

Laboratoire de Physique des 2 Infinis

3D Structure of Hadrons probed with electrons and positrons

Carlos Muñoz Camacho IJCLab – Orsay, CNRS/IN2P3 (France)

1

Outline

- > Motivation of the 3D imaging of hadrons using a positron beam
- Developments towards the implementation of a positron beam at Jefferson Lab

FACULTÉ DES SCIENCES

CNIS

Positron White Paper

The European Physical Journal volume 58 · special issue · april · 2022 Recognized by European Physical Society Hadrons and Nuclei Topical Issue on "An Experimental Program with Positron Beams at Jefferson Lab" edited by Nicolas Alamanos, Marco Battaglieri, Douglas Higinbotham, Silvia Niccolai, Axel Schmid and Eric Voutier Cover picture: Image courtesy by Joanna Griffin, **Jefferson Lab** Deringer

- An EPJ A Topical Issue about an experimental positron program at CEBAF has been published.
- This document constitutes the final JLab Positron White Paper, gathering 19 single contributions and a summary article, all peerreviewed.

Positron Partial Program Summary

Experiment		Measurement Configuration		Beam Parameters								νn), and	
Label	Short	Hall	Detector	Target	Polarity	p	P	Ι	Time	PAC			
(EPJ A)	Name	man	Bettetter	Inget	ronarity	$({ m GeV}/c)$	(%)	(μA)	(d)	Grade			evaluation
Two Photon Exchange Physics													
57:144	H(e, e'p)	В	$CLAS12^+$	H_2	$+/{s}$	2.2/3.3/4.4/6.6	0	0.060	53				
57:188	$H(\vec{e}, e'\vec{p})$	A	ECAL/SBS	H_2	$+/{p}$	2.2/4.4	60	0.200	121			0	Opportuni
57:199	r_p	В	PRad-II	H_2	+	0.7/1.4/2.1	0	0.070	40				evnerime
011100	$\rightarrow r_d$			D_2		1.1/2.2	0	0.010	39				стренне
57:213	$\mathrm{H}\left(e,e'p ight)$	A	BB/SBS	$\rm NH_3$	$+/{s}$	2.2/4.4/6.6	0	0.100	20				considera
57:290	H(e, e'p)	A	HRS/BB/SBS	H_2	$+/{s}$	2.2/4.4	0	1.000	14				
57:319	SupRos	A	HRS	H_2	$+/{p}$	0.6 - 11.0	0	2.000	35				
58:36	$\mathrm{A}(e,e')\mathrm{A}$	A	HRS	He	$+/{p}$	2.2	0	1.000	38			\circ	TPF Phv
				Nuclear	Structure	Physics						0	
57:186	p-DVCS	В	CLAS12	H_2	$+/{s}$	2.2/10.6	60	0.045	100	C2			asks for IC
57:226	n-DVCS	В	CLAS12	D_2	$+/{s}$	11.0	60	0.060	80				
57:240	p-DDVCS	Α	SoLID^{μ}	H_2	$+/{s}$	11.0	(30)	3.000	100				
57:273	He-DVCS	В	CLAS12/ALERT	$^{4}\mathrm{He}$	$+/{s}$	11.0	60					0	Nucleon S
57:300	p-DVCS	C	SHMS/NPS	H_2	+	6.6/8.8/11.0	0	5.000	77	C2		-	Otom doud
57:311	DIS	A/C	HRS/HMS/SHMS		$+/{s}$	11.0			•		-		Standard
57:316	VCS	С	HMS/SHMS	H_2	$+/{s}$		60		•				eneraies
Beyond the Standard Model Physics												energiee.	
57:173	C_{3q}	A	SoLID	D_2	$+/{s}$	6.6/11.0	(30)	3.000	104	D			
57.953	LDM	B	PADME	\mathbf{C}	+	11.0	0	0 100	180				
01.200	LDW		ECAL/HCAL	$PbW0_4$	T	11.0	0	0.100	120				
57:315	CLFV	A	SoLID^{μ}	H_2	+	11.0			•				
							Tot	tal (d)	1121				Unpolar
CT L C L C L													D
CLAS12	\equiv CLAS12 II	mplemei	nted with an Electron	nagnetic C	alorimeter	in the Central Def	tector		l A	∖ssum	ing		Polar
$SoLID^{\mu} \equiv$	SoLID comp	lemente	d with a muon detect	tor				20.	مارم	hinar	ofboor		
+ Secondary positron beam 30 WeekS/year of Deam and 10													
-s secondary electron beam 50% accelerator efficiency this is													
-p rimary electron beam (30) Do not require polarization but would take advantage if available at the required beam													
4.8 years of running.													

- Experimental scenarios for DIS, VCS ($\gamma^* p \rightarrow \gamma p$), and CLFV ($e^+N \rightarrow \mu^+X$) need further evaluation.
- Opportunities for polarized target experiments would deserve more considerations.
- TPE Physics in elastic scattering globally asks for low beam energies.
- Nucleon Structure Physics and Beyond the Standard Model Physics ask for high beam energies.

	Hall A	Hall B	Hall C
Unpolarized (d)	311	432	77
Polarized (d)	121	180	
Total (d)	432	612	77
is			

PAC48 report: "The Committee sees great physics potential in a positron program. We encourage a vigorous effort to explore the technical feasibility of providing positron beams, and we are looking forward to receiving further proposals in this area."

Additional talk by A. Schmidt tomorrow @ 11AM on Two-Photon-Exchange and BSM physics with positrons Université

DES SCIENCES

X. Ji, PRL 78 (1997) 610 M. Polyakov, PLB 555 (2003) 57 M.V. Polyakov, P. Schweitzer, IJMP A 33 (2018) 1830025

Generalized Parton Distributions (GPDs) encode the correlations between partons and contain information about the internal dynamics of hadrons which express in properties like the angular momentum or the distribution of the forces experienced by quarks and gluons inside hadrons.

 $\rho_{H}^{q}(x, \boldsymbol{b}_{\perp}) = \int \frac{d^{2} \boldsymbol{\Delta}_{\perp}}{(2\pi)^{2}} e^{i \boldsymbol{b}_{\perp} \cdot \boldsymbol{\Delta}_{\perp}} \left[H^{q}(x, 0, -\Delta_{\perp}^{2}) + H^{q}(-x, 0, -\Delta_{\perp}^{2}) \right]$

$$\int_{-1}^{1} x \sum_{q} H^{q}(x,\xi,t) \, dx = M_{2}(t) + \frac{4}{5}\xi^{2}d_{1}(t)$$

- Unpolarized e⁺ combined with unpolarized e⁻ access the real part of the Compton Form Factors.
- Polarized e⁺ combined with polarized e⁻ access the imaginary part of the Compton Form Factors (CFFs) and higher twist effects.

A. Airapetian et al. JHEP 06 (2008) 066 R. Dupré, M. Guidal, M. Vanderhaeghen, PRD 95 (2017) 011501 V. Burkert, L. Elouadrhiri, F.-X. Girod, Nat. 557 (2018) 396 Université de Paris

DES SCIENCES

universite

0.7F

FACULTE

DORSAY

DDVCS

W Université de Paris DES SCIENCES

DDVCS explores wide off-axis kinematic region of GPDs, beyond DVCS and TCS. The exclusive reaction has small crosssection and thus needs high luminosity and large acceptance.

The **SoLID** apparatus completed with muon detectors at large and forward angles, enables DDVCS measurements with both polarized electron and positron beams at 11GeV.

Measurements of beam charge asymmetries with CLAS12 will provide a full set of new GPD observables:

- the unpolarized beam charge asymmetry A_{UU}^{C} , sensitive to the CFF real part;
- the polarized beam charge asymmetry A_{LU}^{C} , sensitive to the CFF imaginary part;
- the neutral beam spin asymmetry A_{LU}^0 , signature of higher twist effects.

FACULTE

ORSAY

DES SCIENCES

W

Combining the HMS and the NPS spectrometers, precise cross section measurements with **unpolarized positron** beam will be performed at selected kinematics where **electron beam** data will soon be accumulated.

FACULTE

DORSAY

universite

DES SCIENCES

W

Generalized Polarizabilities (GP)

FACULTE

D'ORSAY

Proton Generalized Polarizabilities

Fundamental structure constants of the proton

They characterize the response of the proton to an external electric & magnetic field

Ongoing VCS program at JLab

Extend the measurements of the electric & magnetic GPs at JLab utilizing the existing experimental infrastructure to improve the precision for the electric & magnetic GPs

Identify the shape of the structure in the electric GP, that is a valuable input for the theory in order to explain the underlying mechanism responsible for the effect.

Nature (in press)

09/23/2022

Challenges for theory – Strong motivation for Lattice QCD calculations

The JLab positron source built on the **PEPPo** (Polarized Electrons for Polarized Positrons) experiment which demonstrated the feasibility of using bremsstrahlung radiation of MeV Polarized Electrons for producing Polarized Positrons.

(PEPPo Collaboration) D. Abbott et al. PRL 116 (2016) 214801

p (MeV/c)

85.2 ± 0.6 ± 0.7 %

universite

JLab Experiment E12-11-105 (2011)

JLab LDRD FY21: Positron source development

JLab LDRD FY23: Transport of a degraded e- beam through CEBAF

3D imaging with a positron beam

Université

DES SCIENCES

5

High duty cycle, intensity, and polarization distinguish JLab positron beam from any past or existing others.

09/23/2022

Possible e+ beam implementation at JLab

FACULTÉ DES SCIENCES

D'ORSAY

Summary

 \succ

- Beam charge dependance critical to complete the 3D imaging of nucleon and nuclei (real part of Compton Form Factors: D-term, energy-momentum tensor...)
- Studies of two-photon exchange and BSM physics
- Unique capability in the world
- Stepping stone for a potential upgrade at EIC
- Multi-Hall, high intensity beam will enable a 5+ years program with JLab12

Initiative: We recommend the allocation of necessary resources to implement high duty-cycle polarized positron beams at CEBAF.

Using the 12 GeV CEBAF and capitalizing on positron source innovations at Jefferson Lab, high duty cycle polarized electron and positron beams, together with the outstanding capabilities of Jefferson Lab detectors, will enable a unique science program at the luminosity and precision frontier. It will comprise the mapping of two-photon exchange effects as well as essential measurements of the 3D structure of hadrons. It will also offer new opportunities to investigate electroweak physics and physics beyond the standard model.

FACULTÉ DES SCIENCES

Université