CLAS12 luminosity upgrade

& Cold O

Outline

- CLAS12 detector in Hall-B
- Physics program
- First physics results and a need for a luminosity upgrade
- Planned luminosity upgrades
 Phase I: upgrade to L = 2×10³⁵cm⁻²sec⁻¹
 Phase II: μCLAS12 for L > 10³⁷cm⁻²sec⁻¹
- Summary

CLAS12 in Hall-B at JLAB Running luminosity $\approx 10^{35} \text{ cm}^{-2} \text{sec}^{-1}$

S. Stepanyan, Hot & Cold QCD, MIT, 2022

3

CLAS12 Physics program

 Nucleon and nuclear structure studies, spatial and momentum tomography, form-factors ...

• Cold nuclear matter, NN correlations, hadronization, color transparency...

• Exploring origin of confinement – meson and baryon spectroscopy, exotics ...

Total of 44 approved CLAS12 experiments, grouped in 11 run groups (based on the beam energy, target, and the mag.fields).

CLAS12 first results: Compton scattering and GPDs

P. Chatagnon, et al. (CLAS Collaboration), "First-time Measurement of Timelike Compton Scattering", <u>Phys. Rev. Lett. 127,</u> <u>262501 (2021)</u>.

- BHA, $A_{\odot U} \sim \sin \varphi Im M^{--}$, universality of GPDs
- FB asymmetry, $A_{FB} \sim \cos \varphi ReM^{--}$, access to the EM FF $D^Q(t)$ (D-term).

G. Christiaens, et al. (CLAS collaboration), "First CLAS12 measurement of DVCS beamspin asymmetries in the extended valence region", getting ready to be submitted to PRL. Good agreement with GPD models. Extended coverage in Q² up to 6 GeV², but with large stat. uncertainty.

A. Hobart and S. Niccolai, CLAS12 measurement of neutron-DVCS beam-spin asymmetries - in the review process. Significantly more data are needed for multidimensional representation.

CIENCE

PERSON LAD Jefferson National Accelerator Facilit 5

CLAS12 first results: Di-hadrons in SIDS and TMDs

T.B. Hayward et al. (CLAS Collaboration), "Observation of Beam Spin Asymmetries in the Process $ep \rightarrow e\pi^+\pi^-X$ with CLAS12", Phys. Rev. Lett. 126, 152501 (2021)

H. Avakian et al. (CLAS Collaboration), "First Observation of Correlations Between Spin and Transverse Momenta in Back-to-Back Dihadron Production at CLAS12", arXiv:2208.05086, submitted to Phys. Rev. Lett. (2022).

Significantly more statistics will be needed for multidimensional, high precision measurements for GPD and TMD programs.

SCIENCE

CLAS12 luminosity upgrades

A realistic assessment of the detector efficiencies with the first data and measured rates of key reactions prompted discussions of luminosity upgrade.

Two-stage upgrade has been adopted:

- I. Achieve luminosity of ~2x10³⁵ cm⁻² sec⁻¹ for CLAS12 normal running conditions with charged particle reconstruction efficiency of >85%
 - to support efficient and fast execution of the current program;
 - to support the growing demands of physics program with a low rate, exclusive reactions ([p,n]DVCS, TCS, J/ ψ production, $p\bar{p}$...);

Will need to upgrade forward tracking. The beamline and the rest of the detector systems will perform at x2 higher luminosity. The time frame for the upgrade: 2 to 3 years.

- II. Configuration for two orders of magnitude higher luminosities for muon-pair electroproduction, μ CLAS12 at $\geq 10^{37}$ cm⁻² sec⁻¹:
 - new physics opportunities for CLAS12 DDVCS, high-rate TCS, and e-J/ ψ ;

This upgrade requires a large acceptance forward calorimeter (FTCal-large), a recoil detector and a forward vertex tracker. The time frame for the upgrade: 6 to 8 years.

Why only forward tracking?

- The limitation for running above the designed luminosity is the FD track reconstruction efficiency defined by the occupancy in R1 of DC (at *L*, the occupancy in R1 DC will reach \sim 5%).
- The loss of efficiency has been mitigated with the inclusion of an AI-based pattern recognition algorithm.
- More improvements are needed to reach the goal of running at 2*L*.

Phase I: How to get > 85% efficiency at 2L

- To mitigate occupancy-related inefficiency of FD, add faster tracking detectors to the forward tracking system.
- From available detector technologies, µRWELL with capacitive sharing readout is chosen as the best option for the CLAS12 FD tracking upgrade.

9

μRWELL detector for CLAS12 FD

A small prototype of a μ RWELL detector with X-Y capacitive sharing strip readout was built and tested at JLAB. Measured position and time resolutions from beam test data are well within requirements.

A need for $L \ge 10^{37} \text{ cm}^{-2} \text{ sec}^{-1}$

$\sigma\text{-}DDVCS$ is three orders of magnitude smaller than $\sigma\text{-}DVCS$

GPDs in Virtual Compton Scattering

Re parts of CFFs provides a direct measurement of the D-term and access to the mechanical properties of the proton

Proposal of µCLAS12

- Cross section of DDVCS is smaller than the DVCS by two to three orders of magnitude;
- There are issues of ambiguity and anti-symmetrization with the same flavor leptons in the decay of the outgoing virtual photon and the incoming-scattered beam particle.

Both challenges can be solved by measuring di-muon electroproduction:

$$ep \to e'p'\mu^+\mu^- @few \times 10^{37} cm^{-2} sec^{-1}$$

The same final state will include J/ψ electroproduction and TCS.

- Shield CLAS12 FD and convert it into a μ -detector, use calorimeter for $e_{-}(\gamma)$ detection. Install fast, high rate MPGD trackers for vertexing and recoil tagging.
- MC studies validated the proposal. The backgrounds and the trigger rates are within acceptable limits.
- More studies are underway.

SCIENCE

lefferson Lab

rson National Accelerator Facilit

What about CLAS12 with 20+ GeV electrons?

- [μ]CLAS12 will perform with higher energy beams, providing a significant coverage at large Q².
- Incremental improvements of the tracking detectors can help to retain momentum resolution for high momentum tracks.
- Available PID will be sufficient for exclusive and for the most semi-inclusive reactions

More with higher energies: XYZ spectroscopy

- Several states in charmonium region have been discovered that do not fit into a simple $q\bar{q}$ model.
- JLAB energy upgrade (20+ GeV) will open a phase space for photoproduction of some of these states.
- μ CLAS12 at 10³⁷ cm⁻² sec⁻¹ will contribute in the studies of the lowest mass states.
- An example, well know exotic $\chi_{c1}(3872)$, aka X(3872), first discovered by <u>Belle in 2003</u>.

$$\gamma p \rightarrow \chi_{c1}(3872)p'$$

The luminosity in the energy range: 13 GeV to 22 GeV is 100 nb⁻¹, even with modest efficiency of 2% one expects **>50 detected** χ_{c1} (3872) per hour in each decay mode $\chi_{c1}(3872)$ decay modes:

- $\chi_{c1} \rightarrow \omega J/\psi \text{ BR= 4.3\%}$ $\omega \rightarrow \gamma \pi^0 \text{ BR=8.28\%}$ $J/\psi \rightarrow \mu^+ \mu^- \text{ BR=6\%}$ $\chi_{c1} \rightarrow \gamma \gamma \gamma \mu^+ \mu^- \text{ BR} \ge 2 \times 10^{-4}$
- $\chi_{c1} \rightarrow \gamma \psi(2S)$ BR= 4% $\psi(2S) \rightarrow \mu^+ \mu^-$ BR=0.8% $\chi_{c1} \rightarrow \gamma \mu^+ \mu^-$ BR≥ 2.3x10⁻⁴

Summary

- CLAS12 detector at Jefferson lab was commissioned in early 2018 and has taken physics data since then.
- The performance of the detector is close to the design. Implementation of Albased event reconstruction helped to improve event reconstruction efficiency.
- However, the growing demands for efficient and expedited execution of the current physics program, and the need to support new physics opportunities, require a further upgrade of the running luminosity and reconstruction efficiency.
- The two-stage upgrade is planned for the CLAS12 luminosity increase.
 - Phase-I, in progress, will allow running x2 higher than the designed luminosity with the same or even better event reconstruction efficiency, the time frame for the upgrade is 2-3 years.
 - Phase-II upgrade, in 6 to 8 years, will allow running CLAS12 at two orders higher luminosity and is to study small cross-section processes in the di-muon final state.

