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made in lattice QCD!
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Figure 3.1: The NNPDF3.1 NNLO PDFs, evaluated at µ2 = 10 GeV2 (left) and µ
2 = 104 GeV2 (right).

3.3 Parton distributions

We now inspect the baseline NNPDF3.1 parton distributions, and compare them to NNPDF3.0
and to MMHT14 [7], CT14 [6] and ABMP16 [8]. The NNLO NNPDF3.1 PDFs are displayed
in Fig. 3.1. It can be seen that although charm is now independently parametrized, it is still
known more precisely than the strange PDF. The most precisely determined PDF over most of
the experimentally accessible range of x is now the gluon, as will be discussed in more detail
below.

In Fig. 3.2 we show the distance between the NNPDF3.1 and NNPDF3.0 PDFs. According
to the definition of the distance given in Ref. [98], d ' 1 corresponds to statistically equivalent
sets. Comparing two sets with Nrep = 100 replicas, a distance of d ' 10 corresponds to a
di↵erence of one-sigma in units of the corresponding variance, both for central values and for
PDF uncertainties. For clarity only the distance between the total strangeness distributions
s
+ = s + s̄ is shown, rather than the strange and antistrange separately. We find important
di↵erences both at the level of central values and of PDF errors for all flavors and in the entire
range of x. The largest distance is found for charm, which is independently parametrized in
NNPDF3.1, while it was not in NNPDF3.0. Aside from this, the most significant distances are
seen in light quark distributions at large x and strangeness at medium x.

In Fig. 3.3 we compare the full set of NNPDF3.1 NNLO PDFs with NNPDF3.0. The
NNPDF3.1 gluon is slightly larger than its NNPDF3.0 counterpart in the x

⇠
< 0.03 region, while

it becomes smaller at larger x, with significantly reduced PDF errors. The NNPDF3.1 light
quarks and strangeness are larger than 3.0 at intermediate x, with the largest deviation seen
for the strange and antidown PDFs, while at both small and large x there is good agreement
between the two PDF determinations. The best-fit charm PDF of NNPDF3.1 is significantly
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W. Armstrong et al., arXiv: 1708.00888.
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Figure 5.11: Tomographic scan of the nucleon via the momentum space quark density function
⌧1;@ ⌘

"(G , Æ:) , Æ() , ⇠) defined in Eq. (5.27) at G = 0.1 and ⇠ = 2 GeV. Panels are for D and 3 quarks.
The variation of color in the plot is due to variation of replicas and illustrates the uncertainty of the
extraction. The nucleon polarization vector is along Ĥ-direction. The figures are from Ref. [371].

Figure 5.12: The density distribution ⌧0

?
" of an unpolarized quark with flavor 0 in a proton polarized

along the +H direction and moving towards the reader, as a function of (:G , :H) at &2 = 4 GeV2. The
figures are from Ref. [358].

Figure 5.13: The density distribution of an unpolarized up and down quarks using Sivers functions
from Ref. [18].

Cammarota, et al. (JAM), PRD 102 (2020).

Indeed, measurements at the EIC and
lattice calculations will have a high degree
of complementarity. For some quantities,
notably the x moments of unpolarized and
polarized quark distributions, a precise de-
termination will be possible both in experi-
ment and on the lattice. Using this to vali-
date the methods used in lattice calculations,
one will gain confidence in computing quan-
tities whose experimental determination is
very hard, such as generalized form factors.
Furthermore, one can gain insight into the
underlying dynamics by computing the same
quantities with values of the quark masses
that are not realized in nature, so as to reveal
the importance of these masses for specific
properties of the nucleon. On the other hand,
there are many aspects of hadron structure
beyond the reach of lattice computations, in
particular, the distribution and polarization
of quarks and gluons at small x, for which
collider measurements are our only source of
information.

y

xp

x
z

bΤ

Figure 2.1: Schematic view of a parton with
longitudinal momentum fraction x and trans-
verse position bT in the proton.

Both impact parameter distributions
f(x, bT ) and transverse-momentum distri-
butions f(x,kT ) describe proton structure
in three dimensions, or more accurately in
2+ 1 dimensions (two transverse dimensions
in either configuration or momentum space,
along with one longitudinal dimension in mo-

mentum space). Note that in a fast-moving
proton, the transverse variables play very dif-
ferent roles than the longitudinal momen-
tum.

It is important to realize that f(x, bT )
and f(x,kT ) are not related to each other by
a Fourier transform (nevertheless it is com-
mon to denote both functions by the same
symbol f). Instead, f(x, bT ) and f(x,kT )
give complementary information about par-
tons, and both types of quantities can be
thought of as descendants of Wigner distri-
butions W (x, bT ,kT ) [8], which are used ex-
tensively in other branches of physics [9].
Although there is no known way to mea-
sure Wigner distributions for quarks and
gluons, they provide a unifying theoretical
framework for the di↵erent aspects of hadron
structure we have discussed. Figure 2.2
shows the connection between these di↵erent
aspects and the experimental possibilities to
explore them.

All parton distributions depend on a
scale which specifies the resolution at which
partons are resolved, and which in a given
scattering process is provided by a large mo-
mentum transfer. For many processes in
e+p collisions, the relevant hard scale is Q

2

(see the Sidebar on page 19). The evolution
equations that describe the scale dependence
of parton distributions provide an essential
tool, both for the validation of the theory
and for the extraction of parton distributions
from cross section data. They also allow one
to convert the distributions seen at high res-
olution to lower resolution scales, where con-
tact can be made with non-perturbative de-
scriptions of the proton.

An essential property of any particle is its
spin, and parton distributions can depend on
the polarization of both the parton and the
parent proton. The spin structure is particu-
larly rich for TMDs and GPDs because they
single out a direction in the transverse plane,
thus opening the way for studying correla-
tions between spin and kT or bT . Informa-
tion about transverse degrees of freedom is
essential to access orbital angular momen-
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X Gao, Y Zhao et al., PRL 128, 142003 (2022).

X Gao et al., 2208.02297.
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on the standard TMD or dihadron observables that are
typically used to extract transversity), one does not find this
solution for hu1ðxÞ. This function can actually describe all
relevant SSAs considered here (TMD and collinear twist-3)
sensitive to transversity as well as obtain agreement with
lattice tensor charge values. To further emphasize the fact
that current TMD observables and lattice are compatible,
we also re-ran our analysis including only TMD observ-
ables (SIDIS, SIA, DY), imposing the Soffer bound on
transversity, and including the lattice gT data point. We
found, similar to Ref. [121], good agreement with experi-
ment and lattice and a size for hu1ðxÞ that falls in between
our JAM3D-22 result and those from other groups (hd1ðxÞ
remains similar to other groups, although slightly larger in
magnitude than JAM3D-22). The remaining increase in

hu1ðxÞ seen in JAM3D-22 is due to the inclusion of Aπ
N data

in the analysis.
Lattice QCD practitioners have also been able recently

to calculate the x dependence of transversity through
the use of pseudo-PDFs [131] or quasi-PDFs [132,133].
The quantity extracted in Ref. [131] was hu−d1 ðxÞ=gT ,
where hu−d1 ðxÞ≡ hu1ðxÞ − hd1ðxÞ, using mπ ¼ 358 MeV.
Therefore, we plot this same combination in the left panel
of Fig. 5 and compare to the lattice result. We find very
good agreement across the entire x range. The computation
of hu1ðxÞ and hd1ðxÞ in Refs. [132,167] was at the physical
pion mass, and we compare JAM3D-22 to that result in the
right panel of Fig. 5. The agreement with hu1ðxÞ is good for
x≲ 0.5. The difference in the large-x region is mostly due
to systematic effects in the lattice results related to the
reconstruction of the x dependence from limited discretized

FIG. 4. The extracted functions h1ðxÞ, f
⊥ð1Þ
1T ðxÞ, andH⊥ð1Þ

1 ðzÞ atQ2 ¼ 4 GeV2 from our JAM3D-22 global analysis (blue solid curves
with 1-σ CL error bands) compared to the functions from other groups. The generated Soffer bound (SB) data are also displayed (cyan
points). We note that for all groups the curves are the central values of the 68% confidence band. The transversity function for Radici,
Bacchetta 2018 and Benel, et al. 2020 are for valence u and d quarks.

FIG. 5. Plot of (left) hu-d1 ðxÞ=gT , where hu-d1 ðxÞ≡ hu1ðxÞ − hd1ðxÞ, from the lattice calculation of Ref. [131] (at Q2 ¼ 2 GeV2) using
mπ ¼ 358 MeV with statistical and systematic uncertainties added in quadrature (purple), and (right) hu1ðxÞ and hd1ðxÞ from the
lattice calculation of Refs. [132,167] (at Q2 ¼ 4 GeV2) at the physical pion mass with only statistical uncertainties, compared to our
JAM3D-22 result (blue) at Q2 ¼ 4 GeV2.

LEONARD GAMBERG et al. PHYS. REV. D 106, 034014 (2022)

034014-12
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FIG. 3. The pion mass dependence of the real (top) and imag-
inary (bottom) part of the renormalized matrix elements for
di↵erent ensembles with the same lattice spacing a = 0.085 fm
and momentum Pz = 1.82 GeV.

the isovector combination gT . JAM22 provides an up-
date to JAM20 by including certain new data sets and
constraints from the So↵er bound and lattice gT result.
Given the sensitivity of the results to the choice of data
sets, we tend to view the di↵erence between the two
curves as a systematic uncertainty from global fits. As
can be seen from the figure, our result lies between the
two global analyses and agree with both within 1 ⇠ 2�
error. Note that we have plotted two shaded bands at
the endpoint regions to indicate that LaMET predic-
tions are not reliable there (taken as x 2 [�0.1, 0.1] and
x 2 [0.9, 1]). Our error band includes both statistical
and systematic uncertainties, where the latter have four
di↵erent sources. The first is the renormalization scale
dependence, which is estimated by varying the scale to 3
GeV and is the dominant systematic error in the region
x > 0.2. The second error comes from the extrapolation
to continuum, infinite momentum, and physical mass,
which is relatively small. We refer the readers to Figs. 12-
14 in Supplemental Material for details of this extrapo-
lation. The third error is from the choice of zs in the
hybrid renormalization scheme. We choose zs = 0.3 fm
and vary it down to zs = 0.18 fm and take the di↵erence
as a systematic error. Lastly, the large � extrapolation
also introduces some error that mainly a↵ects the small-x
region �0.2 < x < 0.2. We have chosen di↵erent regions
to do the extrapolation to estimate this error. In the neg-
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FIG. 4. Our final proton isovector transversity PDF at renor-
malization scale µ = 2 GeV, extrapolated to the continuum,
physical pion mass and infinite momentum limit (a ! 0,
m⇡ ! m⇡,phys, Pz ! 1), compared with JAM20 [18] and
JAM22 [6] global fits. All results are normalized to nucleon
isovector tensor charge gT . The blue error band includes both
statistical and systematic errors. The vertical light gray bands
denote the endpoint regions where LaMET predictions are not
reliable.

ative x region, our result is consistent with zero, which
puts a strong constraint on the sea flavor asymmetry.
JAM plans to update their global analysis by including
spin asymmetry data from STAR [6]. It will be very in-
teresting to see how their new analysis compares with
our lattice result.
Summary: We present a state-of-the-art calculation

of the isovector quark transversity PDF with LaMET.
The calculation is done at various lattice spacings, pion
masses and large nucleon momenta, and extrapolated to
the continuum, physical mass and infinite momentum
limit. With high statistics, we have performed multi-
state analyses with multiple source-sink separations to re-
move the excited-state contamination, and applied state-
of-the-art renormalization, matching and extrapolation.
Our result provides the most reliable lattice prediction
of the isovector quark transversity PDF in the proton so
far, and will o↵er guidance to the relevant measurements
at JLab and EIC.
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Proton isovector quark transversity PDF

F. Yao, L. Walter et al. (LPC), 2208.08008. C. Egerer et al. (HadStruc), Phys.Rev.D 105, 034507 (2022).

LaMET expansion of quasi-PDF Reconstruction from coordinate-space 
matrix elements (pseudo distribution)

JAM22: global fit + lattice result of tensor 
charge gT.
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FIG. 14: Up (left) and down (right) quark unpolarized (upper panels), helicity (middle panels) and transversity
(bottom panels) distributions at P3 = 1.24 GeV (red band). We also show the NNPDF results [2, 81, 84] (blue band)
and JAM17 [82] (orange band) phenomenological results. For the transversity PDF we compare against the SIDIS
data [83] (green band) and SIDIS data constrained by the value of tensor charge gT computed in lattice QCD [83]
(gray band).

is not well-constrained by SIDIS data. As a result, global fits for the light quark �q(x) carry large relative error of
⇡ 50�100% [83]. A more precise phenomenological estimate of the transversity PDFs can be obtained by constraining
the distributions with the value of the tensor charge gT computed within lattice QCD [83]. A comparison with the
latter, reveals a similar agreement as for the helicity PDFs. We would like to stress that the overall qualitative
agreement is very promising, as this computation is done using simulations with heavier than physical pions.

2. Strange quark distributions

The strange distributions presented here are computed using the renormalized matrix elements shown in Fig. 8.
The values of zmax employed in the Fourier transform defining the quasi-PDF are reported in Table VIII. The criterion
adopted to select zmax is to analyze the dependence of the PDF as zmax is increased, as discussed in the previous
section. In Fig. 15 we show the unpolarized, helicity and transversity PDFs. The antiquark distribution reported
here takes into account the crossing relations in Eq. (14), showing the anti-quark distributions in the negative x
region. Although the unpolarized PDFs extracted from the matrix element using the two largest momenta tend
towards the phenomenological result, there is still some residual dependence, which points to the need to increase
the momentum boost to check the independence on P3. Due to the simultaneous suppression of the real part of
the matrix elements and the enhancement of the imaginary part, s̄(x) becomes symmetrical with respect to x =
0 as the momentum boost increases. This symmetry feature is exploited in the global fits. The results for the
helicity distribution are approximately symmetric in the quark and antiquark regions, and are compatible with the
results from the NNPDFPOL1.1 [2] and with JAM17 global fits analysis both of which have larger uncertainties.
Our results, thus, provide valuable input for phenomenological studies. In fact, this is more evident for the strange
transversity distribution where experimental results are lacking. We obtained results on the transversity PDF with

C. Alexandrou, M. Constantinou et al. (ETMC), Phys.Rev.D 104, 054503 (2021)
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Strange quark PDF
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FIG. 15: Results on the strange unpolarized (top panel), helicity (center panel) and transversity (bottom panel)
distributions for three values of P3. We compare with the NNPDFPOL1.1 [2, 84] (light blue) and JAM17 [82] (light
purple) phenomenological data. Lattice data for P3 = 0.41, 0.83, 1.24 GeV are shown with green, red and dark blue
bands, respectively.

small uncertainties that show no residual momentum dependence for the two largest momentum values.

FIG. 16: The strange-quark asymmetry for the unpolarized PDF for three values of P3. We compare with
NNPDF [84] (pink) phenomenological data. Lattice data for P3 = 0.41, 0.83, 1.24 GeV are shown with green, red
and dark blue bands, respectively.

Besides the individual s(x) and s̄(x) distributions, there is also an interest on the strange-quark asymmetry. This
is partly due to the fact that there is no symmetry to suggest that the two distributions have to be the same.
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FIG. 3. The result of xs�(x,Q = 1.3GeV) from the original CT18As fit (blue band), with current

lattice constraints (red slashed area), and expected improvement if current lattice data errors are

reduced by a half (green backslashed area); the black bars are the current lattice data.

IV. CONCLUSION

In this work, we study the impact of the lattice data on the determination of the

strangeness asymmetry distribution s�(x) ⌘ s(x) � s̄(x) in the general CTEQ-TEA global

analysis of parton distribution functions (PDFs) of the proton. We start with the CT18A

NNLO fit [1], rather than the nominal CT18 NNLO fit, since the tensions between the

precision ATLAS
p
s = 7 TeV W , Z data [8] and NuTev [6] and CCFR [7] DIS dimuon

data can be released by introducing s(x) 6= s̄(x), and that the mentioned ATLAS data is

included in the CT18A fit and absent in the CT18 fit. We extend the non-perturbative

parametrisation in the CT18A analysis by allowing a strangeness asymmetry distribution

s�(x) ⌘ s(x)� s̄(x) at the initial Q0 scale. The resulting PDF set from the CT18A data set

is labelled as CT18As, whose quality of fit is similar to the CT18A fit. The constraint from

the lattice data into the PDF global fit is added by using the Lagrange Multiplier method.

We found that the resulting PDF, named as CT18As Lat, present a di↵erent strangeness

asymmetry distribution and a smaller uncertainty band than those of CT18As. We also

investigate the possible constraint of the lattice data with higher precision by performing a

PDF fit with errors in the original lattice data points reduced by half. Our results conclude

that the current lattice data is able to help constraining the strange asymmetry s�(x) in

7

C. Alexandrou, M. Constantinou et al. 
(ETMC), Phys.Rev.D 104, 054503 (2021)

• T.-J. Hou, H.-W. Lin et al., 2204.07944; 
• R. Zhang, H.-W. Lin and B. Yoon, Phys.Rev.D 104, 

094511 (2021)

Lattice QCD calculation Including lattice data in global analysis
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FIG. 10. A comparison between the lattice reduced Io↵e-time pseudo-distribution fM(⌫, z2) in the zero flow-time limit obtained
through the subtraction method using the p = 0 matrix elements, and the gluon helicity ITD constructed from global fits of
PDFs. The lattice data points are the same as in Fig. 9, plotted on a smaller vertical scale for better comparison with the
phenomenological ITD bands. In the left plot, the red band denotes the ITD constructed from the gluon helicity distribution
by the NNPDF collaboration. The green band labeled by eI(+)

p and the cyan band labeled by eI(+/�)
p represent the gluon helicity

ITD determined by the JAM collaboration with and without the positivity constraint on the gluon helicity PDF, respectively.
On the right plot, the gluon helicity ITDs for positive and negative helicity PDFs are compared with the lattice data. The
green band labeled by eI(+)

p and the maroon band labeled by eI(�)
p represent the gluon helicity ITD determined by the JAM

collaboration associated with the positive and negative gluon helicity PDF solutions, respectively.

the assumption of positivity constraints on the quark and gluon helicity PDFs, the magnitude or sign of the gluon
polarization in the nucleon cannot be properly constrained. In other words, the ITD extracted from the JAM global fit

(labeled by JAM eI(+/�)
p in Fig. 10) may have a similar or even larger magnitude of uncertainty than our lattice QCD

calculation. We show a comparison of the polarized gluon ITDs obtained from global fits and our lattice calculation
in Fig. 10. Most importantly, Fig. 10 shows that the ITD data in the ⌫ . 6 region is primarily controlled by whether
the gluon polarization in the nucleon is positive or negative, according to the JAM analysis.

The positivity constraint on the gluon helicity PDF, g(x) � |�g(x)| in the analysis of experimental data in [11]
leads to a substantial reduction of the variance of x�g(x) in the large-x region, as seen in Fig. 6 of [11]. Specifically,
the PDFs without the positivity assumption were organized into a band of solutions with a negative PDF and a band
of solutions with a positive PDF. We compare the ITDs resulting from the two bands with positive and negative
x�g(x) to our results in the right panel of Fig. 10. The current matrix elements, albeit with an unphysical pion mass
and finite lattice spacing, are inconsistent within statistical uncertainties with the negative PDF branch. We note,
however, that the large ⌫ behavior of the lattice-calculated ITD, beyond the range currently accessible, could turn
negative and compensate for the positive trend observed in Fig. 10.

By performing a simultaneous phenomenological fit to the NNPDF unpolarized and polarized gluon PDFs from [106],
it was found in [107] that the magnitude of the gluon helicity ITD in the small ⌫  6 region can benchmark the gluonic
contribution to the nucleon spin budget to be between roughly 40% and 80%. In conjunction with the findings of
the JAM analysis, these observations indicate that the ITD data in the ⌫ . 6-region are of tremendous importance
in quantifying the gluonic contribution to the proton spin and the gluon helicity distibution as a whole. The small-⌫
region is most readily accessible with current leadership-class computing capabilities, so these observations signal the
possibility of a timely constraint on the gluon contribution to the proton spin and its x-dependent helicity distribution
from lattice QCD. Future lattice data, when combined with experimental data and incorporated into a global analysis,
as in Refs. in [108–112], have the potential to provide a strong constraint on the gluon helicity distribution in the
nucleon.

VI. CONCLUSION AND OUTLOOK

This work demonstrates the possibility of determining the x-dependent gluon helicity distribution from lattice
QCD, by calculating the polarized gluon Io↵e-time distribution using the pseudo-PDF approach. We employed a
combination of numerical techniques to facilitate this calculation, including: distillation for the nucleon interpolators,
gradient flow for the gauge fields, and the solution of a summed generalized eigenvalue problem for the analysis of

Constraining gluon helicity PDF using lattice data

Lattice matrix elements of the reduced gluon 
pseudo Ioffe-time distribution

R. Sufian et al. (HadStruc), 2207.08733.
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Pion and kaon electromagnetic form factors
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structure of QCD Goldstone bosons:  
              LQCD predictions for kaon electromagnetic form factor

Xiang Gao et al., in preparation

JLAB12 EIC

X. Gao, et al, in preparation.

Kaon form factor at large momentum transfer
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4

and within the reported uncertainties. Convergence is
also observed for E-GPD for the two highest momenta
and the region x > 0. We note that the statistical errors
on E-GPD are larger than those of the H-GPD, a fea-
ture already observed in FE . We refer the Reader to the
supplement for more details.

-1 -0.5 0 0.5 1
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4

FIG. 1: H-GPD (blue band) and unpolarized PDF (violet
band) for P3 = 1.67 GeV and zero skewness.

-1 -0.5 0 0.5 1

0

2

4

FIG. 2: eH-GPD (blue band) and helicity PDF (violet band)
for P3 = 1.67 GeV and zero skewness.

Our final results for P3 = 1.67 GeV, t = �0.69 GeV2,
and zero skewness are shown in Fig. 1 and Fig. 2 for
the unpolarized and helicity GPDs, respectively. For
each case, we compare the GPDs with the corresponding
PDFs, that is f1(x) for the unpolarized, and g1(x) for
the helicity. We observe that the GPDs are suppressed
in magnitude as compared to their respective PDFs for
all values of x . 0.7. In fact, eH-GPD has a steeper slope
at small x values. The smaller magnitude of the GPDs
is a feature also observed in the standard FFs, which
decay with increasing �t. For the large-x region, both
distributions decay to zero in the same way. The large-x
behavior of the unpolarized GPD is in agreement with
the power counting analysis of Ref. [121]. For the anti-
quark region, we find that the GPDs are compatible with

the corresponding PDFs. We note that the statistical un-
certainties of GPDs are similar to the PDFs, allowing for
such qualitative comparison.

The extraction of the GPDs for ⇠ 6= 0 di↵ers from the
one for ⇠ = 0, as a di↵erent matching kernel is required.
Also, unlike the ⇠ = 0 case, both helicity GPDs con-
tribute to the matrix element, and therefore a decom-
position is required. The comparison between the zero
and non-zero skewness is shown in Fig. 3 and Fig. 4, for
P3 = 1.25 GeV. The main feature of the GPDs at ⇠ 6= 0
is that an ERBL region (|x| < 1/3 in our case) appears,
di↵erentiating it from the DGLAP region (|x| > 1/3).
The behavior of the GPDs as a function of t for a fixed
x is as expected; increasing �t suppresses the GPDs.
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FIG. 3: H-GPD for ⇠ = 0 (blue band) and ⇠ = |1/3| (green
band), as well as the unpolarized PDF (violet band) for P3 =
1.25 GeV. The area between the vertical dashed lines is the
ERBL region.
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FIG. 4: eH-GPD for ⇠ = 0 (blue band) and ⇠ = |1/3| (green
band), as well as the helicity PDF (violet band) for P3 = 1.25
GeV. The area between the vertical dashed lines is the ERBL
region.

Concluding remarks. We presented first results on the
unpolarized and helicity GPDs for the proton, employ-
ing the quasi-distribution approach, which has been very

C. Alexandrou, M. Constantinou et al. 
(ETMC), Phys.Rev.Lett. 125 (2020). H.-W. Lin, Phys.Rev.Lett. 127 (2021).
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FIG. 4: (Left) Nucleon tomography: three-dimensional impact parameter–dependent parton distribution as a function of x and
b using lattice H at physical pion mass. (Right) The two-dimensional impact-parameter–dependent distribution for x = 0.3,
0.5 and 0.7.

special limit ⇠ = 0. There are residual lattice system-
atics are not yet included in the current calculation: In
our past studies, we found the finite-volume e↵ects to be
negligible for isovector nucleon quasi-distributions cal-
culated within the range Mval

⇡ L 2 {3.3, 5.5}. We an-
ticipate such systematics should be small compared to
the statistical errors. The lattice discretization has been
studied by MSULat collaboration in Refs. [89, 105] with
multiple lattice spacings in the LaMET study of pion
and kaon distribution amplitudes and PDFs; similarly,
a comparison of nucleon isovector PDFs with 0.045 and
0.12 fm lattice spacing is shown in supplementary ma-
terials. There was mild lattice-spacing dependence for a
majority of the Wilson-link displacements studied with
similar largest boost momenta with same valence/sea lat-
tice setup. EMTC also report LaMET isovector nucleon
PDFs in Ref. [140] using twisted-mass fermion actions
and reports di↵erent findings. Future work will investi-
gate ensembles with smaller lattice spacing to reach even
higher boost momentum (either directly or with the aid
of machine learning [106]) so that we can push toward
reliable determination of the smaller-x and antiquark re-
gions.
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Lattice calculation will greatly help solve the inverse problem of 
extracting the x-dependence of GPDs from experiments
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Figure 6.20: Preliminary analysis of nucleon lattice TMD data at the physical quark masses. Left:
Isovector generalized Sivers shift as a function of staple length ◆ at fixed 1) and ✓̂. Right: Isovector
generalized tensor charge in the SIDIS limit as a function of 1) for fixed ✓̂. Shaded area indicates region
which may be subject to significant lattice artefacts. Data were obtained using domain wall fermions
at lattice spacing 0 = 0.114 fm. Plot taken from Ref. [716].

Figure 6.21: Nucleon SIDIS 3-quark generalized Sivers shift as a function of momentum fraction G,
multiplied by G, evaluated at 1) = 0.34 fm at fixed ✓̂ = 0.225. Data were obtained using a clover fermion
ensemble at <� = 317 MeV. This preliminary analysis, performed at rather low ✓̂, still significantly
violates constraints such as the limit of support to G  1; comprehensive studies in progress as of this
writing are anticipated to properly account for these properties.

M. Engelhardt et al., in preparation.
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(a) Comparison with the SV19 [4] and Pavia19 [5]
phenomenological parameterizations.
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(b) Comparison with quenched results of Ref. [19] (SWZ), as
well as results from the LPC [20], Regensburg/NMSU [21],
and ETMC/PKU [22] collaborations. Di↵erent sets of points
with the same color show di↵erent sets of results from the

same collaboration.

FIG. 15. bT -dependence of the Collins-Soper kernel as determined in this work (green squares in both panels) compared with
(a) phenomenological results, and (b) the results of other lattice QCD calculations of this quantity.

the e↵ects of higher-order matching, renormalization and
mixing, and power corrections, are significant, as each of
the approaches listed above treats one or more of these
systematic e↵ects di↵erently than in the primary analysis
presented here.

IV. OUTLOOK

This work presents a determination of the Collins-
Soper kernel from a dynamical lattice QCD calculation
following the approach of Refs. [26, 27]. Several system-
atic uncertainties remain to be addressed; in particular,
the quark masses used correspond to an unphysically-
large pion mass of m⇡ = 538(1) MeV, and the results are
obtained using a single ensemble of gauge field configura-
tions such that e↵ects from the discretization and finite
lattice volume cannot be fully quantified. A fully model-
independent calculation will require these systematics to
be addressed, lattice QCD calculations to be performed
over a larger range of P zbz to eliminate the need to ex-
trapolate the quasi beam functions to large |bz

| and en-
able the DFT approach to be used, and larger values of
P z to be included to reduce the contributions from power
corrections and higher-twist e↵ects which dominate the
uncertainties of this calculation. With these caveats in
mind, the results of this work may be compared with
phenomenological extractions of the Collins-Soper ker-
nel, as shown in Fig. 15a. The lattice QCD and phe-
nomenological determinations are broadly consistent at
large bT , with clear deviations at the smallest bT values
studied; discretization e↵ects are expected to be largest
at small bT and might be relevant for understanding this
e↵ect. It is clear that, while challenging to achieve com-
putationally, future fully-controlled calculations by this

approach with uncertainties comparable to those of the
present study will be su�cient to di↵erentiate di↵erent
models of the Collins-Soper kernel and will provide im-
portant input for the analysis of low-energy SIDIS data
and the determinations of the TMDPDFs.

In considering the prospects for such future controlled
determinations of the Collins-Soper kernel from lattice
QCD, it is informative to contrast the results of this
study with those of other lattice QCD investigations; a
comparison of existing calculations [19–22] is provided in
Fig. 15b. All dynamical calculations use quark masses
resulting in similar values of the pion mass to that of the
calculation presented here (ranging from the lightest en-
semble with m⇡ = 350 MeV in Ref. [22] to m⇡ = 547
MeV in Ref. [20]), while the quenched calculation of
Ref. [19], in which the kernel should not depend on the
valence quark masses since it is independent of the exter-
nal state, is performed at m⇡ = 1.207 GeV. Each calcu-
lation uses a slightly di↵erent approach to constrain the
Collins-Soper kernel from quasi beam functions. In par-
ticular, the “Hermite/Bernstein” approach is followed in
Ref. [19] (“SWZ”), the calculation of Ref. [20] (“LPC”)
uses the “bz = 0, bare” approach, that of Ref. [21]
(“Regensburg/NMSU”) uses an approach similar to the
“bz = 0, bare” approach but with NLO matching, and
Ref. [22] (“ETMC/PKU) applies the “bz = 0/bT = 0,
bare” approach. While the various calculations exhibit
similar dependence on bT , there are some significant dis-
crepancies between the numerical results, and a wide
range of uncertainty estimates. Given the analysis of
Sec. III D, this is to be expected; even when the same
quasi beam function data is used, following the various
“bz = 0” approaches and the approach presented here re-
sult in significant systematic di↵erences, and significantly
di↵erent uncertainty estimates. Since Refs. [20–22] all
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same collaboration.

FIG. 15. bT -dependence of the Collins-Soper kernel as determined in this work (green squares in both panels) compared with
(a) phenomenological results, and (b) the results of other lattice QCD calculations of this quantity.

the e↵ects of higher-order matching, renormalization and
mixing, and power corrections, are significant, as each of
the approaches listed above treats one or more of these
systematic e↵ects di↵erently than in the primary analysis
presented here.

IV. OUTLOOK

This work presents a determination of the Collins-
Soper kernel from a dynamical lattice QCD calculation
following the approach of Refs. [26, 27]. Several system-
atic uncertainties remain to be addressed; in particular,
the quark masses used correspond to an unphysically-
large pion mass of m⇡ = 538(1) MeV, and the results are
obtained using a single ensemble of gauge field configura-
tions such that e↵ects from the discretization and finite
lattice volume cannot be fully quantified. A fully model-
independent calculation will require these systematics to
be addressed, lattice QCD calculations to be performed
over a larger range of P zbz to eliminate the need to ex-
trapolate the quasi beam functions to large |bz

| and en-
able the DFT approach to be used, and larger values of
P z to be included to reduce the contributions from power
corrections and higher-twist e↵ects which dominate the
uncertainties of this calculation. With these caveats in
mind, the results of this work may be compared with
phenomenological extractions of the Collins-Soper ker-
nel, as shown in Fig. 15a. The lattice QCD and phe-
nomenological determinations are broadly consistent at
large bT , with clear deviations at the smallest bT values
studied; discretization e↵ects are expected to be largest
at small bT and might be relevant for understanding this
e↵ect. It is clear that, while challenging to achieve com-
putationally, future fully-controlled calculations by this

approach with uncertainties comparable to those of the
present study will be su�cient to di↵erentiate di↵erent
models of the Collins-Soper kernel and will provide im-
portant input for the analysis of low-energy SIDIS data
and the determinations of the TMDPDFs.

In considering the prospects for such future controlled
determinations of the Collins-Soper kernel from lattice
QCD, it is informative to contrast the results of this
study with those of other lattice QCD investigations; a
comparison of existing calculations [19–22] is provided in
Fig. 15b. All dynamical calculations use quark masses
resulting in similar values of the pion mass to that of the
calculation presented here (ranging from the lightest en-
semble with m⇡ = 350 MeV in Ref. [22] to m⇡ = 547
MeV in Ref. [20]), while the quenched calculation of
Ref. [19], in which the kernel should not depend on the
valence quark masses since it is independent of the exter-
nal state, is performed at m⇡ = 1.207 GeV. Each calcu-
lation uses a slightly di↵erent approach to constrain the
Collins-Soper kernel from quasi beam functions. In par-
ticular, the “Hermite/Bernstein” approach is followed in
Ref. [19] (“SWZ”), the calculation of Ref. [20] (“LPC”)
uses the “bz = 0, bare” approach, that of Ref. [21]
(“Regensburg/NMSU”) uses an approach similar to the
“bz = 0, bare” approach but with NLO matching, and
Ref. [22] (“ETMC/PKU) applies the “bz = 0/bT = 0,
bare” approach. While the various calculations exhibit
similar dependence on bT , there are some significant dis-
crepancies between the numerical results, and a wide
range of uncertainty estimates. Given the analysis of
Sec. III D, this is to be expected; even when the same
quasi beam function data is used, following the various
“bz = 0” approaches and the approach presented here re-
sult in significant systematic di↵erences, and significantly
di↵erent uncertainty estimates. Since Refs. [20–22] all
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Comparison with phenomenology

P. Shanahan, M. Wagman and Y. Zhao, PRD 104 (2021).
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where again we parameterize the mixing with one excited
state. Ap is the matrix element of the point sink pion in-
terpolation field. It will be removed when we normalize
�`(0, b?, P z

, `) with �`(0, 0, P z
, 0). We choose �� = �

t
�5

to define the wave function amplitude in Eq. (4). Based
on the quasi-TMDPDF study in Ref. [25, 27] with a sim-
ilar staple-shaped gauge link operator, the mixing e↵ect
could be sizable when summing various contributions. In
the supplemental material, we report a similar simulation
but using the A654 ensemble. We find that the mixing
e↵ects can reach order 5% for the transverse separation
b? ⇠ 0.6fm. These e↵ects will be included in the fol-
lowing analysis as one of the systematic uncertainties,
while a comprehensive study on the mixing e↵ects will
be conducted in the future.

FIG. 2. Results for the ` dependence of the quasi-TMDWF
with z = 0, and also the square root of the Wilson loop
which is used for the subtraction, taking the {P z, b?, t} =
{6⇡/L, 3a, 6a} case as a example. All the results are normal-
ized with their values at ` = 0.

The dispersion relation of the pion state, statistical
checks for the measurement histogram, and information
on the autocorrelation between configurations can be
found in the supplemental materials [28].

Numerical Results. Fig. 2 shows the dependence of
the norm of quasi TMDWFs on the length ` of the
Wilson-line. As one can see from this figure, with
{P

z
, b?, t} = {6⇡/L, 3a, 6a}, both the quasi-TMDWF

�`(0, b?, P z
, `) and the square root of the Wilson loop

ZE decay exponentially with length `, but the subtracted
quasi-TMDWF is length independent when ` � 0.4 fm.
Some other cases with larger P z, b?, and t can be found
in the supplemental materials [28]. Based on this ob-
servation, we will use ` = 7a = 0.686 fm as asymptotic

results for all cases in the following calculation.

FIG. 3. The ratios C3(b?, P
z, tsep, t)/C2(0, P

z, 0, tsep) (data
points) which converge to the ground state contribution at
t, tsep ! 1 (gray band) as function of tsep and t, with
{P z, b?} = {6⇡/L, 3a}. As in this figure, our data in gen-
eral agree with the predicted fit function (colored bands).

We performed a joint fit of the form factor and
quasi-TMDWF with the same P

z and b? with the
parameterization in Eqs. (14) and (15). The ra-
tios C3(b?, P z

, tsep, t)/C2(0, P z
, 0, tsep) with di↵erent tsep

and t for the {P
z
, b?} = {6⇡/L, 3a} case are shown in

Fig. 3, with ground state contribution (gray band) and
the fitted results at finite t2 and t (colored bands). In this
calculation, the excited state contribution is properly de-
scribed by the fit with �

2
/d.o.f. = 0.6. The details of the

joint fit, and also more fit quality checks are shown in the
supplemental materials [28], with similar fitting quality.

FIG. 4. The intrinsic soft factor as a function of b? with
b?,0 = a as in Eq. (9). With di↵erent pion momentum P z,
the results are consistent with each other. The dashed curve
shows the result of the 1-loop calculation, see Eq. (7), with the
strong coupling constant ↵s(1/b?). The shaded band corre-
sponds to the scale uncertainty of ↵s: µ 2 [1/

p
2,
p
2]⇥1/b?.

The systematic uncertainty from the operator mixing has
been taken into account.

The resulting soft factor as function of b? is plotted in
Fig. 4, at �= 2.17, 3.06 and 3.98, which corresponds to
P

z = {4, 6, 8}⇡/L = {1.05, 1.58, 2.11} GeV respectively.
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Figure 2. The lattice results of S(b⊥) for various momenta,
together with the one-loop perturbative result S1−loop

MS
and its

variant S′1−loop
MS

with ↵s including up to 4 loops. The scale µ

in Eq. (17) is set as µ = 2 GeV.

cancelling the dominant higher-twist e↵ects, the results
become much more consistent. The residual deviations
serve as measure of important systematic e↵ects to be
controlled in future studies.

Results of the soft function – After checking the
consistency among the various improved pion matrix ele-
ments, we use the choice of 1

2
(F�5�1 + F�1) as an example

to present the results of S(b⊥) for various momenta P z

and pion masses m⇡
vi.

In Fig. 2, S(b⊥, P z
) is shown together with the one-

loop perturbative curve [35],

S
MS
(b⊥, µ) = 1 − ↵sCF

⇡
ln

µ2b2⊥
4e−2�E

+O(↵2

s), (17)

where one-loop and four-loop values of ↵s are used at the
physically most relevant scale of S(b⊥), i.e. 1�b⊥. The
scale µ is set as µ = 2 GeV. We note that the lattice re-
sults agree qualitatively with the perturbative function
at around b⊥ ∼ 0.2 fm, particularly at the largest boost
and when the higher-order e↵ects are partially included
via ↵s. At larger b⊥, non-perturbative features start to
set in and the decay of S(b⊥) is slower than the pertur-
bative prediction. It is also noteworthy that the conver-
gence of the lattice results in P z clearly increases with
b⊥ – the results from the two largest P z are compatible
for b⊥ � 0.2 fm, while smaller transverse separations will
need yet larger boosts to establish convergence.

In Fig. 3, we examine the pion mass dependence of
the soft function. Although S(b⊥) is extracted from pion
matrix elements which depend on the detailed process
of ⇡(P z

) → ⇡(−P z
), the factorization allows us to can-

cel this process dependence. Performing the calculation
at four pion masses, we find that the lattice results are
generally consistent within statistical errors, although a
small systematic increase is found when decreasing m⇡.
This observation supports the statement from the factor-
ization [17] that the soft function does not depend on the

Figure 3. The intrinsic soft function S(b⊥) for the pion masses
ranging from 827 MeV to 350 MeV. Here, we show results
calculated at the momentum P

z = 5 2⇡
L

as an example.

detailed hadronic information from the initial/final state.
Results for the Collins-Soper kernel – The

Collins-Soper kernel K(b⊥, µ) governs the rapidity evo-
lution of the TMDPFs. In LaMET, the quasi-TMDPDF
is factorized into the light-cone TMDPDF and a
K(b⊥, µ) ln(⇣z�⇣) factor, where ⇣z = 2(xP z

)
2, with P z

playing the role of the rapidity, while ⇣ is the light-cone
counterpart of ⇣z [36]. Thus, by taking the ratio of quasi-
TMDPDFs at di↵erent values of P z, one can extract
K(b⊥, µ). This ratio can also be expressed in terms of
the quasi-TMDWFs [18] as

K(b⊥, µ) = lim
l→∞

1

ln(P z
1
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Figure 4. The lattice results for the Collins-Soper kernel
K(b⊥, µ) from various calculations, described by the color of
yellow [20], blue [19], green [18] and red. The results from
a same calculation are shifted horizontally to make an easier
comparison.

In Fig. 4, the lattice results of K(b⊥, µ) from this work

Q.-A. Zhang, et al. (LPC), Phys.Rev.Lett. 125 (2020). Y. Li et al. (ETMC/PKU), Phys.Rev.Lett. 128 (2022).

• Ji, Liu and Liu, NPB 955 (2020),  PLB 811 (2020); 
• Ji and Liu, PRD 105, 076014 (2022).

Soft factor for full TMD calculation

Exploratory calculation at leading order in αs

15



Origin of 
nucleon spin

3D tomography of 
the nucleon

Origin of 
nucleon mass

16

Structure 
of nuclei



The gluon helicity ΔG

=
1
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ΔΣ
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ΔG = ?

lq + lg

Y.-B. Yang, R. Sufian, Y. Zhao, et al. Phys. Rev. Lett. 118 (2017)
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S̃G(Pz, Q2 =10 GeV2)
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FIG. 24: The decomposition of the proton spin J . The color
notation of the bars is as in Fig. 23. The dashed horizontal line
indicates the observed proton spin value and the percentage
is given relative to the total proton spin. Results are given in
MS scheme at 2 GeV.

FIG. 25: Results for the intrinsic quark spin 1

2
�⌃ contri-

butions to the proton spin decomposed into up (red bar),
down (green bar), strange (blue bar), and charm (orange bar).
The total contribution of the four flavor is also shown (grey
bar) [25]. The dashed horizontal line is the observed proton
spin and the percent numbers are given relative to it. Results
in MS scheme at 2 GeV.

quark is negative reducing the total angular momentum
contribution of the up quark to the proton spin. The
contribution of the down quark to the orbital angular
momentum is positive almost canceling the negative in-
trinsic spin contribution resulting to a relatively small
positive contribution to the spin of the proton.

Our final values for each quark flavor and gluon contri-
bution to the intrinsic spin, angular momentum, orbital
angular momentum and momentum fraction of the pro-
ton are summarized in Table V.

FIG. 26: Orbital angular momentum L contributions to the
proton spin. The color notation is as in Fig. 25. The dashed
horizontal line denotes the observed proton spin and the per-
centage is given relative to the it. Results are given in MS at
2 GeV.

TABLE V: Results for the proton for the average momentum
fraction hxi, the intrinsic quark spin 1

2
�⌃ [25], the total an-

gular momentum J and the orbital angular momentum L in
the MS scheme at 2 GeV. Results are given separately for the
up (u+), down (d+), strange (s+), charm (c+) and for gluons
(g) where for the quarks, results include the antiquarks con-
tribution. The sum over quarks and gluons is also given as
Tot.

hxi J 1

2
�⌃ L

u+ 0.359(30) 0.211(22) 0.432(8) -0.221(26)
d+ 0.188(19) 0.050(18) -0.213(8) 0.262(20)
s+ 0.052(12) 0.016(12) -0.023(4) 0.039(13)
c+ 0.019(9) 0.009(5) -0.005(2) 0.014(10)
g 0.427(92) 0.187(46)

Tot. 1.045(118) 0.473(71) 0.191(15) 0.094(51)

TABLE VI: Renormalized results of the nucleon in the MS
scheme at 2 GeV for the isovector hxi, J and 1

2
�⌃.

hxi J 1

2
�⌃

u+
� d+ 0.171(18) 0.161(24) 0.644(12)

The results given in Table V and VI are obtained us-
ing one ensemble of twisted mass fermions. Therefore, it
is not possible to quantitatively determine finite lattice
spacing and volume systematics. However, in Ref. [86]
several Nf = 2 twisted mass fermion ensembles were
analyzed with pion masses in the range of 260 MeV
to 470 MeV and lattice spacings a =0.089, 0.070 and
0.056 fm as well as for two di↵erent volumes. A contin-
uum extrapolation at a given value of the pion mass was
performed. We found negligible O(a2)-terms yielding a
flat continuum extrapolation. Therefore, we expect that
cut-o↵ e↵ects will be small also for our current ensemble.

Complete flavor decomposition of the proton spin

Ji sum rule:
1
2

=
1
2 ∑

q=u,d,s,…

Jq + Jg

C. Alexandrou et al. (ETMC), Phys.Rev.Lett. 125 (2020).
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Quark orbital angular momentum

9

‡‡

‡‡ ‡‡ ··

0.2 0.4 0.6 0.8
-0.5

-0.4

-0.3

-0.2

-0.1

0.0

z
`

t 3
ê»L

3Hh=
0L ên

Hh=
0L »

u-d quarks
mp = 317 MeV

•0.0

FIG. 4. Integrated torque accumulated by a quark struck in a deep inelastic scattering process along its trajectory exiting the
proton, as a function of Collins-Soper parameter ⇣̂. The data pertain to the isovector u� d quark channel, and are normalized
to the magnitude of the ⌘ = 0 Ji orbital angular momentum. An ad hoc extrapolation to the ⇣̂ ! 1 limit is also exhibited.
The shown uncertainties are statistical jackknife errors.
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FIG. 5. Flavor-separated quark orbital angular momentum as a function of staple length ⌘, analogous to Fig. 3, at fixed
⇣̂ = 0.315. Results are displayed for d quarks and for two u quarks (i.e., the u-quark data for L3/n have been multiplied by 2
to compensate for n = 2), as well as for the isoscalar total quark orbital angular momentum, i.e., the sum of the “d” and “2u”
data. All results are still normalized by the magnitude of isovector Ji orbital angular momentum (thus, at ⌘ = 0, the “2u” and
“d” data di↵er by unity). The shown uncertainties are statistical jackknife errors.

limit is also shown. The ad hoc fit ansatz, A+B/⇣̂, is not underpinned by a theoretical argument at this point, but
is motivated by the good description it provides of the considerably more detailed data as a function of ⇣̂ available
for the pion Boer-Mulders TMD ratio [27]. Auxiliary information concerning the expected large-⇣̂ behavior would be
desirable to aid in sharpening the analysis. The ad hoc extrapolation indeed yields a signal in the ⇣̂ ! 1 limit.

Generalizing to the flavor-separated case, it should be kept in mind that the additional disconnected contributions
that arise compared to the isovector case have not been evaluated. These are, however, expected to be minor at
the pion mass m⇡ = 317MeV used in this calculation. Fig. 5 shows data analogous to Fig. 3 for one value of ⇣̂,
exhibiting the behavior of d-quark and u-quark orbital angular momentum separately, as well as the total (isoscalar)
quark orbital angular momentum. Here, the u-quark data have been normalized to two quarks, i.e., L3/n in the u

quark case has been multiplied by 2 to compensate for n = 2 for u quarks; hence the “2u” label. The isoscalar result
was then obtained by simple addition of the “d” and “2u” data3.

As observed previously in [23], the strong cancellation of the u- and d-quark orbital angular momenta in the proton
that has long been known for the ⌘ = 0 Ji case [6, 7] extends to nonzero ⌘ and the Ja↵e-Manohar limit. Only a
small negative contribution to the spin of the proton from quark orbital angular momentum remains. The data for

3 This may di↵er slightly from calculating 3L3,u+d/nu+d at finite statistics.

Jaffe-Manohar orbital angular momentum normalized 
by Ji orbital angular momentum

M. Engelhardt, et al., Phys.Rev.D 102, 074505 (2020).
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5

almost independent of the quark mass. At the physical
point, the quark and glue energy contributions are
32(4)(4)% and 36(5)(4)% respectively. With the quark
scalar condensate contribution of 9(2)(1)% [3], we can
obtain that a quarter of the trace anomaly contributes
23(1)(1)% with Nf = 2 + 1.

In summary, we present a simulation strategy to cal-
culate the proton mass decomposition. The renormal-
ization and mixing between the quark and glue en-
ergy can be calculated non-perturbatively, and the quark
scalar condensate contribution and the trace anomaly are
renormalization group invariant. Based on this strat-
egy, the lattice simulation is carried out on four ensem-
bles with three lattice spacings and volumes, and several
pion masses including the physical pion mass, to con-
trol the respective systematic uncertainties. With non-
perturbative renormalization and normalization, the in-
dividual u, d, s and glue momentum fractions agree with
those from the global fit in the MS scheme at 2 GeV.
Quark energy, gluon energy, and quantum anomaly con-
tributions to the proton mass are fairly insensitive to the
pion mass up to 400 MeV within our statistical and sys-
tematic uncertainties.

FIG. 3. The valence pion mass dependence of the proton
mass decomposition in terms of the quark condensate (hHmi),
quark energy hHEi, glue field energy hHgi and trace anomaly
hHai/4.
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SUPPLEMENTARY MATERIALS

A. The non-perturbative renormalization of the quark and gauge EMT

The renormalized momentum fractions hxiR in the MS scheme at scale µ are

hxi
R

u,d,s
= Z

MS
QQ

(µ)hxiu,d,s + �Z
MS
QQ

(µ)
X

q=u,d,s

hxiq + Z
MS
QG

(µ)hxig, hxi
R

g
= Z

MS
GQ

(µ)
X

q=u,d,s

hxiq + Z
MS
GG

hxig, (13)

Origin of the proton mass

M = ⟨Hm⟩ + ⟨HE⟩ + ⟨Hg⟩ +
1
4

⟨Ha⟩

Y.-B. Yang, J. Liang, et al. (χQCD), Phys.Rev.Lett. 121, 
212001 (2018).

20

functions with respect to the stout parameter, leads to a
convergence at a small number of stout steps. This has
been confirmed in other calculations with stout smear-
ing [33, 83]. Using the lattice spacing and coupling con-
stant of the ensemble under study we extract the mixing
coe�cients:

ZMS
qg1 = 0.232 , (65)

ZMS
qg2 = 0.083 , (66)

ZMS
gq1 = �0.027 . (67)

VI. RESULTS

In this section we give the renormalized matrix ele-
ments, by combining the bare matrix elements extracted
in Sec. IV and the renormalization factors in Sec. V yield-
ing our physical results. The renormalized results are
obtained from the expressions

Xq+

R = ZqqX
q+

B +
�Zqq

Nf

X

q=u,d,s,c

Xq+

B +
Zqg

Nf
Xg

B (68)

Xg
R = ZggX

g
B + Zgq

X

q=u,d,s,c

Xq+

B (69)

where X = hxi, J , and �Zqq the di↵erence between sin-
glet and non-singlet Zqq and Nf = 4 since we have four
flavors in the sea. In order to fully decompose the quark
flavors we use the corresponding isovector results from
Refs. [25, 51], which are also given in Table VI for com-
pleteness.

In Fig. 23 we show our results for the proton aver-
age momentum fraction for the up, down, strange and
charm quarks, for the gluons as well as their sum. The
up quark is the largest quark contribution, namely about
35%, twice bigger than the down quark. The strange
quark contributes significantly smaller, namely about 5%
and the charm is restricted to about 2%. The gluon
has a significant contribution of about 45%. Summing

all the contributions results to
P

q=u,d,s,chxi
q+

R + hxigR =
104.5(11.8)%, confirming the expected momentum sum.
Fig. 23 also demonstrates that disconnected contribu-
tions are crucial and if excluded would result to a sig-
nificant underestimation of the momentum sum.

The individual contributions to the proton spin are
presented in Fig. 24 as extracted from Eq. (11). The ma-
jor contribution comes from the up quark amounting to
about 40% of the proton spin. The down, strange and
charm quarks have relatively smaller contributions. All
quark flavors together constitute to about 60% of the pro-
ton spin. The gluon contribution is significant, namely
about 40% of the proton spin, providing the missing piece
to obtain in total 94.6(14.2)% of the proton spin.

FIG. 23: The decomposition of the proton average momen-
tum fraction hxi. We show the contribution of the up (red
bar), down (green bar), strange (blue bar), charm (orange
bar), quarks and their sum (purple bar), the gluon (cyan bar)
and the total sum (grey bar). Note that what is shown is the
contribution of both the quarks and antiquarks (q+ = q+ q̄).
Whenever two overlapping bars appear the inner bar denotes
the purely connected contribution while the outer one is the
total contribution which includes disconnected taking into ac-
count also the mixing. The error bars for the former are
omitted while for the latter are shown explicitly on the bars.
The percentages written in the figure are for the total con-
tribution. The dashed horizontal line is the momentum sum.
Results are given in MS scheme at 2 GeV.

The
P

q=u,d,s B
q+

20 (0)+Bg
20(0) is expected to vanish to

respect the momentum and spin sums, as pointed out by
Eq. (11). We find for the renormalized values that

X

q=u,d,s

Bq+

20,R(0) +Bg
20,R(0) = �0.099(91) (70)

which is indeed compatible with zero within its statistical
uncertainty.
Since the quark contribution to the proton spin is com-

puted, it is interesting to see how much comes from the
intrinsic quark spin. In Fig. 25 we show our results for
1
2�⌃q+ = 1

2g
q+

A . These are taken from Ref. [25] and in-
cluded in Table V, for easy reference. The up quark has a
large contribution, up to about 85% of the proton intrin-
sic spin. The down quark contributes about half com-
pared to the up and with opposite sign. The strange and
charm quarks also contribute negatively with the latter
being about five times smaller than the former giving a
1% contribution. The total 1

2�⌃q+ is in agreement with
the upper bound from COMPASS [84].
Having both the quark angular momentum and the

quark intrinsic spin allows us to extract the orbital an-
gular momentum using Eq. (12). For a direct calcula-
tion using TMDs see Ref. [85]. Our results are shown
in Fig. 26. The orbital angular momentum of the up

C. Alexandrou et al. (ETMC), Phys.Rev.Lett. 125 (2020).
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Pressure distribution and shear forces inside the proton
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FIG. 3: Left) Quark (purple) and gluon (green) shear distri-

butions in the proton determined from modified z-expansion
fits to the LQCD GFFs in the MS scheme at µ = 2 GeV, as

well as the total shear (orange) defined as their sum. Right)

Tangential forces in the proton. The colour-coding and arrows

represent the tangential shear vector field defined in Ref. [4].

BEG result. It also favours a more general functional
form in t than the tripole assumed in BEG, although it
is not inconsistent with a tripole ansatz within uncertain-
ties.

The BEG analysis assumes that Dg(t, µ) = Dq(t, µ) as
there is no information on the gluon D-term from exper-
iment. This is in mild tension with the LQCD results,
and, moreover, given the scale evolution, Eq. (3), can
only possibly hold at one scale. Since DVCS accesses the
charge-squared weighted combination of quark flavours,
BEG also assumes that the isovector quark contribu-
tions to the Dq(t, µ) form factor vanish, i.e., Du(t, µ) =
Dd(t, µ). The LQCD finding that Du�d(t, µ) ⇠ 0 pro-
vides compelling motivation for this assumption (large
Nc arguments [28] also support it). The left panel of
Fig. 4 shows the pressure distribution of the proton com-
puted from the BEG quark D-term GFF and the LQCD
gluon GFF, both parametrised using a tripole form and
assuming that the quark-mass dependence of the latter
is negligible in comparison with the statistical uncer-
tainties. This pressure distribution is consistent within
uncertainties with the determination using only LQCD
data. The pressure obtained under the assumptions of
BEG (i.e., Dg(t, µ) = Du+d(t, µ)) is also displayed. In
comparison with the BEG assumption, the inclusion of
the LQCD gluon contribution shifts the peaks of the pres-
sure distribution outwards and extends the region over
which the pressure is non-zero.

As discussed above, the tripole form assumed for
Dq(t, µ) in BEG introduces significant model-dependence
into the pressure extraction (as detailed in the Supple-
mentary Material, more general fit forms such as the
modified z-parameter expansion with 3 parameters are
not disfavoured by consideration of the Bayes Informa-
tion Criterion). With the limited kinematic range of the
CLAS data this is particularly problematic; the LQCD

FIG. 4: Left) Pressure distribution of the proton determined

from tripole parametrisations of the BEG quark GFF and

the LQCD gluon GFF. The red band corresponds to the total

pressure distribution, while the dark blue dotted and green

dashed bands denote to the quark and gluon contributions to

the total. The pressure under the BEG assumption that that

Dg(t, µ) = Dq(t, µ) is shown as the blue solid band. Right)

The same totals computed based on modified z-expansion fits

to the GFFs. Also shown is the result obtained using only

LQCD data, parametrised using the modified z-expansion (or-

ange dashed band).

calculations show that the quark and gluonD-term GFFs
have significant support up to |t| ⇠ 2 GeV2 (assuming
weak quark-mass dependence), which is far beyond the
range of the experimental data. Fig. 1 shows the re-
sult of a modified z-expansion fit to the BEG D-term
form factor; outside the data range, the parametrisation
is very poorly constrained. As shown in the right panel
of Fig. 4, this more general fit leads to a pressure dis-
tribution that is consistent with zero everywhere within
two standard deviations, demonstrating that experimen-
tal data over a larger kinematic range is needed before a
model-independent extraction of the pressure is possible.
In order to investigate the range of t required for a

model-independent pressure extraction from experiment,
fake data for the quark D-term GFF are generated in
intervals of �t = 0.1 GeV2 extending the experimental
data along the tripole fit, assuming uncertainties of the
same size as the average uncertainty in the BEG GFF
determination. The consistency of the LQCD data with
a tripole form gives confidence that such an extension is
justified. These fake data are then used to constrain a
modified z-expansion fit and calculate the corresponding
pressure distribution. For a determination of the pres-
sure distribution that is distinct from zero at 2 standard
deviations at the maximum of the first peak, the range
of the experimental data must be extended in this
manner to at least |t| ⇠ 1.0 GeV2. Future experiments,
such as those using the CLAS12 detector at JLab and a
future EIC, should seek to extend the kinematic reach to
address this deficiency, even at the expense of precision
in individual t bins. With the EIC’s potential [29, 30] to
determine the gluon GPDs that are necessary in defining
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BEG result. It also favours a more general functional
form in t than the tripole assumed in BEG, although it
is not inconsistent with a tripole ansatz within uncertain-
ties.

The BEG analysis assumes that Dg(t, µ) = Dq(t, µ) as
there is no information on the gluon D-term from exper-
iment. This is in mild tension with the LQCD results,
and, moreover, given the scale evolution, Eq. (3), can
only possibly hold at one scale. Since DVCS accesses the
charge-squared weighted combination of quark flavours,
BEG also assumes that the isovector quark contribu-
tions to the Dq(t, µ) form factor vanish, i.e., Du(t, µ) =
Dd(t, µ). The LQCD finding that Du�d(t, µ) ⇠ 0 pro-
vides compelling motivation for this assumption (large
Nc arguments [28] also support it). The left panel of
Fig. 4 shows the pressure distribution of the proton com-
puted from the BEG quark D-term GFF and the LQCD
gluon GFF, both parametrised using a tripole form and
assuming that the quark-mass dependence of the latter
is negligible in comparison with the statistical uncer-
tainties. This pressure distribution is consistent within
uncertainties with the determination using only LQCD
data. The pressure obtained under the assumptions of
BEG (i.e., Dg(t, µ) = Du+d(t, µ)) is also displayed. In
comparison with the BEG assumption, the inclusion of
the LQCD gluon contribution shifts the peaks of the pres-
sure distribution outwards and extends the region over
which the pressure is non-zero.

As discussed above, the tripole form assumed for
Dq(t, µ) in BEG introduces significant model-dependence
into the pressure extraction (as detailed in the Supple-
mentary Material, more general fit forms such as the
modified z-parameter expansion with 3 parameters are
not disfavoured by consideration of the Bayes Informa-
tion Criterion). With the limited kinematic range of the
CLAS data this is particularly problematic; the LQCD
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calculations show that the quark and gluonD-term GFFs
have significant support up to |t| ⇠ 2 GeV2 (assuming
weak quark-mass dependence), which is far beyond the
range of the experimental data. Fig. 1 shows the re-
sult of a modified z-expansion fit to the BEG D-term
form factor; outside the data range, the parametrisation
is very poorly constrained. As shown in the right panel
of Fig. 4, this more general fit leads to a pressure dis-
tribution that is consistent with zero everywhere within
two standard deviations, demonstrating that experimen-
tal data over a larger kinematic range is needed before a
model-independent extraction of the pressure is possible.
In order to investigate the range of t required for a

model-independent pressure extraction from experiment,
fake data for the quark D-term GFF are generated in
intervals of �t = 0.1 GeV2 extending the experimental
data along the tripole fit, assuming uncertainties of the
same size as the average uncertainty in the BEG GFF
determination. The consistency of the LQCD data with
a tripole form gives confidence that such an extension is
justified. These fake data are then used to constrain a
modified z-expansion fit and calculate the corresponding
pressure distribution. For a determination of the pres-
sure distribution that is distinct from zero at 2 standard
deviations at the maximum of the first peak, the range
of the experimental data must be extended in this
manner to at least |t| ⇠ 1.0 GeV2. Future experiments,
such as those using the CLAS12 detector at JLab and a
future EIC, should seek to extend the kinematic reach to
address this deficiency, even at the expense of precision
in individual t bins. With the EIC’s potential [29, 30] to
determine the gluon GPDs that are necessary in defining

Tangential forces Pressure distributions

W. Detmold and P. Shanahan, Phys.Rev.Lett. 122, 072003 (2019).
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FIG. 1. The e↵ective matrix element, Eq. (5), associated
with the isovector quark momentum fractions of the proton,
pp and 3He. Blue (orange) points, labelled SS (SP), show
results for interpolating operators with smeared sources and
smeared (point-like) sinks. For each e↵ective matrix element,
points are shown for t  tmax, where tmax is the minimum t
where the signal-to-noise ratio of Gh(t+a;�)|O(�) is less than
0.5. Colored bands show the highest weight fit to the com-
bined dataset and the shaded gray bands show the weighted
average of all accepted fits and the total statistical plus fitting
systematic uncertainties.

asymptoting as

Rh(t)
t!1
�! hh| T |hi , (6)

with exponentially vanishing contamination at early
times that involves excited-state overlap factors and tran-
sition matrix elements.

Ground-state matrix elements are extracted from
Rh(t), and systematic fitting uncertainties are estimated,
using a procedure for sampling from all possible fit ranges
and models analogous to the procedure described for two-
point correlation functions in Ref. [61]. In summary, in
analyzing Rh(t) to extract the momentum fractions, the
full t dependence that results from the spectral decom-
position of each term in Eq. (5) is fit, and combined fits
to two- and three-point correlation functions are used to
constrain the relevant energies, overlap factors, and ma-
trix elements. All possible choices of fit ranges and up
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FIG. 2. Left: Renormalized isovector momentum fractions
for h 2 {p, pp, 3He} at a scale of µ = 2 GeV. Right: Ratios
of the isovector nuclear momentum fractions to that of the
constituent nucleons.

p pp 3He

hxi(h)u�d 0.191(1)(9) 0.194(2)(9) 0.066(1)(3)⇣
A

Z�N

⌘
hxi(h)u�d/hxi

(p)
u�d — 1.007(14) 1.028(15)

TABLE I. The isovector quark momentum fractions in p, pp
and 3He, calculated at m⇡ = 806 MeV in MS-scheme at µ = 2
GeV. The first uncertainty combines LQCD statistical and
systematic uncertainties and the second uncertainty is from
operator renormalization. The correlated ratios of the isovec-
tor momentum fraction in nuclei to those in the constituent
nucleons, in which the renormalization constants and their
uncertainties cancel, are also given.

to 4 states contributing to the spectral decompositions
are considered using a model selection process described
in the Supplementary Material. A weighted average over
fits from all acceptable fit ranges is used to define ground-
state energy results, including systematic uncertainties
from fit range and model variation. Results are shown in
Fig. 1 for the proton, diproton and 3He.
Results and Discussion — The extracted values of

the isovector quark momentum fractions for p, pp, 3He at
quark masses corresponding tom⇡ = mK = 806 MeV are
shown in Tab. I and displayed graphically in Fig. 2. The
uncertainties are separated into those from the LQCD
calculation of the bare matrix elements, and the (larger)
uncertainty from the renormalization and matching to
the MS scheme. The proton isovector momentum frac-
tion is consistent with other LQCD extractions at similar
values of the quark masses [62] given the di↵erent renor-
malization procedures and lattice spacings. The pp and
3He momentum fractions are determined with O(5%) un-
certainties and are found to be approximately consistent
with those of the constituent nucleons. The ratios of the
nuclear momentum fractions to that of the proton are
independent of operator renormalization to O(↵s), and
are determined at few-percent precision even for 3He.
In Refs. [63–65], nuclear e↵ective field theory (EFT)

Quark momentum fraction of light nuclei

W. Detmold et al. (NPLQCD), Phys.Rev.Lett. 126, 202001 (2021).
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All the tremendous progress would not have happened without the SciDAC program, 
USQCD and NERSC resources, as well as the INCITE and ALCC programs!



Challenges: 

1) Simulating partons requires large hadron momentum, which can only 
be realized with smaller lattice spacings; 

2) Significant noise in simulating gluonic and flavor separated 
observables; 

3) Spin-dependent observables may be sensitive to pion mass, thus 
requiring more expensive calculations at physical pion mass; 

4) 3D (and 5D) distributions demand much more computing time and 
storage; 

Cannot be solved by a single group. Needs continuous computing 
allocation and talent recruitment to achieve precision control for 
advancing JLab and EIC physics.
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Resolution: 

“We recommend the establishment of a national EIC theory alliance to 
enhance and broaden the theory community needed to advance EIC physics 
goals and the experimental program. This theory alliance will develop a diverse 
workforce through a competitive national EIC theory fellow program and 
tenure-track bridge positions, including appointments at minority serving 
institutions.”

Theory for EIC in the next decade 
CFNS Workshop, MIT, Sep. 20—22, 2022

Organizers: Peter Petreczky (BNL), Ian Cloët (ANL), Dmitri Kharzeev (Stony 
Brook University/BNL), Xiangdong Ji (University of Maryland), Jianwei Qiu (JLab), 
Phiala Shanahan (MIT), Iain Stewart (MIT), Ivan Vitev (LANL), Feng Yuan (LBNL)



Computational Nuclear Physics and AI/ML 
Workshop 
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Workshop Resolution 

High-performance computing is essential to advance nuclear physics on the 
experimental and theory frontiers. Increased investments in computational nuclear 
physics will facilitate discoveries and capitalize on previous progress. Thus, we 
recommend a targeted program to ensure the utilization of ever-evolving HPC 
hardware via software and algorithmic development, which includes taking advantage 
of novel capabilities offered by AI/ML. 

The key elements of this program are to:  

1) Strengthen and expand programs and partnerships to support immediate needs in 
HPC and AI/ML, and also to target development of emerging technologies, such as 
quantum computing, and other opportunities. 

2) Take full advantage of exciting possibilities offered by new hardware and software 
and AI/ML within the nuclear physics community through educational and training 
activities. 

3) Establish programs to support cutting-edge developments of a multi-disciplinary 
workforce and cross-disciplinary collaborations in high-performance computing and AI/
ML. 

4) Expand access to computational hardware through dedicated and high-performance 
computing resources. Existing resources include SciDAC-5 project for lattice QCD, USQCD, 

NERSC and XSEDE resources, INCITE and ALCC programs, etc.


