Hot & Cold QCO Parton Distributions from Global Analysis

ENERGY SE IIII LNS

Nobuo Sato

Outline

- 1. Motivations
- 2. Recent JAM results
- 3. Integrated THY/EXP analysis
- 4. Summary

Motivations

- WHAT?: Synthesis of 3D tomography/nuclear imaging quantum correlation functions (QCFs)
 - hadron structure (PDFs, TMDs, GPDs, ...)
 - hadronization (FFs, TMDFFs)

- HOW?: Data (EXP), Factorization (THY/LQCD), Inference (CS)
 - test of universality & theory predictive power
 - significan computing and data analysis
 - systematic improvements (resummation, evolution, HO calculations)
 - synergy with lattice QCD (Bayesian priors)
- WHY?: Opportunities
 - origin of proton spin
 - quark and gluon tomography
 - structure of proton sea (strangeness, antimatter asymmetry)
 - origin of nuclear EMC effect
 - small-*x* phenomena
 - precision EW physics (Weinberg angle)
 - o ...

USOC

Outline

- **1.** Motivations
- 2. Recent JAM results
- 3. Integrated THY/EXP analysis
- 4. Summary

"...to present a parallel Cold QCD talk titled Parton distributions from JAM" at the QCD Town Hall Meeting"

Isovector EMC effects from MARATHON data

Cocuzza, Melnitchouk, Metz, Sato (PRL)

- Global analysis including latest collider *W*/*Z* data and MARATHON *d*/*p*, helium, tritium DIS data
- Evidence of different medium modifications for u and d quarks
- Naive modeling of nuclear PDFs, e.g. u/p/A = d/n/A (violates isospin for non-isoscalar A) is wrong

Antimatter asymmetry

- First global analysis to include latest SeaQuest and STAR data
- Most precise phenomenological extraction of *dbar-ubar* asymmetry to date
- Quantitative test of the pion-cloud model

Pion structure

- Improved pQCD framework indicates large x pion pdf is closer to 1 despite QCD model calculations
- Results are also stable after the inclusion LQCD loffe time distributions

NLO NLO+NLL_{DY} 1.4 1.2 $eta_{ m eff}$ 0.8lat only 0.6 $\mu = m_c$ $\exp + \operatorname{lat}$ exp only 0.8 0.85 0.8 0.9 0.750.9 0.75 0.85 xx

Barry, et al (PRD) - JAM & HadStruct

 $\Delta g > 0$

 $\Delta g < 0$

8

Strangeness & Apv deuteron

9

5

s = c = 0

SoLID@22 (Stats)

SoLID@22 (JAM PDF unc.)

SoLID@22 (NNPDF PDF unc.)

 $Q \, \mathrm{GeV}$

Global analysis of SSAs (TMD+CT3 framework)

Cammarota, et al (PRD)

- Exploratory study for a global analysis of all single-spin asymmetries from *ep*, *e+e-* add *pp* reactions using the parton model TMD with collinear twist-3 framework.
- Extracted flavor-dependent transversity in good agreement with LQCD for the first time.

Outline

- 1. Motivations
- 2. Recent JAM results
- 3. Integrated THY/EXP analysis
- 4. Summary

"...to present a parallel Cold QCD talk titled Parton distributions from JAM" at the QCD Town Hall Meeting"

Integrated theory & experimental analysis

event-based analysis

Can we compare real vs synthetic events?

Whv?

- Avoid histograms and minimize systematic uncertainties
- Avoid unfolding and use direct • simulation

Experimental

Events

Optimize physics parameters

- New collaboration between domain and off-domain scientists towards. and end-to-end event-level analysis framework
- Supported by SciDAC

Summary

- Global analysis sits at the intersection of theory, experiment and data science – has the potential discover novel QCD phenomena (e.g., CTEQ)
- Its full realization on existing and future facilities will deliver physics that are important beyond hadronic physics community – EW physics, nucleon tensor charge, ...
- It is a multi-disciplinary activity (with strong synergies with LQCD) and this subfield has the opportunity to explore collaborations with CS, applied math, statistics, HPC, etc. – e.g., opportunities with SciDAC
- Theorists plays an important role from formal developments up to numerical data analysis (currently there is a lack of support in this area). More incentives and proper career development in this area is strongly recommended

JAM collaboration

Staff / Faculty

W. Melnitchouk (JLab), T. Rogers (ODU/JLab),

A. Prokudin (PSU), D. Pitonyak (LVC), L. Gamberg (PSU), Z. Kang (UCLA) J.

Qiu (JLab), A. Accardi (Hampton/JLab), A. Metz (Temple), C.-R. Ji (NCSU),

M. Constantinou (Temple), F. Steffens (Bonn),

Y. Kovchegov (OSU), M. Sievert (NMSU), I. Cloet (ANL),

Students / Postdocs

R. Abdul Khalek (JLab), C. Cocuzza (Temple), Y. Zhou (South China Normal University), P. Barry (JLab), E. Moffat (ANL), D. Adamiak (OSU), A. Freese (WU).

Sep 20 – 22, 2022 AIT, Maclaurin Buildings, S/Eastern timezone	Building 4 Enter your search term Q		
Overview	The aim of this workshop is to understand the long-term needs and challenges for the theory		
Timetable	supporting the EIC physics in connection with the upcoming NSAC Long Range Plan.		
Contribution List	To ensure a broad coverage of topics the workshop will bring together theorists working in different fields. The topics to be discussed at the workshop include, but not limited to: 1) Exclusive processes, 3D structure of the hadrons, origin of nucleon spin and mass 2) SCET and TMDs		
My Conference			
L My Contributions			
Registration			
Participant List			
Venue and Local	3) Study of gluon saturation and nuclear PDF		
Accommodations	5) Quarkonium production at EIC		
Code of Conduct	6) Precision study of nucleon PDF 7) Study of nuclear structure at EIC		
Transportation Information			
Lunch options	8) Tests of fundamental symmetries at EIC		
Contact	9) Computational challenges in EIC theory, including lattice QCD		
Cfns_contact@stonybro.	Organizers: Ian Cloët (ANL), Dmitri Kharzeev (Stony Brook University/BNL), Xiandong Ji (University of Maryland), Peter Petreczky (BNL), Jianwei Qiu (JLab), Phiala Shanahan (MIT), Ian Stewart (MIT), Ivan Vitev (LANL), Feng Yuan (LBNL)		
	Speakers : Martha Constantinou (Temple U), Wim Cosyn (Florida Inernational U), Yoshitaka Hatta (BNL), Zhongbo Kang (UCLA), Emanuele Mereghetti (LANL), Filomena Nunes (MSU), Jianwei Qiu (Jlab), Nobuo Sato (Jlab), Adam Szczepaniak (Indiana U/Jlab), Ian Stewart (MIT), Raju Venugopalan (BNL), Ivan Vitev (LANL), Werner Vogelsang (Tuebingen U), Yong Zhao (ANL)		

EIC theory alliance

Resolution:

We recommend the establishment of a national EIC theory alliance to enhance and broaden the theory community needed to advance EIC physics goals and the experimental program. This theory alliance will develop a diverse workforce through a competitive national EIC theory fellow program and tenure-track bridge positions, including appointments at minority serving institutions

Backup

impact studies

• Importance

- all physics analyses should undergo a series of feasibility studies
- physics analysis should have significant involvement of both theorists and experimentalists
- forecasting impact of future measurements is, by its nature, an evolving and improvable task
- primarily a data analysis task, and suitable for partnerships with off-domain scientists (CS, applied math, statistics, ...)

Issues

- there is no dedicated/established collaborative WG between experimentalists and theorists to continuously improve forecasting of future analyses
 — lack of incentives (especially for theorists) to work with pseudo data.
- Yellow Report exercise was a good starting point, but many things remain to be done
- typical time frame for such an exercise is very short ("we did what we could do")
- no uniform agreement to consolidate impact studies with standardized metrics (e.g., exclusion plots in BSM physics, ...)

Polarized antimatter asymmetry

Cocuzza, Melnitchouk, Metz, Sato (PRD)

process	$N_{ m dat}$	$\chi^2/N_{ m dat}$		
polarized				
inclusive DIS	365	0.93		
inclusive jets	83	0.81		
SIDIS (π^+,π^-)	64	0.93		
SIDIS (K^+, K^-)	57	0.36		
STAR W^{\pm}	12	0.53		
PHENIX W^{\pm}/Z	6	0.63		
total	587	0.85		
unpolarized				
inclusive DIS	3908	1.11		
inclusive jets	198	1.11		
Drell-Yan	205	1.19		
W/Z production	153	0.99		
total	4464	1.11		
SIA (π^{\pm})	231	0.85		
SIA (K^{\pm})	213	0.49		
total	5495	1.05		

- First simultaneous extraction of unpolarized and helicity PDFs and FFs in global analysis with inclusion of RHIC spin *W*+/- data
- Most precise phenomenological extraction of polarized *dbar-ubar* asymmetry to date

Gluon helicity & High pT SIDIS

- Hadron production with large transverse momentum has an opportunity to discriminate the sign of gluon polarization
- Future experiments @ JLab 22 and EIC, has phase space to apply collinear factorization

QED effects in eP reactions

- Hybrid QED+QCD framework to study SSAs in SIDIS within global analysis
- Crucial to control QED backgrounds in transverse spin asymmetries

Towards a global analysis includes QED effects

Synergies with LQCD - pion structure

Barry et al. ('22) JAM+HadStruct

Synergies with LQCD - pion structure

- LQCD can aid hadron structure studies in cases where constraints from experiments are limited -*"lattice priors"*
- Theory Center has expertise from JAM & HadStruc and has started collaborative research work