Probes of High Density QCD

Xin Dong Lawrence Berkeley National Laboratory

- Introduction
- RHIC Beam Energy Scan Phase-II
- Physics Highlights from RHIC BES
- Future Program at FAIR/CBM
- Summary

QCD Phase Diagram and Heavy-Ion Frontiers

Sept. 23-25, 2022 Hot and Cold QCD Townhall Meeting, MIT X. Dong

RHIC Beam Energy Scan (BES) Program

Sept. 23-25, 2022 Hot and Cold QCD Townhall Meeting, MIT

X. Dong

Beam Energy Scan Phase-II: Successful Data Taken

LEReC – Low Energy RHIC electron Cooling

Datasets from Beam Energy Scan Phase-II

- x10-20 more statistics compared to BES-I at collider energies
- 8 collider energies (7.7 54.4 GeV) / 12 fixed-target energies (3.0 13.5 GeV)

STAR Detector Upgrades for BES-II

Detector Performance

Sept. 23-25, 2022

Hot and Cold QCD Townhall Meeting, MIT

X. Dong

- Introduction
- RHIC Beam Energy Scan Phase-II Status
- Physics Highlights from RHIC BES
 - Evolution of medium properties
 - Probes for first order phase transition
 - Probes for critical point search
- Future Program at FAIR/CBM
- Summary

* Results from final BES-I + first set of BES-II data (3.0 GeV)

Chemical Freeze-out on Phase Diagram

Sept. 23-25, 2022 Hot and Cold QCD Townhall Meeting, MIT

X. Dong

Global Polarization / Spin Alignment

Sept. 23-25, 2022

Hot and Cold QCD Townhall Meeting, MIT X. Dong

Hypernuclei – Y-N Interaction and Equation-of-State

- hyperon-nucleon (Y-N) interaction, Equationof-State (EoS) under high baryon density
 See talk by J. Noronha-Hostler
- New S₃ results: gradual increase vs. energy, approaching thermal limit at LHC
 – deviation at low energies?

X. Dong

Sept. 23-25, 2022

Hot and Cold QCD Townhall Meeting, MIT

Azimuthal Anisotropic Collectivity

momentum space anisotropy \leftrightarrow $V_1, V_2 \dots$

pressure gradient in system evolution Equation-of-State (EoS)

See talk by J. Noronha-Hostler

Disappearance of Partonic Collectivity at Au+Au 3 GeV

- Number-of-Constituent-Quark (NCQ) scaling holds at 14.5 GeV and above
- No apparent NCQ scaling at 3 GeV
 - UrQMD with baryonic mean-field potential qualitatively consistent with data

 \rightarrow Baryonic interactions dominate in 3 GeV collisions.

- Introduction
- RHIC Beam Energy Scan Phase-II Status
- Physics Highlights from RHIC BES
 - Evolution of medium properties
 - Probes for first order phase transition
 - Probes for critical point search
- Future Program at FAIR/CBM
- Summary

(Net-)Proton Directed Flow

- Proton/net-proton v_1 vs. energy show a minimum
 - Connection to 1st order phase transition?
 - model predicts a dip at much lower energy

Dielectron Production

- Dilepton yield excess at 0.3-0.7 GeV/c² from 17.3 200 GeV
 - consistent with in-medium $\rho\text{-broadening}$
 - enhancement due to the 1st-order phase transition? location?

- Introduction
- RHIC Beam Energy Scan Phase-II Status
- Physics Highlights from RHIC BES
 - Evolution of medium properties
 - Probes for first order phase transition
 - Probes for critical point search
- Future Program at FAIR/CBM
- Summary

Energy Dependence of (Net-) Proton High Moments

See talks by P. Tribedy and N. Xu

Energy Dependence of (Net-) Proton High Moments

BES-I: PRL 126 (2021) 092301 3 GeV data: PRL 128 (2022) 202303 Other ref: V. Vovchenko et al. PRC 105 (2022) 014904

- Non-monotonic energy dependence in central Au+Au collisions (3.1σ)
- Strong suppression in proton
 C₄/C₂ at 3 GeV
 consistent with UrQMD

hadronic transport model calculation

Current Knowledge of Phase Diagram

Prospects from BES-II

- Introduction
- RHIC Beam Energy Scan Phase-II Status
- Physics Highlights from RHIC BES
 - Evolution of medium properties
 - Probes for first order phase transition
 - Probes for critical point search
- Future Program at FAIR/CBM
- Summary

Next Phase BES Program at CBM@FAIR

Compressed Baryonic Matter (CBM) @ FAIR facility, Germany ($\sqrt{s_{NN}} = 2.9 - 4.9$ GeV) physics anticipated to start in ~2025+ Collision rate ~ 10 MHz, dedicated detectors enabling unprecedented statistics

Sept. 23-25, 2022 Hot and Cold QCD Townhall Meeting, MIT X. Dong

Next Phase BES Program at CBM@FAIR

#1 priority in Europe NuPECC LRP 2017

Complete urgently the construction of the **ESFRI flagship FAIR and develop and bring into** operation the experimental programme of its four scientific pillars APPA, CBM, NUSTAR and PANDA.

CBM Scientific Goals - I

X. Dong

CBM Scientific Goals - II

X. Dong

US-CBM White Paper

arXiv: 2209.05009

QCD Phase Structure and Interactions at High Baryon Density:

Completion of BES Physics Program with CBM at FAIR

BNL, UC Davis, UCLA, UCR, Duke, UH, UIC, UIUC, IU, KSU, LBNL, MSU, UNC, NCSU, OSU, Pepperdine, Purdue, SBU, Rice, UW, WSU

Executive Summary

In order to complete the Beam Energy Scan (BES) physics program, including the search for the QCD critical point, the extraction of the hyperon-nucleon interaction, and the determination of constraints on the nuclear matter equation of state at high baryon density, active US participation in the international collaboration of the Compressed Baryonic Matter (CBM) experiment at FAIR* is scientifically necessary and cost effective.

Without these measurements in the FAIR/CBM energy region, the scientific program pioneered at RHIC with the BES program would risk to be terminated prematurely in the US, and some of the key physics questions may remain unanswered. ... US participation in CBM will not only greatly enhance its physics program, but will also strengthen US leadership in nuclear physics.

*recommendation as new initiative

Summary: QCD at High Baryon Density

- QCD critical point or 1st-order phase transition
- Equation-of-State of nuclear matter at high μ_B connection to nuclear astrophysics
- Successful data taken for BES-II at RHIC - critical to secure resources to allow timely results
- Next phase exp. at high µ_B: CBM@FAIR focused energies dedicated instruments unprecedented statistics

Flagship QCD Facilities in Next Decades

Sept. 23-25, 2022 Hot and Cold QCD Townhall Meeting, MIT X. Dong