discriminator for collective behavior in small systems

 \Rightarrow definitive answer with 1200 nb⁻¹ of p+Pb in LHC Runs 3+4 + SPHENIX *p*+Au streaming readout

Courtesy of Christopher Plumberg

Can light melt atoms into goo?

08/24/21 | By Sarah Charley

The ATLAS experiment at CERN sees possible evidence of quark-gluon plasma production during collisions between photons and heavy nuclei inside the Large Hadron Collider.

Flow-like signal in UPC $\gamma + A$, searches in $\gamma + p$, archived e^+e^- , ep data, etc.

The mystery of small but dense systems

Collective motion of ≈ 50 GeV difficult-to-control geometry of p+A particles - but increasingly tighter2 (aRun small ions by default in LHC Run 5+6 constraints on quenching-like effects - ultra-high luminosity, precision EW+jet 0.15⊢ 0.15

Huss et al., PRC 103 (2021) 054903

Major opportunity with **O+O collisions in LHC Run 3** — small system without

Reductionism

New experimental capabilities Multi-dimensional measurements Qualitatively new channels Increased precision & control

Isolate & identify underlying microscopic mechanisms

Reductionism

New experimental capabilities Multi-dimensional measurements Qualitatively new channels **Increased precision & control**

Resolve space-time picture of parton-QGP interaction

Isolate the determining aspects of energy loss

Identify point-like constituents of the QGP

Isolate & identify underlying microscopic mechanisms

Observe direct evidence of charm diffusion

Probe the QCD $q\bar{q}$ interaction

Study the thermalization process

Confirm QCD inmedium radiation

Explore the mechanism of QCD confinement

Minimal conditions for **QGP** creation

Questions for the Hot QCD community

Questions for the Hot QCD community How big should the experimental workforce be in the U.S.? What's the right # of University and Lab groups to do our physics?

<u>science.osti.gov</u> DOE NP Heavy Ion supported institutions

<u>nsf.gov</u> **NSF Nuclear Physics -**Experiment active awards

Lawrence Livermore National Laboratory

National Laboratory

DOE Laboratories with Heavy Ion Physics groups

Questions for the Hot QCD community

How big should the experimental workforce be in the U.S.?

What's the right # of University and Lab groups to do our physics?

What's the optimal distribution over experiments?

- Given substantial upgrades / new capabilities, should we re-organize?

Questions for the Hot QCD community

- How big should the experimental workforce be in the U.S.?
 - What's the right # of University and Lab groups to do our physics?
- What's the optimal distribution over experiments?
 - Given substantial upgrades / new capabilities, should we re-organize?
- What is the key new instrumentation U.S. groups are interested in?
 - What is our physics-motivated "ask" to agencies?

LHCb Upgrades?

The way forward

The way forward

Finish the scientific mission of RHIC, our flagship domestic facility

- Reap the full benefit of major investments at RHIC
- Deliver the luminosity of high-quality data needed to complete the physics goals of sPHENIX and STAR
- Support RHIC research throughout data-taking and afterwards (computing, University groups, etc.)

The way forward

Finish the scientific mission of RHIC, our flagship domestic facility

- Reap the full benefit of major investments at RHIC
- Deliver the luminosity of high-quality data needed to complete the physics goals of sPHENIX and STAR
- Support RHIC research throughout data-taking and afterwards (computing, University groups, etc.)
- Continue the strong tradition of U.S. leadership in Hot QCD at the LHC
 - Consider U.S. involvement in new instrumentation
 - Encourage the opportunity for physics-motivated migration between **experiments** (including RHIC \rightarrow LHC after sPHENIX+STAR)

Many thanks for input from

ALICE ATLAS CMS LHCb PHENIX SPHENIX STAR Parallel session speakers

any bias is mine alone and any omission is strictly due to limited time!

Thank you!

