Precision Physics with SoLID and MOLLER

Hot and Cold QCD Town Meeting

September 23, 2022

Paul Souder

Syracuse University

Goals of SoLID, MOLLER, (and P2)

Goal: Measure all the C's as precisely as possible

$$A_{PV} = Q_W^e \frac{Q^2 G_F}{\sqrt{2}\pi} \left(\frac{1-y}{1+y^4 + (1-y)^4} \right)$$

$$A_{PV} = \frac{G_F Q^2}{\pi \sqrt{2}} \left(Q_W^p + A_M + A_s + A_A \right)$$

$$A^{PV} = \left(\frac{G_F Q^2}{4\sqrt{2}\pi}\right) \left(Y_1 a_1 + Y_3 a_3\right)$$

$$a_1^d = \frac{6}{5}(2C_{1u} - C_{1d}); \quad a_3^d = \frac{6}{5}(2C_{2u} - C_{2d}).$$

P2: e P and ¹²C elastic (Simple formula at low E and θ)

SoLID PVDIS (Simple for d at large E and θ , only way to get C_2 's)

Jefferson Lab

3

 $Q_W(Z,N) = -2[C_{1u}(2Z+N) + C_{1d}(Z+2N)]$

 $Q_W(e) = -2Cee$

Goals of PVDIS with SoLID

 A_{PV} with the Deuteron

- 1. Search for BSM physics at a high energy scale.
- 2. Search for CSV at the quark level
- 3. Search for quark-quark higher twist effects

A_{PV} with the Proton

- 1. Help determine d/u PDF's
- 2. Insight into nuclear effects at high x

PVDIS for eD Scattering

$$R_{s}(x) = \frac{2S(x)}{U(x) + D(x)} \xrightarrow{\text{Large } x} 0$$
$$R_{v}(x) = \frac{u_{v}(x) + d_{v}(x)}{U(x) + D(x)} \xrightarrow{\text{Large } x} 1$$

At high x, A_{iso} becomes independent of pdfs, x & W, with well-defined SM prediction for Q² and y

Precision Physics with SoLID and MOLLER

Jefferson Lab 5

SM Effective Field Theory (SMEFT) and LHC Data

$$\mathcal{L} = \sum_{d} \sum_{ij} \frac{C_d^{ij}}{\Lambda^{d-4}} \mathcal{O}_d^{ij}$$
$$\mathcal{O}_d^{ij} = \overline{e}_i \gamma_\mu e_i \overline{f}_j \gamma^\mu f_j$$
$$e_{L/R} = \frac{1}{2} (1 \mp \gamma^5) \psi_e$$
$$\mathcal{O}_d^{ij} = LL_f, \ LR_f, \ RL_f, \ RR_f$$

Goal: Measure each C_d^{ij} as precisely as possible (Nobody really knows where the new physics is.)

SoLID and LHC data are complementary

Precision Physics with SoLID and MOLLER

New Drell-Yan LHC data measures a combination of parity conserving and parity violating couplings.

Figure courtesy of Frank Petriello...

Dark Boson Z_d and other Sub-TeV BSM Models

0.242 v-DIS $m_{\text{dark }Z} = 15 \text{ GeV}$ 0.240 E158 $-0.0010 < \varepsilon \delta' < -0.0003$ 0.238 $|\varepsilon\delta'| > 0.0008$ (light color) $\sin^2 \theta_W (Q^2)$ Qweak 0.236 APV(Cs) **PVDIS** 0.234 Ŧ SOLID LEP Moller P2 $0.232 - APV(Ra^{+})$ Ŧ ePol upgraded SLAC 0.230 "Anticipated sensitivities" **SuperKEKB** -3-20 2 -1Log₁₀ Q [GeV] Leptophobic Z' arXiv:1203.1102v1 e **Buckley and Ramsey-Musolf** ZqJefferson Lab 7

A. W. Thomas and X. G. Wang, [arXiv:2205.01911 [hep-ph]];
A. W. Thomas, X. Wang and A. G. Williams, Phys. Rev. Lett. **129**, no.1, 011807 (2022)

Constraints of new W mass versus PV

Precision Physics with SoLID and MOLLER

• Davoudiasl, et al. Phys.Rev.D 92, (2015) 5, 055005

The MARATHON Data on d/u has different interpretations. Hence as many targets as possible should be studied: PVDIS, BONUS (D), and MARATHON

SoLID PVDIS Apparatus Described in Pre-CDR

Achieving High Luminosity

- 50 μ A beam current.
- 40 cm $LD_2 \setminus LH_2$ target
- ~40% azimuthal coverage with baffles which provide curved channels that block positive and neutral background particles
- Azimuthally symmetric.
- High-rate GEM tracking Chambers

Magnet from CLEO experiment at Cornell is at JLab. Cold test is expected to be completed by October.

Baffles

GEM Chambers

Jefferson Lab 9

MOLLER – World leading measurement of A_{PV}

Jefferson Lab 10

Discovery space comparable to a 500 GeV lepton collider

A			1												
$\sqrt{ g_{RR}^2 }$	$-g_{LL}^2$	īν	$\sqrt{2}G$	$_{F} \Delta Q$	$ _{W}^{e} $										
$\simeq \frac{246.3}{\sqrt{0.0}}$	$\simeq \frac{246.22 \text{ GeV}}{\sqrt{0.023Q_W^e}} = 7.5 \text{ TeV}.$														
Model	η^f_{LL}	η^f_{RR}	η^f_{LR}	η^f_{RL}											
LL^{\pm}	± 1	0	0	0											
RR^{\pm}	0	±1	0	0											
LR^{\pm}	0	0	±1	0											
RL^{\pm}	0	0	0	±1											
VV^{\pm}	± 1	±1	±1	±1											
AA^{\pm}	± 1	±1		∓ 1	M										
VA^{\pm}	± 1		± 1		b										

A

MOLLER is accessing discovery space that cannot be reached until the advent of a new lepton collider

MOLLER PROJECT

- High intensity polarized electron source
- 1 nm control of beam centroid on target
- ~ 9 gm/cm² (1.25 m) liquid hydrogen target
- Full Azimuthal acceptance w/ $\theta_{lab} \sim 5$ mrad
- ~ 134 GHz scattered electron rate
- Robust & Redundant 0.4% beam polarimetry Downstream coils

DOE MIE (Office of Nuclear Physics):

- Full project team in place since January 2019
- Prototyping/construction/installation (2022-25)
- DOE OPA CD-1 Approval: December 2020
- CD-2/CD-3 Review~Summer 2023

Single channel

Liquid Hydrogen Target

Beam line

12

Detector Assembly Engineering Design Progress and Tests

 Main detectors and Shower-Max integrated on "rotator" so all modules can be installed from above rather than needing complex materials handling to insert, e.g. from underneath the structure

Precision Physics with SoLID and MOLLER

Engineering CAD of Main Detector Assembly

SoLID

- Successful DOE Science Review, March 2021
- Successful PAC review for all previously approved experiments: July 2022

MOLLER MIE Project Schedule

- Wrapped up all Preliminary Design Reviews in June 2022
- Targeting Final Design Review(s) in late CY2022 to support spring 2023 CD-2/3 approval
- Technically driven schedule is then ~15 months construction and ~18 months installation
- Now fully funded

MOLLER Schedule		2021									2022											2023											2024									
Review	Start	End	Jan Feb	Mar	Apr M	lay Ju	n Jul	Aug	Sep	Oct N	lov De	ec Jan	n Feb	Mar	Apr	May	Jun .	Jul A	Aug Se	p Oc	t Nov	Dec	Jan	Feb N	/lar A	pr M	ay Ju	וul ו	Aug	Sep	Oct No	ov De	c Jan	Feb	Mar	Apr N	/lay Ju	n Jul	Aug S	ep C	oct No	ov De
PDR - Downsteam Toroid	3/29/21	3/29/21																																								
PDR - Trigger and DAQ	3/18/21	3/18/21																																								
PDR - Magnet Power Supplies, Leads, Jumpers	4/30/21	4/30/21																																								
PDR - Beam Pipes, Bellows and Windows	7/12/21	7/12/21																																								
PDR - GEM Modules	9/14/21	9/14/21																																								
PDR - Detector Systems (except GEMs)	1/12/22	1/14/22																																								
PDR - Hydrogen Target	1/20/22	1/20/22																																								
PDR - Spectrometers	5/23/22	5/24/22																																								
PDR - Shielding and Utilties	6/1/22	6/1/22																																								
FDR - All Systems	12/5/22	12/8/22																																								
CD-3a Directors Review	11/15/22	11/17/22																																								
CD-3a Independent Project Review	1/10/23	1/12/23																																								
CD-3a Approval	2/12/23	2/12/23																																								
Independent Final Design Review	2/6/23	2/9/23																																								
CD-2/CD-3 Directors Review	5/9/23	5/13/23																																								
CD-2/CD-3 Independent Project Review	6/27/23	6/30/23																																								
CD-2/CD-3 ESAAB Approval	7/20/23	7/20/23																																								
Long-Lead procurements	2/13/23	1/29/24																																								
Construction	7/21/23	9/3/24																																								
Installation	9/4/24	12/15/25																																								11.

14

SoLID PVDIS Collaboration

~ 247 authors, 62 institutions, 13countries

P. A. Souder: Contact P. Reimer: Co-spokesperson X. Zheng: Co-spokesperson

MOLLER Collaboration and Project

~ 160 authors, 37 institutions, 6 countries

K. Kumar: Contact J. Fast: Project Manager

Backup

Backup

