Hadron Spectroscopy Measurements: Highlights and Future Plans

Justin Stevens

Spectroscopy: a global endeavor

Highlights since 2015 LRP: light quarks

- # JLab 12 GeV running since 2017: programs in hadron spectroscopy, nucleon and nuclear structure, etc.
- * Photoproduction process provides access to many proposed exotic decay channels
- Orders of magnitude higher statistics than previous photoproduction experiments

Beamline

СТОР

JEAC (Joint Physics Analysis Center) coupled channel fit to $\eta\pi$ and $\eta'\pi$ determine pole positions for a_2 , a'_2 , and exotic π_1

$\eta^{(\prime)}\pi$ spectroscopy at **GLUE**

- * Broad overlapping resonances can't be studied with simple "bump hunting"
- Polarized photon beam provides new information on production mechanism, collaborating with J² on amplitudes

 $0.1 < -t < 0.3 \ GeV^2$

 $a_{2}(1320) + \gamma p \rightarrow \eta \pi^{-} \Delta^{++}$ $a_{2}(1320) + \gamma p \rightarrow \eta \pi^{-} \Delta^{++}$ $f_{1500} + f_{1} +$

Highlight

 z_{G}

π

 $\blacklozenge y_{GJ} = y_H$

 $\vec{\varepsilon}$ 1 Φ

 x_{GJ}

$\eta^{(\prime)}\pi$ spectroscopy at **GLUE**

- * Broad overlapping resonances can't be studied with simple "bump hunting"
- Polarized photon beam provides new information on production mechanism, collaborating with J² on amplitudes

Highlight

$\eta^{(\prime)}\pi$ spectroscopy at GLUE

- * Broad overlapping resonances can't be studied with simple "bump hunting"
- Polarized photon beam provides new information on production mechanism, collaborating with J² on amplitudes

Highlight

LRP Town Hall 2022

25000

Path forward for light quarks

- * Informed by lattice QCD predictions:
 - * $\pi_1(1600)$ decay modes \rightarrow requires studying many final states

Test universality of resonance across production mechanisms and decay modes

Justin Stevens, WILLIAM & MARY 9

exotics

3000

2500

 η_1'

Mass (MeV)

Highlight

* Informed by lattice QCD predictions:

- * $\pi_1(1600)$ decay modes \rightarrow requires studying many final states
- strange and light quark content for hybrid mesons
- Recent candidate from BESIII for isoscalar partner η_1 in $J/\psi \rightarrow \gamma \eta' \eta$

*

Justin Stevens, WILLIAM & MARY 10

Future

- * Create secondary beam of neutral K_L and use Hall D spectrometer to study the $K_L p$ and $K_L n$ interactions
- Strange quark in initial state provides enhanced source of hyperon and strange meson production
- Broad program of searches for expected hyperon states not yet observed experimentally

Projected sensitivity for KLF with 100 days beam time

Highlights since 2015 LRP: XYZP_c

Pentaquarks

Pentaguark observation and interpretation

Pentaquark photoproduction

Highlight

Pentaquark photoproduction

Hall C: J/ψ -007 experiment

Even stricter limits on P_c production taking into account differential cross section $d\sigma/dt$

Highlight

Charged tetraquark candidates: Z_c

Charged tetraquark candidates: Z_c

Justin Stevens, WILLIAM & MARY 19

Future

Photoproduction of $Z_c^+(3900)$

- Alternative production mechanism: * free of rescattering effects and sensitive to photo couplings
- Same production mechanism near threshold (π exchange) studied with light quarks in GlueX and CLAS12

$[\operatorname{dn}]$ (*n Z* \leftarrow

PAC: PRD 102, 114010 (2020)

Justin Stevens, WILLIAM & MARY 21

Justin Stevens, WILLIAM & MARY 22

Summary and Outlook

- * New era of precision spectroscopy measurements from light and heavy quark sectors from traditionally HEP and NP experiments
- Critical collaboration with theory
 - * Phenomenological framework with rigorously defined amplitudes for fitting and interpreting data
 - * Direct connection to fundamental theory through lattice QCD
- * Photoproduction provides a common production mechanism for hybrid mesons and exotic charmonium
 - * GlueX and CLAS12 now have unprecedented datasets to study light quark mesons and baryons
 - * JLab 22 GeV upgrade and EIC provide a unique production mechanism for heavy quark exotics

Backup

Photoproduction of $Z_c^+(3900)$

Justin Stevens, WILLIAM & MARY 26

Future

XYZ reminder: X(3872) or $\chi_{c1}(3872)$

In-medium effects for spectroscopy

- Recent LHCb results in pp show prompt $\chi_{c1}(3872)$ decreases with multiplicity
- First observation of prompt $\chi_{c1}(3872)$ in PbPb at CMS not suppressed relative to $\psi(2S)$

1.7 nb⁻¹ (PbPb 5.02 TeV)

PbPb (5.02 TeV)

|y| < 1.6, 0.90%

pp (7 TeV)

pp (8 TeV)

50

|y| < 1.2 (CMS)

|y| < 0.75 (ATLAS)

60

1.8

1.6⊢

1.4

0.6

0.4

0.2

90

30

20

40

 $p_{_{T}}$ (GeV/c)

N^{X(3872)→J/}ψππ

→J/ψππ

N^{ψ(2S)-}

ρ^{pp,PbPb} = .

CMS

Prompt

In-medium effects for spectroscopy

- Dependence on breakup of X(3872) in nuclei?
- Little suppression expected for compact tetraquark configuration
- Expect suppression of molecular (large size) configuration

Photoproduction of XYZ states

Photoproduction of $\psi(2S)$

