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[PART I] 
WHY QUANTUM COMPUTING FOR THE NP/QCD RESEARCH?
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LATTICE QCD HAS CARRIED OUT A SUCCESSFUL PROGRAM 
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Does this mean we are all set? 
…Well, unfortunately not!

LATTICE QCD HAS CARRIED OUT A SUCCESSFUL PROGRAM 
THAT SUPPORTS A BROAD EXPERIMENTAL PROGRAM IN NP.



THREE FEATURES MAKE LATTICE QCD CALCULATIONS OF NUCLEI HARD:

i) The complexity of systems grows factorially with 
the number of quarks.

iii) Excitation energies of nuclei are much smaller than 
the QCD scale.

ii) There is a severe signal-to-noise degradation 
in Euclidean nuclear correlators.

NPLQCD

Gaffney et al., Nature 497, 199–204 (013).



i) Studies dense matter such as interior of neutron stars and phase diagram of QCD

LQCD ! LQCD � iµ
X

f

q̄f�
0qf

Path integral formulation…

e�S[U,q,q̄]

…with a complex action:

ADDITIONALLY THE SIGN PROBLEM FORBIDS:

NSF/LIGO/Sonoma State University/A. Simonnet
Edelstein et al, arXiv:0901.2534 [hep-ph] (2009)..



ii) Real-time dynamics of matter in heavy-ion collisions or after Big Bang…

…and a wealth of dynamical response functions, transport properties, parton 
distribution functions, and non-equilibrium physics of QCD.

eiS[U,qq̄]

Path integral formulation:

U(t) = e�iHt

Hamiltonian evolution:

ADDITIONALLY THE SIGN PROBLEM FORBIDS:



Bauer, ZD et al, Snowmass 21 whitepaper, 
arXiv:2204.03381 [quant-ph].

Physics Drives

Collider 
Phenomenology

Neutrino 
(Astro)physics

Matter in and out 
of Equilibrium

Early Universe 
and Cosmology

Quantum Gravity

INTRACTABLE PROBLEMS IN HIGH ENERGY PHYSICS ARE IDENTIFIED IN THE SNOWMASS PROCESS…



Quantum Simulation for 
High-Energy Physics

Quantum Ecosystem

Co-design and 
accessibility

Workforce 
development
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partnerships
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Quantum Field Theory 
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Effective Field Theory 
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Physics Drives

Collider 
Phenomenology

Neutrino 
(Astro)physics

Matter in and out 
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Analog Simulators

Digital Computers

NISQ-Era Simulations

Software and compiler

Quantum Simulators

Snowmass 2021

Bauer, ZD et al, Snowmass 21 whitepaper, 
arXiv:2204.03381 [quant-ph].



SIMILAR STUDIES IN NUCLEAR PHYSICS: PAST AND UPCOMING…

A meeting planned later in the Fall to discuss 
opportunities in QIS for NP, to provide input 
to the Long-Range Planning process. 

Organizers: Joe Carlson and Martin Savage 

Beck, Savage et al, NSAC subcommittee 
report on QIS (2019).

[Recommendation 1A] 
Quantum Computing and Simulation in 
Nuclear Physics 

[Recommendation 1B] 
Quantum Sensing in Nuclear Physics 

[Recommendation 2] 
Exploratory Techniques and Technologies in 
Combined NP and QIS 

[Recommendation 3] 
A Quantum-Ready Nuclear Physics Workforce



[PART II] 
WHAT HAS TO BE DEVELOPED IN THE COMING YEARS?



ADDITIONALLY THE SIGN PROBLEM FORBIDS:A RANGE OF QUANTUM SIMULATORS WITH VARING CAPACITY AND CAPABILITY

UNIVERSITY OF MARYLANDC. CHIU/HARVARD 
UNIVERSITYAtomic systems (trapped 

ions, cold atoms, Rydbergs) 

Condensed matter systems 
(superconducting circuits, 
dopants in semiconductors 
such as in Silicon, NV 
centers in diamond) 

Laser-cooled polar 
molecules 

Optical systems (cavity 
quantum electrodynamics)



Starting from the Standard Model 

Both bosonic and fermionic DOF are 
dynamical and coupled, exhibit both global 
and local (gauge) symmetries, relativistic 
hence particle number not conserved, vacuum 
state nontrivial in strongly interacting theories.

Attempts to cast QFT problems in a language closer to quantum chemistry and NR simulations:
Kreshchuk, Kirby, Goldstein, Beauchemin, Love, arXiv:2002.04016 [quant-ph], Kreshchuk, Jia, 
Kirby, Goldstein, Vary, Love, Entropy 2021, 23, 597, Liu, Xin, arXiv:2004.13234 [hep-th], 
Barata , Mueller, Tarasov, Venugopalan (2020)

HOW SIMILAR TO QUANTUM-CHEMISTRY AND MATERIAL SIMULATIONS?

CERN courier/



Theory developments

Algorithmic developments

QUANTUM SIMULATION OF QUANTUM FIELD THEORIES: A MULTI-PRONG EFFORT

Implementation, benchmark, 
and co-design



Theory developments

How to formulate QCD in the Hamiltonian language?

What are the efficient formulations? Which bases 
will be most optimal toward the continuum limit?

How to preserve the symmetries? How much 
should we care to retain gauge invariance? 

How to quantify systematics such as finite volume, 
discretization, boson truncation, time digitization, etc?



MANY HAMILTONIAN FORMULATIONS  OF GAUGE THEORIES EXIST, BUT WHICH ONE TO PICK?

Group-element representation 
Zohar et al; Lamm et al

Manifold lattices  
Buser et al

Spin-dual representation 
Mathur et al

Loop-String-Hadron basis 
Raychowdhury and Stryker

Fermionic basis 
Hamer et al; Martinez et al; Banuls et al

Bosonic basis 
Cirac and Zohar

Link models, qubitization 
Chandrasekharan, Wiese et al, 
Alexandru, Bedaque, et al.

Prepotential formulation 
Mathur, Raychowdhury et al

Local irreducible representations 
Byrnes and Yamamoto; 
Ciavarella, Klco, and Savage

Dual plaquette (magnetic) basis 
Bender, Zohar et al; Kaplan and Styker; Unmuth-
Yockey; Hasse et al; Bauer and Grabowska

Gauge-field theories (Abelian and non-Abelian):

Light-front quantization 
Kreshchuk, Love, Goldstien, 
Vary et al.; Ortega at al

Scalar field theory

Field basis 
Jordan, Lee, and Preskill

Harmonic-oscillator basis 
Klco and Savage

Single-particle basis 
Barata , Mueller, Tarasov, and Venugopalan.

Continuous-variable basis 
Pooser, Siopsis et al



How do we do state preparation 
and compute observables like 
scattering amplitudes?

Algorithmic developments 
[Digital]

Near- and far-term algorithms with 
bounded errors and resource 
requirement for gauge theories?

Can given formulation/encoding 
reduce qubit and gate resources?

Should we develop gauge-invariant 
simulation algorithms? 



Can we simulate higher-
dimensional gauge theories?

Can non-Abelian gauge theories 
be realized in an analog simulator?

Can we robustly bound the errors in 
the analog simulation? What 
quantities are more robust to errors?

Can practical proposals for current 
hardware be developed?

Algorithmic developments 
[Analog]



Implementation, benchmark, 
and co-design

Can we co-design dedicated systems for 
gauge-theory simulations?

Can digital and analog ideas be combined 
to facilitate simulations of field theories?

What is the capability limit of 
the hardware for gauge-theory 
simulations so far?

What is the nature of noise in hardware 
and how can it best be mitigated?



Theory developments

Algorithmic developments

Implementation, benchmark, 
and co-development

We’ve got a long way to go to get to QCD but we know what to do! If one thing 
we learned from the successful conventional lattice-QCD program is that theory/
algorithm/experiment collaborations will be the key. It is even more important in 
the quantum-computing era since our computers are themselves physical systems!



[PART III] 
EXAMPLES SHOWCASING PROGRESS IN A RANGE OF 
QCD-INSPIRED PROBLEMS…



Four fermion sites

Martinez et al, Nature 534, 516 EP (2016).Klco, Savage, et al, Phys. Rev. A 98, 032331 (2018).

A hybrid classical-quantum approach allows a 2-qubit reduction of 
4-qubit simulation.

9

N = 4, �t = 1

(a)

(b)

Figure 7. Experimental results for N = 4 and �t = 1. (a) The
upper plot shows fluctuation in the bare-vacuum population,
Pvac(t), while the lower plot shows particle-number density,
⌫(t). (b) The upper plot shows the local charge density Qn(t)
as measured in the experiment after post-selection, while the
lower plot shows its deviation from theory.

delity, rather than qubit number, is the main limitation of
our implementation. E↵orts to overcome such a technical
limitation are well underway [86]. To mitigate the time-
correlated errors, we have applied a symmetry-protection
scheme [29] but found negligible e↵ects in suppressing
the errors, pointing to dominant incoherent and uncorre-
lated noise in the experiment. Incoherent errors can be
mitigated by post-selection of the experimental measure-
ments using symmetry considerations. Better-motivated
and further-tailored schemes for incoherent error mitiga-
tion are desired in future simulations.

An avenue for improving the quality of the simulation
is reducing the gate depth, e.g., by performing gates in
parallel instead of sequentially. In our model, e�i�tĤ

x

,
consisting of only nearest-neighbor interactions, can be

N = 6, �t = 1

(a)

(b)

Figure 8. Experimental results for N = 6 and �t = 1. (a) The
upper plot shows fluctuation in the bare-vacuum population,
Pvac(t), while the lower plot shows particle-number density,
⌫(t). (b) The left plot shows the local charge density Qn(t)
as measured in the experiment after post-selection, while the
right plot shows its deviation from theory. At t = 4, we reach
the gate-depth limit of the hardware.

applied in a fixed circuit depth of 4 instead of 2N by per-
forming all the X2iX2i+1 terms, then all the X2i+1X2i+2

terms, in parallel. The all-to-all interactions in e
�i�tĤ

ZZ

can be reduced to depth of N instead of N
2 if gates

XiXi+n, for all i and fixed n, are performed in paral-
lel. With trapped ions, parallel operations can be done
either in multi-zone architectures [87, 88], or in linear
chains with advanced control schemes [89].

Alternatively, the gate depth can be reduced by
using M -body Mølmer-Sørensen gates MS(�,M) ⌘

e
�i�

PM
i=1

PM
j=i+1 �̂

X
i �̂

X
j [82–84]. This approach was im-

plemented in Ref. [71] to reduce the number of MS op-
erations in the simulation of the Schwinger model from
O(N2) to O(N). In general, a non-trivial optimization of
both frequency and amplitude modulation of the beams
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XiXi+n, for all i and fixed n, are performed in paral-
lel. With trapped ions, parallel operations can be done
either in multi-zone architectures [87, 88], or in linear
chains with advanced control schemes [89].

Alternatively, the gate depth can be reduced by
using M -body Mølmer-Sørensen gates MS(�,M) ⌘

e
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X
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X
j [82–84]. This approach was im-

plemented in Ref. [71] to reduce the number of MS op-
erations in the simulation of the Schwinger model from
O(N2) to O(N). In general, a non-trivial optimization of
both frequency and amplitude modulation of the beams

Four fermion sites Six fermion sites

90 entangling gates!80 entangling gates! Nguyen, Tran, Zhu, Green, Huerta Alderete, 
ZD, Linke, PRX Quantum 3 (2022) 2, 020324.

8

N = 2, �t = 0.5

(a)

(b)

Figure 5. Experimental results for N = 2 and �t = 0.5.
(a) The upper plot shows fluctuation in the bare-vacuum pop-
ulation, Pvac, while the lower plot shows particle-number den-
sity, ⌫, as a function of time, indicating the creation and an-
nihilation of the particle-antiparticle pairs. The dashed lines
are a guide to the eye. (b) The upper plot shows the local
charge density Qn as measured in the experiment after post-
selection, while the lower plot shows its deviation from theory
as a function of time.

try protection can improve our experimental implemen-
tation.

Figure 9 plots the result of an experiment using the
odd-even term ordering. As before, the initial state is the
bare vacuum. The unitaries e�i↵kŜz , with random angles
↵k given in Appendix A, are inserted between Trotter
steps k and k+1. While the population in states forbid-
den by the symmetry, denoted as Psym in the upper panel,
decreases with symmetry protection, this reduction is not
significant. Furthermore, while the deviation of the bare-
vacuum population from the Trotterized theory generally
decreases, post-selecting symmetry-preserving measure-
ments appears more e↵ective in mitigating the error in
this quantity than the symmetry protection as shown
in the lower panel of the figure. This indicates that

N = 4, �t = 0.5

(a)

(b)

Figure 6. Experimental results for N = 4 and �t = 0.5.
(a) The upper plot shows fluctuation in the bare-vacuum pop-
ulation, Pvac(t), while the lower plot shows particle-number
density, ⌫(t). (b) The upper plot shows the local charge den-
sity Qn(t) as measured in the experiment after post-selection,
while the lower plot shows its deviation from theory.

the experiment is dominated by noise that is not corre-
lated in time. Note that by construction, the symmetry-
protection scheme only mitigates time-correlated errors.

IV. DISCUSSION

We have digitally simulated the time evolution of the
lattice Schwinger model with up to six qubits. For a
four-qubit simulation, we observe four oscillations of the
particle density, and the simulated time is almost four
times longer than previously demonstrated using a Trot-
terized scheme [64, 71]. Given the long circuit depths
required for dynamical gauge-theory simulations, gate fi-

4

FIG. 2. The H
⇤̃=3
k=0,+ ground state energy and chiral conden-

sate (purple, blue extrapolated to -1.000(65) and -0.296(13),
respectively) expectation values as a function of r, the noise
parameter. r � 1 is the number of additional CNOT gates
inserted at each location of a CNOT gate in the original VQE
circuit. (1200 IBM allocation units and ⇠ 6.4 QPU·s)

k = 0 and ⇤̃ = 1, 2, 3 spaces as hHi = �0.91(1) MeV,
�1.01(4) MeV, and �1.01(2) MeV respectively (see Ap-
pendix E, H, and I)1. To manage inherent noise on the
chip, we have performed computations with a large num-
ber of measurement shots (8192 shots for ibmqx2 [52]
and ibmqx5 [53]). For these variational calculations, the
systematic measurement errors have been corrected via
the readout-error mitigation strategy [33, 54]. Further,
a zero-noise extrapolation error mitigation technique in-
spired by Refs. [55, 56] has been implemented. Examples
of this zero-noise extrapolation technique are shown in
Fig. 2, where the noise parameter r controls the accrual
of systematic errors by inserting r� 1 additional 2-qubit
gates (CNOT2) at every instance of a CNOT gate. In
the limit of zero noise, this modifies CNOT simply by an
identity.

For the results obtained on IBM quantum hardware,
an estimate of the length of time the quantum processing
unit (QPU) spent executing instructions based upon IBM
benchmarking is provided [52, 53, 57]. This VQE calcu-
lation required 6.4 QPU-seconds and 2.4 CPU-seconds
with a total run time of 4 hours. Clearly, a majority of
the time was spent in communications.

IV. DYNAMICAL PROPERTIES

Time evolving quantum systems is a key capabil-
ity of quantum computers. Working with the k = 0
P = +1 sector, we evolve the unoccupied state |�1ik=0,+

1 Example code snippets for calculation on IBM hardware and ta-
bles of data appearing in figures can be found in the supplemental
material [51]

FIG. 3. The probability of finding an e
+
e
� pair (blue,

lower line) and the expectation value of the energy of the elec-
tric field (purple, upper line) in the two-spatial-site Schwinger
model following time evolution with U(✓i(t)) from the initial
empty state. The solid curves are exact results while the the
data points are quadratic extrapolations obtained with the
ibmqx2 quantum computer using a circuit involving 3 CNOT
gates [60]. (1000 IBM allocation units and ⇠ 12.3 QPU·s)

(see Fig. 1 and Appendix A) forward in time with two
techniques. The first is through SU(4) parameteriza-
tion of the evolution operator and the second is us-
ing a Trotter discretization of time. The former uses
a classical computer to determine the 9 angles describ-
ing the time evolution over an arbitrary time inter-
val, which is induced by the symmetric SU(4) matrix
U(✓i(t)) = e�iHt, leading to the state |�ik=0,+(t) =
U(✓i; t)|�1ik=0,+ (see Appendix C). The most gen-
eral form of the symmetric SU(4) matrix through its
Cartan decomposition is U = KTCK where C =
e�i�x⌦�x✓7/2e�i�y⌦�y✓8/2e�i�z⌦�z✓9/2 is generated by the
Cartan subalgebra and K is a SU(2) ⌦ SU(2) transfor-
mation defined by the 6 angles, ✓1,..6 [58, 59]. Fig. 3
shows the “zero-noise” extrapolated pair probability and
expectation value of the energy in the electric field as a
function of time calculated on ibmqx2 with the Cartan
subalgebra circuit of Ref. [60].
The time evolution of this system has also been stud-

ied using a Trotterized operator (see Appendix D).
It is discretized such that e�iHt

! UT (t, �t) =

lim
N!1

 
Q
j

e�iHj�t

!N

, where �t = t

N
and the Hamilto-

nian decomposition H =
P
j

Hj (for the k = 0 P = +1

⇤̃ = 3 sector) is given by,

H =
x
p
2
�x ⌦ �x +

x
p
2
�y ⌦ �y � µ �z ⌦ �z

+ x

✓
1 +

1
p
2

◆
I ⌦ �x �

1

2
I ⌦ �z

� (1 + µ) �z ⌦ I + x

✓
1�

1
p
2

◆
�z ⌦ �x .(5)

DIGITAL COMPUTATIONS OF ABELIAN LGTs
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The last term in the Hamiltonian corresponds to the
invariant Casimir operator of the theory and represents
color electric field energy stored in the gauge links. Here,
L̂

2

n “ ∞
a L̂

a
nL̂

a
n “ ∞

a R̂
a
nR̂

a
n where L̂a

n and R̂a
n (with

a “ x, y, z) are respectively the left and right color elec-
tric field components on the link n. For a non-Abelian
gauge group, the right and left color electric field are
different and are related via the adjoint representation
R̂a

n “ ∞
bpÛadj

n qabL̂b
n, where pÛadj

n qab “ 2Tr

”
ÛnT̂ aÛ :

nT̂
b
ı
,

T̂ a “ �̂a{2 are the three generators of the SU(2) algebra
and �̂a are the Pauli matrices [38].

Symmetries and non-Abelian physics By virtue
of its gauge invariance, the Hamiltonian in equation (1)
commutes with the local gauge transformation genera-
tors, also called the Gauss’s law operators, and are given
by Ĝa

n ” L̂a
n´R̂a

n´1´Q̂a
n, where the non-Abelian charges

Q̂a
n acting on the site n are defined as

Q̂a
n “

ÿ

ij

�̂i:
n pT̂ aqij �̂j

n, a “ x, y, z. (2)

More precisely, the so-called physical Hilbert space of the
theory is spanned by the eigenstates of the Gauss’s law
operators Ĝa

n. In the following, we choose to work in
the sector with no external charges which is specified by
Ĝn | y “ 0, @n, and in the neutral total charge sector
Q̂a

tot | y “ ∞N
n“1 Q̂

a
n | y “ 0, @a.

Remarkably, the non-Abelian nature of the model al-
lows the existence of gauge invariant singlet states which
are forbidden in the Abelian case due to symmetry con-
straints. To see this, we note that the total color
charges Q̂a

tot “ ∞N
n“1 Q̂

a
n are conserved quantities and

commute with the Hamiltonian. Besides the three non-
Abelian charges, the Hamiltonian also commutes with
the redness and greenness operators defined as R̂ “∞N

n“1 �̂
1:
n �̂1

n ´ N{2 and Ĝ “ ∞N
n“1 �̂

2:
n �̂2

n ´ N{2, which
respectively measure the red and green color charges. Be-
cause redness and greenness do not have convenient sym-
metry properties, it is more natural to use their difference
(which is purely within the SU(2) gauge symmetry, since
R̂´Ĝ

2 “ Q̂z
tot) and their sum (which is a global U(1) sym-

metry). We therefore define the baryon quantum number
of the model as B̂ “ R̂`Ĝ

2 “ 1
2

∞N
n“1 �̂

:
n�̂n ´ N{2 which

measures the matter-antimatter imbalance.
The existence of multiple conserved charges in the non-

Abelian theory has to be contrasted with the Abelian
Up1q case of quantum electrodynamics (QED), where the
electric charge is the only conserved quantity. In QED,
the total electric charge coincides with the baryon num-
ber B of the system [39], and the neutral charge con-
straint thus imposes the value of the matter-antimatter
imbalance to be zero. In other words, neutral gauge in-
variant states of QED must contain as many electrons as
positrons leading to meson-type singlet states only. On
the other hand, the constraint of neutral charge for the
SU(2) theory Q̂i

tot | y “ 0, @i does not enforce the value
of the baryon quantum number B, since these are differ-

VQE preparation of the baryon massb

x
1 2 3 4 5 0

0

5

10

15

20

Mb

SU(2) “quark”

SU(2) “proton”

N = 4

1

2

3

4

5

6
a VQE circuit to prepare baryon and vacuum states

Exact baryon mass

Baryon mass (VQE)

FIG. 2. VQE calculation of a baryon. We variationally
simulate an effective eight sites chain with the experimental
circuit shown in a. The boxes represent single qubit gates.
Grey boxes are fixed gates while the color coding indicates
dependence from three variational parameters. Their exact
implementation changes depending on the combination of the
parameter values, which is automatically compiled from the
original circuit shown in Fig. 3. This takes into account the
coupling topology of the IBMQ Casablanca processor, which,
together with the qubit identification for the B “ 0 sector are
shown on the left. The circuit yields the mass of the baryon
(errorbars are smaller than markers), an SU(2)-“proton” (see
inset), for a range of x and m̃ “ 1 as explained in the main
text.

ent quantum numbers. Therefore, it is possible to con-
struct color neutral gauge invariant singlets with B ‰ 0,
which are forbidden in QED. While the states in the
B “ 0 sector are similar to the neutral states of QED,
the states in the sector with B ‰ 0 have no equivalent
in Abelian theories. In particular, we will refer to the
ground state in the sector with B “ 1 as a baryon state,
the ground state in B “ 0 will be the vacuum and the
first excited state will be called a meson state. A pictorial
comparison of a meson and a baryon is given in Fig. 1b.

Elimination of the gauge fields and qubit for-
mulation To study energy spectrum of the SU(2) the-
ory on a quantum computer, we map the lattice Hamil-
tonian in equation (1) to a qubit system. In one spatial
dimension and with open boundary conditions, the gauge
degrees of freedom can be integrated out [40–44] (see
Supplementary Information for details). This approach
eliminates redundant degrees of freedom and allows us
to simulate our target model with a minimal number of
qubits. As a second step, a Jordan-Wigner transforma-

21

FIG. 10. Two plaquettes with periodic boundary conditions and an arrow convention amenable to infinite extension in the
two-dimensional plane. Indices local to each end of each link characterize states in SU(3) e.g., the color isospin and hypercharge
indices.

previous algorithms, for example, Ref. [13].

Similar to the methods employed for the one-plaquette system, Gauss’s law can be explicitly satisfied in the global

wavefunctions by construction of the basis states. Using the dimensionality of the color irrep of each link, as shown in

Fig. 10, the basis states for the two-plaquette system are written as |�(R1,Q1,R2,R3,Q2,R4)i. The gauge invariant

lattice wavefunction for this two-plaquette system, as discussed in greater generality in Appendix A, is

|�(R1,Q1,R2,R3,Q2,R4)i =
1

dim(Q1) dim(Q2)

X

all

|R1, a, bi|Q1, c, di|R2, e, fi|R3, g, hi|Q2, i, ji|R4, k, `i

hR3, h, R̄1, a|Q̄2, ji�312 hR1, b, R̄3, g|Q̄1, di�131

hR4, `, R̄2, e|Q2, ii�422 hR2, f, R̄4, k|Q1, ci�241 , (34)

where |R, a, bi is a link-state in the electric basis and hRi, f,Rj , k|Qk, ci�ijk are SU(3) CG coe�cients.

The global wavefunctions of the two-plaquette system are formed from combinations of these basis states, consistent

with the global symmetries of the system such as: color-parity symmetry resulting from the sum of ⇤ + ⇤† in the

Hamiltonian, e.g., {Ri,Qi} $ {Ri,Qi}, translation invariance, and reflection symmetry. These symmetries lead to a

natural block-diagonalization of the Hamiltonian in these projected bases. Quantum numbers may be assigned to the

states in each block, ±1 for each of the symmetries in the case of two-plaquettes. In this section, we consider a global

basis in which dynamical quantum states are mapped to symmetry-projected configurations of the full two-plaquette

lattice. Two related local truncations in color space are used to explore the convergence of both local and global

truncations.

A. Two-Plaquette: {1,3,3} Local Truncation

In limiting the local link basis to color irreps {1,3,3} for the two-plaquette system without constraints and symmetries,

there are 36 independent basis states. Imposing Gauss’s law at each vertex reduces this number down to 27. Further

restricting to global singlet states, as is the strong coupling vacuum and preserved by the Hamiltonian, the dynamical

Hilbert space becomes 9 dimensional, which decomposes into sectors of dimensions (4, 2, 2, 1) under the discrete

symmetries of color parity and spatial translation. Focusing on the sector that contains the trivial vacuum, the basis

states in the ++ sector are,

| (133;++)
1 i = |�(1,1,1,1,1,1)i

| (133;++)
2 i =

1

2

⇥
|�(3,3,3,1,3,1)i+ |�(3,3,3,1,3,1)i+ |�(1,3,1,3,3,3)i+ |�(1,3,1,3,3,3)i

⇤

| (133;++)
3 i =

1
p
2

⇥
|�(3,1,3,3,1,3)i+ |�(3,1,3,3,1,3)i

⇤

24

circuit in Eq. (19), and the third can be implemented with the following circuit relation

ei(↵Ẑ⌦X̂+�X̂⌦Ẑ) =
H • H ei↵Ẑ H • H

ei�Ẑ
. (43)

The results of performing first order Trotter time steps with g = 1 beginning in the electric vacuum are shown in

Fig. 12. Two middle qubits were used to store the state of the system and, when the measurement error mitigation

is implemented through voting, the remaining three qubits were used to inform the post-selection described in Sec-

tion III B 1. As the results show, three Trotter steps are capable of reproducing the first maximum and minimum

in the evolution of the electric energy and calculations on the Athens quantum processor are in agreement with the

exact calculation.
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FIG. 12. The (trivial-) vacuum-to-vacuum persistence probability |h00| Û(t) |00i|2 (left panel) and the energy in the electric
field (right panel) of the two plaquette system in the color parity basis truncated locally at 3 and 3. Evolution is a 1st-order
Trotterization of the Hamiltonian in Eq. (39). Points correspond to quadratic extrapolations of results obtained from IBM’s
Athens quantum processor, with systematic and statistical uncertainties combined in quadrature.

B. Two-Plaquette: {1,3,3,8} Local Truncation

To further explore global wavefunctions and also to demonstrate a further complexity in such calculations, the dis-

cussion in Subsection IVA is here extended to include the 8 in the local link basis. The construction involves

an expanded basis that requires considering non-trivial multiplicities in the products of irreps, in particular in

8 ⌦ 8 = 27 � 10 � 10 � 8 � 8 � 1. Of the 46 states in this local basis, 109 of them satisfy Gauss’s law. Pro-

jecting further to the global color singlet states—the global color charge being a quantum number conserved by the

Hamiltonian—there are 41 distinct physical configurations potentially connected to the strong coupling vacuum.

These physical and global color singlet states combine into states with definite transformation properties under the

discrete symmetries of color parity, translation, and reflection, which is no longer redundant in this larger basis as

3 ⌦ 3 = 8 � 1 leads to configurations that can be odd under reflection. Focusing only on the + + + sector, the 15

independent states are,

| (1338;+++)
1 i = |�(1,1,1,1,1,1)i ,

| (1338;+++)
2a i =

1

2

⇥
|�(3,3,3,1,3,1)i+ |�(3,3,3,1,3,1)i+ |�(1,3,1,3,3,3)i+ |�(1,3,1,3,3,3)i

⇤
,

| (1338;+++)
2b i =

1
p
2

⇥
|�(3,1,3,3,1,3)i+ |�(3,1,3,3,1,3)i

⇤
,

| (1338;+++)
3 i =

1
p
2
[ |�(8,1,1,8,1,1)i+ |�(1,1,8,1,1,8)i ] ,

2

mentum vanish. In weak coupling, the magnetic con-
tributions dominate and a theory of dynamical loops
emerges. The angular momentum basis describes the
quantum state of a generic link by its irreducible repre-
sentation, j, and associated third-component projections
at the left and right end of the link in the 2 and 2̄ rep-
resentations, |j,m,m

0
i ⌘ |j,mi⌦ |j,m

0
i, respectively. In

one dimension, SU(2) lattice gauge theory can be spa-
tially discretized onto a string of plaquettes (see Fig. 1).
With periodic boundary conditions (PBCs), only three-
point vertices contribute to such a plaquette chain. To
form gauge singlets, components of the three links at each
vertex are contracted with an SU(2) Clebsch-Gordan co-
e�cient. The wavefunction at each vertex has the form

V ⇠

X

b,c,e

hj1, b, j2, e|q, ci |j1, a, bi ⌦ |q, c, di ⌦ |j2, e, fi , (3)

where indices b, c, and e are located at the vertex. By
focusing on a system with an even number of plaquettes,
matrix elements of the arbitrary plaquette operator may
be determined. The state of an even-length lattice in
one dimension with PBCs and with definite link angular
momenta is

|�i = N

X

{m}

LY

i=1

hj
t
i ,m

t
i,R, j

t
i+1,m

t
i+1,L|qi,m

t
qii (4)

hj
b
i ,m

b
i,R, j

b
i+1,m

b
i+1,L|qi,m

b
qii

|j
t
i ,m

t
i,L,m

t
i,Ri ⌦ |j

b
i ,m

b
i,L,m

b
i,Ri ⌦ |qi,m

t
qi ,m

b
qii

with jL+1 = j1, mL+1 = m1, and normalization N =Q
i(dim(qi))�1 with dim(q) = 2q + 1. Referring to the

plaquette string’s ladder structure, on links located as
rungs of the ladder, angular momentum values are la-
beled by q. Thus, a plaquette string is created by two
strings of j-type registers connected periodically by rungs
of q-type registers. The contraction with Clebsch-Gordan
coe�cients at each vertex ensures the local gauge singlet
structure required by Gauss’s law. The link operator acts
on the degrees of freedom at each end of a link and is a
source of j = 1/2 angular momentum,

Û↵� |j, a, bi =
X

�J

s
dim(j)

dim(J)
|J, a+ ↵, b+ �i

⇥ hj, a,
1

2
,↵|J, a+ ↵ihj, b,

1

2
,�|J, b+ �i , (5)

which contains non-vanishing contributions only for J =
j±

1
2 [59]. It follows that matrix elements of the plaquette

FIG. 1. (top) Diagram of the lattice distribution of
dlog2(2⇤j + 1)e-qubit registers and the action of ⇤̂ on SU(2)
plaquettes in one dimension. ⇤̂ operates on the four qubit
registers in the plaquette and is controlled by the four neigh-
boring qubit registers to enforce the Gauss’s law constraint.
(bottom) The plaquette operator with labeled angular mo-
mentum registers.

operator in one dimension are

h�··· ,jt,b` ,q`f ,j
t,b
af ,qrf ,j

t,b
r ,···|⇤̂|�··· ,jt,b` ,q`i,j

t,b
ai ,qri,j

t,b
r ,···i =

q
dim(jtai) dim(jtaf ) dim(jbai) dim(jbaf )

⇥

q
dim(q`i) dim(q`f ) dim(qri) dim(qrf ) (6)

⇥ (�1)j
t
`+jb`+jtr+jbr+2(jtaf+jbaf�q`i�qri)

⇥

⇢
j
t
` j

t
ai q`i

1
2 q`f j

t
af

�⇢
j
b
` j

b
ai q`i

1
2 q`f j

b
af

�⇢
j
t
r j

t
ai qri

1
2 qrf j

t
af

�⇢
j
b
r j

b
ai qri

1
2 qrf j

b
af

�

where the indices j
t,b
` , q`i, q`f , j

t,b
a , qri, qrf , and j

t,b
r are

used to indicate the j-values relevant for the single pla-
quette operator (as depicted in Fig. 1) and the brack-
ets indicate Wigner’s 6-j symbols. The four registers
j
t,b
`,r outside the plaquette are not modified by the ac-
tion of the plaquette operator. However, their inclusion
as control registers is necessary to maintain Gauss’s law.
The sums over alignment in each gauge-invariant space
yield a dramatically reduced Hilbert space to be mapped
onto a quantum device, characterized entirely by the |ji’s
(rather than the |j,m,m

0
i’s) incrementing naturally by

half-integers. The qubit representation of the periodic
plaquette string is shown on the top panel of Fig. 1, where
each link contains a dlog2(2⇤j + 1)e-qubit register with
⇤j the angular momentum truncation per link.
In the following, circuits are devised for the plaquette

operator with angular momentum truncation ⇤j = 1/2.
For time evolution beginning in the strong-coupling vac-
uum, the top and bottom j values are equivalent with this
cuto↵ due to SU(2) flux conservation. As a result, the
bottom j registers need not be mapped onto the quan-
tum device [94] and the plaquette operator reduces to a
five-qubit operator.
While matrix elements of the plaquette operator in the

physical space are critical, those in the unphysical space
are not. As long as the matrix elements mixing the two
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FIG. 4. (top) Expectation value of the electric energy contri-
bution of the first plaquette in the two-plaquette lattice with
PBCs and coupling g

2 = 0.2 computed on IBM’s Tokyo. The
dashed, dot-dashed, and thin gray lines are the NTrot = 1, 2, 3
Trotterized expectation values, while the thick gray line is the
exact time evolution. (bottom) Measured survival probability
to remain in the physical subspace. Uncertainties represent
statistical variation, as well as a systematic uncertainty esti-
mated from reproducibility measurements. The icons appear-
ing are defined in Ref. [41].

Real-time evolution of two plaquettes with PBCs (see
the right panel of Fig. 3) and truncation ⇤j = 1/2 has
been implemented on IBM’s quantum device Tokyo, se-
lected for its available connectivity of a four-qubit loop.
The top panel of Fig. 4 shows time-evolved expectation
values of the energy contributions from the first electric
plaquette calculated with one and two Trotter steps [95].
The electric contributions, being localized in their mea-
surement to the four-dimensional physical subspace, are
well determined after a small number of samples. In
contrast, measuring the energy contributions from the
magnetic Hamiltonian requires increased sampling due
to the operator’s natural representation in the Pauli-X
basis of the q`, ja, and qr qubit registers—distributing the
wavefunction’s amplitude throughout the Hilbert space.
Results have been corrected for measurement error by
the constrained inversion of a 16-dimensional calibration
matrix informed by preparation of each of the 16 com-
putational basis states prior to calculation. The result-
ing probabilities are linearly extrapolated in the presence
of CNOT gates, post-selected within the gauge-invariant
space, and renormalized. The linear extrapolation is in-
formed by r = 1, 2, where r = 1 is the circuit in Fig. 3
and r = 2 stochastically inserts a pair of CNOTs ac-
companying each of the three CNOTs either in the first
or second half of the plaquette operator. The combined

noise and gate fidelity of the device were found to limit
the ability to extrapolate further in CNOT noise, even
with a single Trotter step. It can be seen that these er-
ror mitigation techniques have allowed calculation of the
electric energy associated with the SU(2) gauge field to
the precision obtained after a single Trotter step.
It is important to determine the feasibility of retaining

gauge-invariant Hilbert spaces with near-term quantum
hardware. For our calculations on IBM’s Tokyo quan-
tum device, before CNOT extrapolation, the (NTrot, r) =
(1, 1) measurements were found to remain in the gauge
invariant space with a survival population of ⇠ 45%, as
shown in the bottom panel of Fig. 4. After linear extrap-
olation in the probabilities, this was increased to ⇠ 65%,
with survival population decreasing as evolution time in-
creases. The survival population for NTrot = 2 was found
to be ⇠ 25%, consistent with loss of quantum coherence
of a four-dimensional physical space embedded onto four
qubits, precluding CNOT extrapolation. This observable
is a diagnostic of the calculation. As it approaches the
decorrelated limit (25%), CNOT extrapolations become
less reliable leading to the underestimate of systematic
uncertainties in Fig. 4. Because neither the proposed
qubit representation, nor the subsequent Trotterization,
produce gauge-variant error contributions, the observed
decay of population in the physical subspace is a mea-
sure of the device’s ability to robustly isolate Hilbert
subspaces. This is likely to be an essential capability for
evolving lattice gauge theories and other systems with
conserved quantities, as well as for quantum error cor-
rection.
When increasing ⇤j , the plaquette operator must be

calculated and designed over 8 qubit registers, each con-
taining dlog2 (2⇤j + 1)e qubits. The classical compu-
tational resources required to define this operator with
Eq. (6) scales with the number of unique non-zero ma-
trix elements, which is polynomial in ⇤j . When con-
structing the time evolution operator for ⇤j > 1/2, the
combination of Trotterization and Pauli decomposition of
the 4-register operators in j`,r-controlled sectors gener-
ically generates interactions breaking gauge invariance
[56, 69, 96]. The breaking of gauge invariance will be im-
portant to control if this decomposition is used in future
calculations.
Developing quantum computation capabilities for non-

Abelian gauge field theories is a major objective of nu-
clear physics and high-energy physics research. One of
the challenges facing such calculations is that the map-
ping of the gauge theory onto a discretized lattice involves
a digitization of the gauge fields. We have presented cal-
culations of the dynamics of a one-dimensional SU(2) pla-
quette string with implementation on IBM’s Q Experi-
ence superconducting hardware. This was made feasible
by an improved mapping of the angular momentum ba-
sis states describing link variables. Our design of the pla-
quette operator for digital quantum devices requires local

q

q̄

q

q̄

Ciavarella, Klco, and Savage, 
Phys. Rev. D 103, 094501 (2021).

Real-time dynamic of pure SU(3) 
with global irrupts on IBM

Real-time dynamic of pure SU(2) with 
global irreps on IBM

Klco, Savage, and Stryker, Phys. 
Rev. D 101, 074512 (2020).

Low-lying spectrum of SU(2) 
with matter in 1+1 D on IBM

Atas et al, Nature 
Communications 12, 6499 (2021). 
SU(3) example: Atas et al: 
arXiv:2207.03473 [quant-ph].

See also studies on D-wave annealers:
Rahman et al, Phys. Rev. D 104, 
034501 (2021), Illa and Savage, 
arXiv:2202.12340 [quant-ph], Farrel 
et al, arXiv:2207.01731 [quant-ph].

DIGITAL COMPUTATIONS OF NON-ABELIAN LGTs



Andrade, ZD, Grass, Hafezi, Pagano, Seif, 
arXiv:2108.01022 [quant-ph], Bermudez et al, 
Pays.Rev.A79, 060303 R (2009), Katz, Centina, 
Monroe, arXiv:2202.04230 [quant-ph].

González-Cuadra, Zache, Carrasco, Kraus, Zoller, 
arXiv:2203.15541 [quant-ph].

Hardware e�cient quantum simulation of non-abelian gauge theories

with qudits on Rydberg platforms
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Non-abelian gauge theories underlie our understanding of fundamental forces in nature, and de-
veloping tailored quantum hardware and algorithms to simulate them is an outstanding challenge
in the rapidly evolving field of quantum simulation. Here we take an approach where gauge fields,
discretized in spacetime, are represented by qudits and are time-evolved in Trotter steps with multi-
qudit quantum gates. This maps naturally and hardware-e�ciently to an architecture based on
Rydberg tweezer arrays, where long-lived internal atomic states represent qudits, and the required
quantum gates are performed as error-tolerant holonomic operations supported by a Rydberg block-
ade mechanism. We illustrate our proposal for a minimal digitization of SU(2) gauge fields.

Introduction.– Quantum field theories form the back-
bone of the Standard Model of particle physics, where
quantized gauge fields mediate the interactions be-
tween fundamental particles [1]. Lattice gauge theories
(LGTs), where fields are discretized on a space-time lat-
tice [2], provide a convenient framework to study non-
perturbative high-energy phenomena, and have been ex-
tensively used to extract numerous experimentally rele-
vant predictions [3]. Despite this success, standard ap-
proaches based on Monte Carlo methods are severely lim-
ited by the sign problem [4], preventing the study of real-
time gauge theory dynamics, among other drawbacks.
The latter are essential to analyze experimental results
in heavy-ion colliders, where open problems in particle
physics are currently being addressed [5, 6], including
the search of new physics beyond the Standard Model.

In the recent years, quantum simulators (QS) [7] have
emerged as a promising pathway to circumvent these
problems [8–13], leading to several experimental demon-
strations where simple LGTs were investigated using dig-
ital, analog and variational methods [14–20]. For dig-
ital QS [21], in particular, di↵erent schemes have been
proposed to address high-dimensional non-abelian gauge
theories using di↵erent platforms, including trapped
ions [22–24], ultracold atoms [25–29], superconducting
circuits [30–32] and cavities [33]. Despite their higher
flexibility to simulate complex many-body Hamiltonians
compared to the analog approach, crucial in particular
for non-abelian theories, a full digital quantum simu-
lation requires access to gate-based quantum comput-
ers, which are currently restricted to Noisy Intermedi-
ate Scale Quantum (NISQ) devices [34], limited in qubit
number and circuit depths. Although an impressive ef-
fort is currently taking place to reduce the computa-
tional complexity using improved quantum software [35–
49], simulating relevant LGTs in the NISQ era must be

⇤ These authors contributed equally.

daniel.gonzalez-cuadra@uibk.ac.at
torsten.zache@uibk.ac.at

complemented by the development of e�cient quantum
hardware tailored to the specific algorithmic demands.

FIG. 1. Gauge field dynamics on a qudit quantum sim-
ulator: (a) Our proposal employs Rydberg atoms trapped in
optical tweezers, arranged on the links ` of a hypercubic lat-
tice. Each atom encodes a qudit using d internal levels, where
single-qudit gates are realized holonomically. To implement
the entangling two-qudit gate⇥`|`0 , tweezers are rearranged to
bring pairs of atoms within the Rydberg blockade radius Rb.
(b) First order decomposition of a Trotter step, including the
four-qudit plaquette interaction, into the native atomic gates
U

(E/B)
` and ⇥`|`0 (see main text). (c) Trotterized quench dy-

namics of a non-abelian Q8 LGT on a single plaquette for
�E/�B = 2.88.

In this Letter, we introduce a qudit architecture based
on atoms trapped in optical tweezer arrays and laser ex-
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FIRST STEPS TOWARD COLLISION PROCESSES 
— NUMERICAL SIMULATIONS —

Scattering of mesons in quantum simulators 3

Figure 1. Sketch of a scattering event: The collision of two incoming mesons with
internal quantum numbers `1, `2 generates a superposition of several possible outcomes,
labelled by the quantum numbers of outgoing mesons.

numerical simulations. Finally, in Sec. 4, we propose concrete protocols to prepare,
simulate and observe meson scattering with present-day quantum simulators (e.g.,
Rydberg-atom arrays). The appendices contain various additional details on the
discussion and computations in the main text. In Appendix A we report additional
details on gauge invariance and confinement in the model under consideration in the
main text. In Appendix B we prove the exact mapping of its dynamics in the gauge-
neutral sector onto those of the quantum Ising chain in a tilted magnetic field. In
Appendix C and Appendix D we provide more details on the exact solution of the two-
and four-fermion problem, i.e., on the spectra of mesons and their scattering amplitudes,
in the limit of large fermion mass. In Appendix E we derive the analytic expression of the
meson current, we discuss its physical meaning and we prove the associated continuity
equation. Finally, in Appendix F we summarize and discuss the effects of having a finite
fermion mass.

2. Confinement and mesons

Particle confinement is a non-perturbative phenomenon arising in certain gauge theories,
which consists in the absence of charged asymptotic states: all stable excitations of the
theory above the ground state are neutral bound states of fermionic charges [24]. In
the context of QCD, confinement underlies the fact that quarks can only be observed in
composite structures such as mesons and baryons. Despite the fundamental difference
between particle confinement in QCD in (3 + 1) dimensions and in lower-dimensional
models [19, 20], the emergent composite particles share some basic properties, making
the latter convenient settings to gain insights into difficult aspects of the theory. In this
work we will be concerned with (1 + 1)-dimensional LGTs of this kind.

For the sake of definiteness, we will focus on the Z2-LGT defined by the following
Hamiltonian [25, 26]:

H = m

X

j

c
†
jcj +

⌧

2

X

j

�
z
j+1/2 + w

X

j

(c†j � cj) �
x
j+1/2 (cj+1 + c

†
j+1). (1)

Scattering of mesons in quantum simulators 7

Figure 2. Probabilities of the various scattering channels (1, 3) ! (`01, `
0
2) as a function

of the incoming momenta, for w/⌧ = 0.6. The blue lines delimit the regions where
the inelastic channels (2, 2), (1, 2), (2, 1) are open. The probabilities of the channels
plotted in the five panels sum up to one with good precision [small deviations from
this value are shown in Fig. E1-(b)].

Figure 3. Mesonic wavepackets collision. (a) Spectra E`(k) of the lightest mesons
for the Z2-LGT in Eq. (1) with ⌧ = 1, w = 0.6 and m � ⌧ . The crosses indicate the
momenta and energies of the two mesons in the incoming (red) and outgoing (purple,
blue, green) states. (b-e) Probability density of the meson momenta p(k1, k2) (b,c) and
of the relative momentum p(k1 � k2) (d,e) at time t = 0 (b,d) and t = tf = 50 (c,e).
The dashed contours in panel (c) mark the regions p > 0.25.

the Fourier transform of  (s1, s2, r1, r2; t) with respect to the center-of-mass positions
s1,2. While the initial state shows a single density peak at (k0

1, k
0
2), the final state

gives three different density peaks, all lying on the line k1 + k2 = k
0
1 + k

0
2 mod ⇡,

Ashley Milsted, Liu, John Preskill, and Vidal, 
PRX Quantum 3 (2022) 2, 020316. 
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PARTON DISTRIBUTION FUNCTIONS, DECAY AMPLITUDES

Perez-Salinas, Cruz-
Martinez, Alhajri, and 
Carrazza , PRD 103, 
034027 (2021), Qian, 
Basili, Pal, Luecke, and 
Vary, arXiv:2112.01927 
(2021).

Either calculate PDFs directly since non-equal time 
amplitudes are possible on quantum computers…

…or expedite global 
fitting of PDFs with 
variational quantum 
eigensolvers…

updated and new measurements are performed. Although
the general scheme for variational circuits is pretty simple,
lots of details can be deployed regarding the three pieces of
this algorithm.
We propose a model based on the general framework of

VQC to tackle the problem of fitting one or several PDFs
flavors using quantum computers. In this case, the problem
to be solved is mathematically reduced to approximate
arbitrary one-dimensional functions within a certain target
accuracy. That is, we define the PDF model to be para-
metrized by a VQC as

qPDFiðx;Q0; θÞ; ð2Þ

where x is the momentum fraction of the incoming hadron
carried by the given parton with flavor i (quarks and gluon),
so 0 ≤ x ≤ 1, at a fixed initial energy scale Q0. Following
this definition, we propose some superficial modifications
to adjust the VQC to this particular problem.
First, we need to introduce the value of x into the circuit.

Thus, we modify the definition of the Ansatz to depend on
θ and x, that is UðθÞ → Uðθ; xÞ. This x value is introduced
as inner circuit parameters following the reuploading
procedure in Ref. [28]. The effect of the quantum circuit
is then defined as

Uðθ; xÞj0i⊗n ¼ jψðθ; xÞi; ð3Þ

which produces a significant change in the output state,
since it depends now on x and not only on θ. The key
ingredient in this approach is that, as the variable x serves as
input several times in every circuit, it is possible to obtain
nonlinear mathematical structures that allow arbitrary
fittings. The exact design of some Uðθ; xÞ Ansätze are
further explained in Sec. III B.
The second ingredient in our model is the way PDF

information is extracted from the quantum circuit. We use
the Z Pauli gates to define a series of Hamiltonians to
perform measurements with. Let us consider a n-qubit
circuit to run our variational algorithm on. The set of
Hamiltonians to build is

Zi ¼ ⊗
n

j¼0
Zδij ; ð4Þ

where δij is the Kronecker delta function.
The choice of this Hamiltonian is heuristic. This model

creates as many Hamiltonians as qubits are available in the
circuit, and those Hamiltonians are created by measuring a
certain qubit with the Z Pauli matrix, while all other qubits
remain unmeasured. These observables measures the pop-
ulation of the states j0i and j1i of a particular qubit. The
Hamiltonian is proposed in order to encode the PDF
functions within the probability of measuring a certain
qubit in its excited state. Following the Hamiltonians
previously stated, we can define the function

ziðθ; xÞ ¼ hψðθ; xÞjZijψðθ; xÞi: ð5Þ

The next step is to relate these zi functions to the PDF
values. We associate each function ziðθ; xÞ to only one
parton i. That is, if the model aims to fit n partons, the
circuit width must be n qubits. We define the qPDF model
for flavor i at a given ðx;Q0Þ as

qPDFiðx;Q0; θÞ ¼
1 − ziðθ; xÞ
1þ ziðθ; xÞ

: ð6Þ

With this choice only positive values are available,
although there is no upper bound. The reason to choose
this particular definition is heuristic and is supported by
empirical results detailed in a later section. It is, however,
not a hard constraint, as it is possible to drop this positivity
constraint with a simple rescaling. A theoretical motivation
can be drawn from the fact that PDF functions can be made
non-negative [47] but their values may in principle grow to
any real value, see for instance the gluon PDF in Fig. 4.

III. IMPLEMENTATION

A. Workflow design

In order to achieve our goal to determine a set of PDFs
based on quantum circuits, we have defined a workflow
based on a step-by-step procedure composed by three
stages: (1) the identification of the most adapted quantum
circuit Ansatz for qPDF parametrization, (2) the feasibility
study to deploy the qPDF model into real quantum devices,
and finally, (3) the integration of the quantum circuit model
in a global PDF fitting framework.
In Fig. 2 we show schematically the three stages we

followed. First, we perform simulations to identify the best
model architecture and capacity to represent PDF-like func-
tions. This stage is similar to the usual hyperoptimization

FIG. 2. Schematic workflow for the implementation of qPDF.
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FIG. 2. The L = 1 lattice qubit layout of one generation of the SM that is used in this paper for quantum simulation. Fermion
(anti-fermion) sites are occupied when spin up (down), and the lepton sites represent occupation in the tilde basis. Specifically,
the example of |dbdgdri (upper lattice) decaying to |dbdgdri |e⌫i (lower lattice) through one application of H̃� in Eq. (9) is
shown.

it is convenient to work with field operators that create and annihilate eigenstates of the free lepton Hamiltonian,
Hleptons. These are denoted by “tilde operators” [158], which create the open-boundary-condition (OBC) analogs of
plane waves. In the tilde basis with the JW mapping, the lepton Hamiltonian becomes

H̃leptons = �⌫(�̃
(⌫)†
0 �̃

(⌫)
0 � �̃

(⌫)†
1 �̃

(⌫)
1 ) + �e(�̃

(e)†
0 �̃

(e)
0 � �̃

(e)†
1 �̃

(e)
1 ) ! �⌫

2
(Z⌫ � Z⌫) +

�e

2
(Ze � Ze) , (7)

where �⌫,e = 1
2

q
1 + 4m2

⌫,e. In our simulations, the initial state of the quark-lepton system is prepared in a strong

eigenstate with baryon number B = +1 in the quark sector and the vacuum, |⌦ilepton, in the lepton sector. The

benefit of working in the tilde basis is that the vacuum satisfies �̃
(e,v)
0 |⌦ilepton = �̃

(e,v)†
1 |⌦ilepton = 0, and therefore

the only terms in the H� of Eq. (4) that contribute to �-decay are

H̃� =
Gp
2


ce + c⌫p

(1� 4mece)(1 + 4m⌫c⌫)

⇣
�
(u)†
0 �

(d)
0 + �

(u)†
1 �

(d)
1

⌘
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2
p
(1� 4mece)(1 + 4m⌫c⌫)
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�
(u)†
0 �
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1 + �

(u)†
1 �

(d)
0

⌘�
�̃
(e)†
0 �̃

(⌫)
1 + h.c. , (8)

where ce = �e�me and c⌫ = m⌫ +�⌫ . The insertion of the charge-conjugation matrix, C, in the continuum operator,
Eq. (2), is necessary for a non-zero �-decay rate on a single lattice site. To minimize the length of the string of Zs
in the JW mapping, the lattice layout in Fig. 2 is used. In this layout, the hopping piece of Hquarks has only 5 Zs
between the quark and antiquark raising and lowering operators and the �-decay operator becomes

H̃� ! Gp
2
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d,c

Z
8
�
+
u,c + �

+
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2
�
�
d,c

⌘�
+ h.c.

�
. (9)

In total, the L = 1 system requires 16 (12 quark and 4 lepton) qubits.2 See App. A for the complete L = 1 Hamiltonian
in terms of qubits.

B. A Majorana Mass for the Neutrino

Although not relevant to the simulation performed in Sec. III, it is of current interest to consider the inclusion of a
Majorana mass term for the neutrinos. A Majorana mass requires and induces the violation of lepton number by

2 The e+ and ⌫ qubits do not participate in this process, which could be simulated with only 14 (12 quark and 2 lepton) qubits.
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FIG. 6. The probability of �-decay, �� ! �0 + e+ ⌫, with mu = 0.9, md = 2.1, me,⌫ = 0, g = 2 and G = 0.5, using one (left
panel) and two (right panel) Trotter steps (requiring 59 and 212 ZZ gates, respectively), as given in Table II. The dashed-black
curve shows the expected result found from the exact diagonalization of the Hamiltonian. The blue circles correspond to the
data obtained on the H1-1 machine, and the orange (green) triangles to the H1-1E emulator, each obtained from 200 shots (400
shots). The points have been shifted slightly along the t-axis for clarity. Error mitigation beyond physical-state post-selection
has not been performed. The weak Hamiltonian in the time-evolution responsible for the decay is given in Eq. (14).

Single-Baryon Decay Probabilities using Quantinuum’s H1-1 and H1-1E

1 Trotter step 2 Trotter steps

t H1-1 H1-1E
H1-1E

(⇥2 stats)
Theory H1-1 H1-1E

H1-1E

(⇥2 stats)
Theory

0.5 0.175(29) 0.162(28) 0.144(19) 0.089 0.100(29) 0.182(37) 0.173(25) 0.088

1.0 0.333(35) 0.303(34) 0.302(25) 0.315 0.269(43) 0.248(41) 0.272(29) 0.270

1.5 0.594(37) 0.547(38) 0.559(27) 0.582 0.404(48) 0.416(49) 0.429(33) 0.391

2.0 0.798(30) 0.792(30) 0.794(22) 0.801 0.530(47) 0.563(51) 0.593(35) 0.547

2.5 0.884(24) 0.896(23) 0.879(17) 0.931 0.667(41) 0.779(43) 0.771(30) 0.792

TABLE II. The probability of �-decay, �� ! �0 + e+ ⌫, on L = 1 spatial lattice with mu = 0.9, md = 2.1, me,⌫ = 0, g = 2
and G = 0.5. These simulations were performed using Quantinuum’s H1-1 and H1-1E and included the initial state preparation
and subsequent time evolution under 1 and 2 Trotter steps. The results are displayed in Fig. 6. The columns labeled (⇥2
stats) were obtained using 400 shots, compared to the rest, that used 200 shots, and uncertainties were computed assuming
the results follow a binomial distribution.

grows linearly with its distance from the boundary, leading to a force on colored objects. This will cause colored
errors in the bulk to migrate to the edge of the lattice where they could be detected and possibly removed. This is one
benefit of using axial gauge, where Gauss’s law is automatically enforced, and a colored “error” in the bulk generates
a color flux tube that extends to the boundary.

Localized two-bit-flip errors can create color-singlet excitations that do not experience a force towards the boundary,
but which are vulnerable to weak decay. For su�ciently large lattices, color singlet excitations will decay weakly down
to stable states enabled by the near continuum of lepton states. In many ways, this resembles the quantum imaginary-
time evolution (QITE) [184–186] algorithm, which is a special case of coupling to open systems, where quantum
systems are driven into their ground state by embedding them in a larger system that acts as a heat reservoir. One
can speculate that, in the future, quantum simulations of QCD will benefit from also including electroweak interactions
as a mechanism to cool the strongly-interacting sector from particular classes of errors.

This particular line of investigation is currently at a “schematic” level, and significantly more work is required to
quantify it’s utility. Given the quantum resource requirements, it is likely that the Schwinger model will provide a
suitable system to explore such scenarios.



Open quantum system dynamics: 
 moving in mediumqq̄

de Jong, Metcal, Mulligan, Ploskon, Ringer, 
and, Yao, Phys.Rev.D 104 (2021) 5, 051501.

2

notoriously di�cult sign problem in classical lattice QCD
calculations of real time observables [14, 85–87] (the same
problem can also appear in open QCD systems).

In this letter, we outline a formulation of the evolu-
tion of hard probes in the QGP as a Lindblad equation
and explore how simulations on Noisy Intermediate Scale
Quantum (NISQ [13]) devices can be used to advance the-
oretical studies of hard probes in the QGP. Using a quan-
tum algorithm for simulating the Lindblad equation, we
study a toy model on IBM Q simulators and quantum de-
vices, and implement error mitigation for measurement
and two-qubit gate noise. We demonstrate that quan-
tum algorithms simulating simple Lindblad evolution are
tractable on current and near-term devices, in terms of
available number of qubits, gate depth, and error rates.

Open quantum system formulation of hard probes in

heavy-ion collisions. The Hamiltonian of the full system
consisting of the hard probe (subsystem) and the QGP
(environment) can be written as

H = HS + HE + HI (1)

HS = HS0 + HS1 . (2)

Here HS , HE and HI are the Hamiltonians of the subsys-
tem, the environment and their interaction, respectively.
A schematic diagram of the setup is shown in Fig. 1. We
further split HS into the free HS0 and the interacting part
of the subsystem HS1. In quantum field theories, Hamil-
tonians are functionals of fields, which require discretiza-
tion in position space [16]. Here, instead of simulating the
dynamics of fields, we focus on simulating the dynamics
of particle states, which is valid for hard probes. If we use
multi-particle states |p1, A1i ⌦ · · · ⌦ |pn, Ani as the basis
where pi is the four-momentum, Ai represents all dis-
crete quantum numbers, and i = 1, 2, . . . , n, then both
HS0 and HS1 are matrices and HS0 is diagonal. Note
that HS1 is di↵erent from HI : The former is the interac-
tion within the subsystem itself and independent of the
environment, while the latter represents the interaction
between the subsystem and the environment. For exam-
ple, for jets in HICs, HS1 can be collinear radiation of
collinear particles while HI can describe the Glauber ex-
change between collinear particles (subsystem) and soft
fields from the QGP environment [81].

The total density matrix of the subsystem and the en-
vironment evolves under the von Neumann equation. In
the interaction picture, this is given by

d

dt
⇢(int)(t) = �i[H(int)

I
(t), ⇢(int)(t)] . (3)

The operators are defined by

⇢(int)(t) ⌘ ei(HS0+HE)t⇢(t)e�i(HS0+HE)t (4)

H(int)
S1 (t) ⌘ eiHS0tHS1e

�iHS0t (5)

H(int)
I

(t) ⌘ ei(HS0+HE)tHIe
�i(HS0+HE)t . (6)
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FIG. 1. A schematic illustration of a multi-level open quan-
tum system S interacting with a thermal environment E.
The levels in S can represent for example: (1) heavy quark-
antiquark (QQ̄) bound states |p, Aii with center-of-mass mo-
mentum p and quantum numbers Ai, and (2) unbound QQ̄
pairs |p1,p2i with momenta p1,p2. For jets the levels of
S can represent multi-parton states labeled by momenta
|p1, · · · , pni.

The interaction picture used here is special: it is the
standard interaction picture for the subsystem but it is
the Heisenberg picture for the environment. We will drop
the superscript (int) from now on for simplicity but the
reader should be reminded that we use the interaction
picture throughout. We assume that the initial density
matrix factorizes and the environment density matrix is
a thermal state1

⇢(0) = ⇢S(0) ⌦ ⇢E (7)

⇢E =
e��HE

Tr(e��HE )
, (8)

where � = 1/T is the inverse of the QGP temperature.
After the environment is traced out, the reduced evo-

lution of the subsystem density matrix is generally time-
irreversible and non-unitary. If the coupling between the
subsystem and the environment is weak, the reduced evo-
lution equation can be cast as a Markovian Lindblad
equation [38–40]:

d

dt
⇢S(t) = � i

⇥
HS1(t) + HL, ⇢S(t)

⇤

+
mX

j=1

⇣
Lj⇢S(t)L†

j
� 1

2

�
L†
j
Lj , ⇢S(t)

 ⌘
, (9)

where HL denotes a thermal correction to HS generated
by loop e↵ects of HI , and the Lj are called Lindblad op-
erators, whose explicit expressions will be given for a toy

1 The backreaction of the QGP medium to jet energy loss [88–97],
which may further modify jet observables is beyond the scope of
our considerations here. For a recent review, see Ref. [98].
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specifically ibmq_16_melbourne containing 14 qubits [73].
This computation is outlined in the Supplemental Material
[49]. In Fig. 2(a), we show one of the 16 circuits necessary
to generate and simulate the mixed spin density matrix for
the case of N ¼ 8 spin-1=2 fermions, with a ¼ 1 (one ss̄
pair), b ¼ 2 (one sū and s̄u singlet each), and N=2 − a − b,
one uū singlet. In Fig. 2(b), we show the analytical result
from Eq. (8) compared to the result from the QISKIT

simulator; we find good agreement. In contrast, the agree-
ment with actual quantum hardware is not good, illustrating
the challenge of reliable quantum simulation in the
NISQ era.
Finally, we discuss the experimental opportunities in

measuring ΛΛ̄ correlations at colliders. The Λ and Λ̄ spins
are measured in terms of their polarization, where the decay
kinematics on an event-averaged basis reflects their spin
projections [74–87]. The CHSH inequality and entangle-
ment measures are extracted from the correlation of their
relative spin projections, illustrated in Fig. 3 and written as
N ∝ 1þ α2PΛ;Λ cos ðnθabÞ, where n is a free parameter that
can be determined by the measurement and is expected to
be less than unity due to a convolution between the intrinsic
CHSH cosine modulation and the Λ decay kinematics.7 As
noted, α ¼ 0.750% 0.010 [36], θab is the relative angle
between daughter particles in their respective mother’s rest
frame, and a nonzero PΛ;Λ implies their spin correlation.
Currently, no MC generators implement spin entangle-

ment at the parton level, providing a clear (null result)
experimental baseline for entanglement searches.
Specifically, we can simulate “by hand” spin entanglement
in the PYTHIA 8 MC event generator [88]; the Supplemental

Material discusses in detail simulation results and exper-
imental measurements [49].
In summary, we derived in this paper a modification of

the CHSH inequality, and related entanglement measures,
for mixed states. These are powerful tools in quantifying
quantum-to-classical transitions in the many-body dynam-
ics of strings in the collider environment. We further
constructed theoretical models to capture the quantum
dynamics of QCD strings with embedded hyperons and
discussed how these can be extracted from ΛΛ̄ correlations.
With a longer term view of QIS, we performed first
simulations on quantum hardware; these provide a bench-
mark and illustrate the current challenges in reliable
extraction of quantum information. Further systematic
studies implementing quantum error correction, state
preparation, Trotter evolution, and entanglement measures
will be reported separately. MC simulations of Λ correla-
tion measurements at colliders suggest that prospects for
extracting information on quantum-to-classical transitions
in QCD strings are promising.
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FIG. 3. Illustration of double Λ polarization; here â (b̂) denotes
the momentum direction of ΛA (ΛB) daughter particle in the ΛA
(ΛB) rest frame.

7The cosine modulation in Eq. (8) and in Λ decays are of
different origin.
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Here the d†σðdσÞ’s denote the localized impurities with spins
σ (denoting heavy strange quarks carrying Λ spin [56,57])
and the a†σðaσÞ’s represent the delocalized fermions (light
up and down quarks); the first two terms in the Hamiltonian
are their respective kinetic energies. The third term is a
Hubbard-type hopping term for the light quarks and the
final term denotes their spin coupling to the strange quark
impurities. This last term “screens” the formation of ΛΛ̄
singlets. A Schrieffer-Wolff transformation [58], with the
impurity kinetic energy ϵd below the Fermi energy recovers
the Kondo Hamiltonian, describing the net spin coupling of
delocalized fermions to the impurity spin S.
Further insight into correlations between the ΛΛ̄ pairs

“doping” the QCD string is obtained in an extension of
the Kondo model,6 whose ground state is a filled Fermi sea
of light fermions and impurities, with additional phase
factors denoting their spatial locations. Eliminating exci-
tations of the Fermi sea via another Schrieffer-Wolff
transformation results in an effective Hamiltonian of
localized impurities with interactions mediated by the
exchange of virtual electron-hole pairs.
This Ruderman-Kittel-Kasuya-Yoshida (RKKY) effective

Hamiltonian [60–62] mimics the QCD string at small values
of the DIS Bjorken x variable, where a large multiplicity
of light quark/gluon pairs either screen or antiscreen the
correlations between Λ-hyperons, taking the form

HRKKY ¼
X

jj0
Sj · Sj0JRKKYðRj − Rj0Þ; ð10Þ

with

JRKKYðRÞ ¼
−J2

ðkFRÞ4
½sin ð2kFRÞ − 2kFR cos ð2kFRÞ%;

where kF is the Fermi momentum. It is ferromagnetic at
short distances but has alternating sign at larger distances,
suggestive of glassy dynamics.
While the RKKY model is a good model of ΛΛ̄

correlations for small x, a better fit for the “impurity
doped” QCD string at large x is the Anderson model with
multiple impurities [63]. In analogy to a quantum phase
transition proposed [64] between Kondo and RKKY
regimes, it would be interesting to investigate consequences
of the increased multiplicity of QCD strings with varying
Bjorken x. In polarized DIS, valence quark spin plays
an analogous role to a magnetic field providing an
additional handle on simulating string dynamics. Thus
mapping the rich dynamics of the Anderson/Kondo model,
“tuned” appropriately to measurements of ΛΛ̄ correlations
embedded in QCD strings, offers a novel direction in QIS
studies of hadronization at colliders.

There are several classical approaches to simulating
the ground state properties of the aforementioned spin
Hamiltonians [63,65–68]. However, such Hamiltonians
suffer from a severe dynamical sign problem that afflicts
the extraction of real-time correlations [69]. Since the
formation, evolution, and fragmentation of QCD strings
are dynamical real-time problems, they are susceptible to
the sign problem even in lower-dimensional incarnations.
Quantum computers do not suffer from this problem,

with benchmark computations performed for the Ising
model in an external magnetic field [70]. The quantum
computation of Anderson and Kondo lattices has been
discussed previously [71]; digital simulations of these
Hamiltonians, adapted to the QCD string, are in progress.
As a first step, we wrote down quantum circuits for our

toy model and performed computations on IBM’s QISKIT

quantum simulator [72] and on IBM Q quantum hardware,

(a)

(b)

FIG. 2. (a) One of 16 circuits necessary to initialize and
simulate the state ofN ¼ 8 particles with a ¼ 1 ss̄ singlets, b ¼ 2
sū and us̄ singlets, and one uū singlet. Here, each qubit qi carries
the spin information of one of the N ¼ 8 particles, while the
classical register c stores the value of the qubit obtained after
measurement. The barrier separates initialization from simulation
of the correlation function. (b) Quantum simulation results for the
ss̄ correlation function compared to the prediction in Eq. (8).
Correlations obtained from the IBM Q Melbourne quantum
computer are smaller than our analytical calculation due to
quantum hardware noise; this hardware error will pose even
greater restrictions for simulations of larger ensembles N.

6See [59] for a similar discussion of heavy flavor impurities in
quark matter at high baryon densities.
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Here the d†σðdσÞ’s denote the localized impurities with spins
σ (denoting heavy strange quarks carrying Λ spin [56,57])
and the a†σðaσÞ’s represent the delocalized fermions (light
up and down quarks); the first two terms in the Hamiltonian
are their respective kinetic energies. The third term is a
Hubbard-type hopping term for the light quarks and the
final term denotes their spin coupling to the strange quark
impurities. This last term “screens” the formation of ΛΛ̄
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impurity kinetic energy ϵd below the Fermi energy recovers
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short distances but has alternating sign at larger distances,
suggestive of glassy dynamics.
While the RKKY model is a good model of ΛΛ̄

correlations for small x, a better fit for the “impurity
doped” QCD string at large x is the Anderson model with
multiple impurities [63]. In analogy to a quantum phase
transition proposed [64] between Kondo and RKKY
regimes, it would be interesting to investigate consequences
of the increased multiplicity of QCD strings with varying
Bjorken x. In polarized DIS, valence quark spin plays
an analogous role to a magnetic field providing an
additional handle on simulating string dynamics. Thus
mapping the rich dynamics of the Anderson/Kondo model,
“tuned” appropriately to measurements of ΛΛ̄ correlations
embedded in QCD strings, offers a novel direction in QIS
studies of hadronization at colliders.

There are several classical approaches to simulating
the ground state properties of the aforementioned spin
Hamiltonians [63,65–68]. However, such Hamiltonians
suffer from a severe dynamical sign problem that afflicts
the extraction of real-time correlations [69]. Since the
formation, evolution, and fragmentation of QCD strings
are dynamical real-time problems, they are susceptible to
the sign problem even in lower-dimensional incarnations.
Quantum computers do not suffer from this problem,

with benchmark computations performed for the Ising
model in an external magnetic field [70]. The quantum
computation of Anderson and Kondo lattices has been
discussed previously [71]; digital simulations of these
Hamiltonians, adapted to the QCD string, are in progress.
As a first step, we wrote down quantum circuits for our

toy model and performed computations on IBM’s QISKIT

quantum simulator [72] and on IBM Q quantum hardware,
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FIG. 2. (a) One of 16 circuits necessary to initialize and
simulate the state ofN ¼ 8 particles with a ¼ 1 ss̄ singlets, b ¼ 2
sū and us̄ singlets, and one uū singlet. Here, each qubit qi carries
the spin information of one of the N ¼ 8 particles, while the
classical register c stores the value of the qubit obtained after
measurement. The barrier separates initialization from simulation
of the correlation function. (b) Quantum simulation results for the
ss̄ correlation function compared to the prediction in Eq. (8).
Correlations obtained from the IBM Q Melbourne quantum
computer are smaller than our analytical calculation due to
quantum hardware noise; this hardware error will pose even
greater restrictions for simulations of larger ensembles N.

6See [59] for a similar discussion of heavy flavor impurities in
quark matter at high baryon densities.
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Λ and Λ  ̄spin correlations provide novel insights into 
quantum features of many-body parton dynamics.

Quantum simulating a simple model of hadronization 
originating from QCD strings:



Quantum Simulation of Chiral Phase 
Transitions, Czajkaa, Kang, Ma , 
Zhaoa, JHEP 08 (2022) 209.
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where a is the lattice spacing. By imposing this hard momentum cuto↵ in the integral of

Eq. (2.10), we may numerically compute the e↵ective mass M at fixed values of µ, T by

minimizing ⌦ with respect to M . The chiral condensate can then be calculated from

h ̄ i = (m�M)/2g. We performed this analysis for µ, T in the range [0 MeV, 300 MeV]

using the model parameters m = 100 MeV and g = a = 1 MeV�1 that are relevant for

our simulation. The resulting mass surface is plotted in Fig. 1 below. As can be seen, for

Figure 1: The e↵ective mass M as a function of the baryochemical potential µ and

temperature T . Left: 3D Surface Plot, Right: Contour Plot.

su�ciently low µ2+T 2 there is a dynamically generated mass of around �m ⌘ M �m = 4

MeV, in addition to the mass m = 100 MeV present in the Lagrangian, with M ! m

asymptotically as expected. Historically the GN model was studied specifically because it

is asymptotically free [110]. Thus, at asymptotically high temperatures/chemical potentials

we expect to recover a free field theory.

3 Quantum algorithms for the NJL model

In this section, we provide the ingredients of the quantum algorithms for the NJL model,

in particular, we first show the discretization of the NJL Hamiltonian on a lattice grid,

then we introduce the quantum imaginary time evolution algorithm.

3.1 NJL Hamiltonian at the lattice fermion model

Starting from the Lagrangian density given in Eq. (2.4), one can obtain the NJL Hamilto-

nian density as follows

H =  ̄(i�1@1 +m) � g( ̄ )2 � µ ̄�0 . (3.1)

Given a Dirac fermion field  (x) with components ⇢(x) and ⌘(x), to discretize the theory

we place the fermion field on a spatial lattice, with spacing a, and set a staggered fermion

– 5 –

Figure 4: Chiral Condensate h ̄ i as a function of temperature T at chemical potentials

µ = 0, ..., 200 MeV. Dashed curves are from exact diagonalization and solid curves are

calculated analytically.

Figure 5: Chiral Condensate h ̄ i as a function of temperature T at ratios µ/T = 0, ..., 8.

Dashed curves are from exact diagonalization and solid curves are calculated analytically.

chemical potentials. Therefore, one observes a more obvious phase transition at larger

temperatures in the h ̄ i � µ plot.

5 Conclusion

In this work, we have constructed a quantum simulation for the chiral phase transition

of the 1+1 dimensional NJL model at finite temperature and chemical potentials with

– 11 –

where �� is the chosen imaginary time step size and n = �/�� is the number of iterations

needed to reach imaginary time �.

In contrast with real-time quantum simulation, each intermediate evolution e���H is

non-unitary, and cannot be directly implemented in terms of quantum gates. The crux

of QITE lies in approximating the non-unitary evolution with a unitary operation so that

(with proper normalization c(��) = h |e�2��H | i)

1p
c(��)

e���H | i ⇡ e�i��A | i , (3.15)

where A is a Hermitian operator parameterized with a linear combination of Pauli opera-

tors �j ,

A(a) =

NµX

µ

aµ
Y

l

�(l)
j

, (3.16)

where µ runs over all possible subsets of 4nq Pauli strings. In this work, we use the number

of qubit nq = 4. Therefore, by solving the linear equation

Sa = b , (3.17)

with matrix S and vector b given by

Sµ⌫ = h |�†
µ�⌫ | i , (3.18)

bµ = � ip
c(��)

h |�†
µH | i , (3.19)

one obtains the parameters aµ making the evolution e�i��A unitary and implementable in

terms of quantum gates. We illustrate this implementation in Fig. 2, where Uj | (�j)i =
e�i��A| (�j)i = | (�j +��)i. Namely, each block evolves state | (�j)i to | (�j +��)i,
and after n steps, one obtains the state at the target total evolution time �.

�|�� U0 U1 Uj � Un�1

Uj = e�i��A=Uj

Figure 2: Quantum circuit for generating the thermal state at � = n�� evolved from

| i. Each block evolves the state with a small imaginary time interval �� and all n blocks

inside the dashed-line box form the QITE algorithm for thermal state preparation.

Using the thermal state | (�/2)i generated by the QITE algorithm, we then find the

expectation value of an observable Ô at finite temperature T = 1/�, which can be written

– 8 –

Approximating 
imaginary-time evolution 
with real-time evolution.

Explorations 
within NJL 
model
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FIG. 5. (a) Distribution P(sn) of level spacings (of the unfolded ES), for the quench from ✏ = 0.1 ! 1 (gray and black curves)
versus ✏ ! 1 (confined phase) as initial condition (orange curve). (b) Gap ratio distribution P(rn). (c) Average gap ratio hrni
as a function of time. Inset: Growth of von Neumann entropy for the quench ✏ = 1 ! 1. (Shown for (NA

x +N
B
x ) ⇥ (3 + 5) ⇥ 3

lattice sites.)

FIG. 6. Left: Un-rescaled Schmidt spectrum P (n, t) =
exp{�⇠n} for the quench ✏ = 1 ! 1 at di↵erent times.
Right: Rescaled Spectrum. The approach to thermaliza-
tion is characterized by a self-similar universal form P (n, t) =
⌧
�↵

P (⌧�
n), ⌧ ⌘ ✏(t � t0) for times 2 / ✏ · t / 60 � 100. A

black dotted line indicates power law behavior (⌧�
n)�2. The

spectrum outside the scaling window is shaded out. (Shown
for (NA

x + N
B
x ) ⇥ (3 + 5) ⇥ 3 lattice sites.)

ize ground states, quantum phase transitions and ther-
malization, using dual theories of Z2+1

2
embedded into a

larger gauge-variant HS only along entanglement bound-
aries [28–31, 33, 34]. Our fairly simple approach, see Sup-
plemental Material for details, can be generalized to Zn

and U(1) LGTs; non-Abelian theories [81–85] are more
challenging. Ising-like dualities [81, 86, 87], prepotential-
[88–91] and ‘Loop-String-Hadron’ [92] formulations are
promising approaches, and will be explored in future
work.

We demonstrated Li and Haldane’s entanglement-
boundary conjecture [18] for Z2+1

2
gauge theory, both

analytically (in perturbation theory) and numerically us-
ing exact diagonalization. Moreover, we reconstructed
the Entanglement Hamiltonians of ground states, find-
ing consistency with expectations from the Bisognano-

Wichmann theorem [38–40] at arbitrary coupling. Using
the closing of the Entanglement Gap of the ES, we de-
termine the confinement/deconfinement phase transition
at ✏c = 0.38 ± 0.09. We find agreement within error bars
with the infinite volume results, demonstrating the po-
tential usefulness of Entanglement Structure, compared
to computing volume versus boundary law scaling of Wil-
son loop operators.

Our most important result is that Z2+1

2
thermalization

occurs in clearly separated stages: Starting from an ini-
tial (unentangled) product state, the system maximizes
its Schmidt rank quickly, followed by rapid spreading of
level repulsion throughout the ES at early times. An in-
termediate regime is characterized by self-similar scaling
of the Schmidt spectrum, reminiscent of wave turbulence
and universality in (semi-)classical systems, with scaling
coe�cients ↵ = 0.8 ± 0.2, � = 0.0 ± 0.1.

This observation strongly hints at a reconciliation of
the (naively di↵erent) quantum versus classical thermal-
ization paradigms, i.e. in terms of matrix elements of
observables [15, 16] versus ergodicity, chaos and univer-
sality [48]. Because time evolution in quantum mechan-
ics is linear, quantum chaos is hidden in the complexities
of energy eigenfunctions [16], however, (and perhaps not
so surprisingly [77]) it becomes evident in the Entan-
glement Spectrum. Our analysis provides a systematic
path for the quantification and classification of this be-
havior, which is likely generic for gauge and non-gauge
systems and in line with the ETH. Our numerical inves-
tigations are not exhaustive, and could be extended to,
e.g., studying the build-up of volume law entanglement,
spectral form factors [42, 79], or higher order level spac-
ing ratios [93] of the ES. It would also be interesting to
apply our techniques to systems with many-body local-
ization [94].

Apart from the importance of (2+1)d LGTs for, e.g.,
topological quantum computation [95, 96], and con-
densed matter physics [97, 98], the Entanglement struc-
ture of Abelian and non-Abelian gauge theories, such as
QCD, may be crucial for thermalization in high energy
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Figure 4. E↵ective loss of initial-state information. (A) State preparation. Evolution of the matter density from the
“fully matter-filled” state (hn̂matteri = 1, blue box left) to almost “matter-empty” state (hn̂matteri ⇡ 0.21, yellow box right) for
the adiabatic ramp with preparation time ⌧ and corresponding mass parameter mPre/ as shown in the inset. (B) Schematic
of the evolution towards thermal equilibrium. For each of two sets of quench parameters (m = 0 and m = �0.8) we choose
two initial states with equal energy density. The resulting steady states in the wake of the quenches starting in these two
initial states are then compared to a canonical thermal ensemble whose temperature is determined from the energy density [22].
Here, all energy densities are plotted with respect to the ground state of the evolution Hamiltonian. (C, D) Relaxation. We
show the thermalization dynamics for the chosen quench parameters and initial states (shown in (B)). Experimental data are
compared to predictions from corresponding gauge theory thermal ensembles (dashed lines) at temperatures kBT = 1 (top)
and kBT = 4.6 (bottom). The insets show the energy density evolution during state preparation, the circles mark the chosen
initial states.

dations for the exploration of more complex higher-
dimensional gauge theories using state-of-the-art quan-
tum technology [38]. An important next step towards
applications for gauge theories such as quantum electro-
dynamics, or maybe even quantum chromodynamics, is
a faithful extension of the discrete quantum-link repre-
sentation towards continuous variables [9, 39, 40]. To
this end, current implementation schemes should be ex-
tended to higher spin representations and scalable higher-
dimensional set-ups [41].
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Quantum thermalization of gauge theories:
chaos, turbulence and universality Niklas Mueller

Maximization of 
Schmidt rank

spreading of entanglement

and level repulsion

self-similar  
evolution

saturation of 
thermal entropy

� � t
0.1 1 50 200

Figure 1: Overview of the stages of quantum thermalization of Z
2+1
2 , including (exponential) growth of

Schmidt values and build-up of level repulsion at earliest time, and saturation of the von-Neumann entropy
at a parametrically later stage. An intermediate regime is characterized by self-similar evolution, typical for
(classical) wave turbulence.

1. Introduction

Recent advances in simulating quantum many-body systems with digital quantum computers
and analog devices, based on atomic, molecular and optical (AMO) systems, have opened new
avenues to address old problems [2–9]. One such question is the thermalization of gauge theories,
relevant e.g. for Quantum Chromodynamics (QCD) in ultra-relativistic heavy ion collisions [10],
and in many other fields ranging from atomic gases [11], to condensed matter physics [12], and
cosmology [13].

Much understanding has been derived from the Eigenstate Thermalization Hypothesis [14, 15]
and it has become clear that entanglement is an important ingredient in thermalization, yet the
latter is barely explored for gauge theories because of its ambiguous definition [17–20]. In this
work, we overcome this issue for Z2 LGT in (2+1) spacetime dimensions (Z2+1

2 ), by developing
dual formulations ‘with entanglement cuts’, allowing us to compute the Entanglement Structure of
non-equilibrium states. Focusing on quench dynamics of an initial unentangled state, we investi-
gate the ‘Entanglement Spectrum’ (ES), a representation of a state in terms of an ‘Entanglement
Hamiltonian’ (EH), analogous to energy levels, first suggested by Li and Haldane as an indicator of
topological order in non-Abelian fractional Quantum Hall e�ect systems [21].

We find that thermalization proceeds in clearly separated stages, c.f. Fig. 1: Exponentially-fast
growth of Schmidt values and maximization of the rank of the reduced density matrix at earliest
times, followed by spreading of ES level repulsion, and saturation of entanglement entropy at
parametrically later times. An intermediate regime is characterized by self-similar evolution of the
Schmidt spectrum, with scaling coe�cients U = 0.8 ± 0.1 and V = 0.05 ± 0.03, reminiscent of
classical wave turbulence and universality.

2. Hamiltonian Formulation of Z
2+1
2 Lattice Gauge Theory

The Hamiltonian of Z
2+1
2 LGT is [1, 22]

� = �
’

n

fI

n,G
fI

n+Ĝ,Hf
I

n+Ĥ,Gf
I

n,H
� n

’
n,8=G,H

fG

n,8
, (1)

where fG/I
n,8

are Pauli operators positioned along the links of a two-dimensional spatial lattice
n ⌘ (=G , =H) with =8 2 [0, #8 � 1]. Gauss law ⌧n ⌘ Œ

8
fG

n
fG

n�8̂ specifies the physical sector
⌧n |kphysi = |kphysi. Z

2+1
2 LGT was first proposed by Wegner [22] as a model containing a phase

transition without a local order parameter, a deconfinement (n < n2) versus confinement (n > n2)

2

Numerical study of 
LGT in 2+1 D

Z2

Quantum Link Model in a 
70-site analog simulator

Mueller, Zache, Ott, 
Phys. Rev. Lett. 129, 
011601 (2022).

Zhou et al, 
Science 377 (2022) 6603.

EMERGING UNDERSTANDING OF THERMALIZATION 
IN SIMPLE GAUGE THEORIES
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Eq. (46) gives T̂µµ up to O(a). To improve the T̂µµ

operators up to O(a2), we use Eq. (12) and Eq. (13) and
take the average around the site n0:

Tr
Ë
F̂0i(n0)2

È
=

ÿ

x=0,1

g2

s

2a4
Tr

Ë
fî2

n0≠xî,i

È
(48)

Tr
Ë
F̂ij(n0)2

È
=

ÿ

x=0,1

ÿ

y=0,1

1
2g2

s
a4

ReTr
Ë
1 ≠ P̂ij(n0 ≠ xî ≠ yĵ)

È
. (49)

These operators enable us to construct T̂µµ up to dis-
cretization errors that are O(a2, a0).

III.4. Tij in the Hamiltonian formulation

Let us now move to deriving the operators T̂ij , that is,
the o�-diagonal spatial parts of the EMT:

Tij = Tr [≠Fi0Fj0 + FikFjk] . (50)

This definition holds both on the spacetime lattice and
as an operator equation on the Hamiltonian lattice. We
first work with the naive discretization, and then with
the clover discretization. Without loss of generality, let
us take T12 as an example and perturb the Wilson action
with terms in Eq. (50). We find that T̂‘ is given by Eq. (36)
with:

K‘ = K + ‘a0a3Tr
#
F N

10
F N

20

$
(51)

V‘ = V + ‘a0a3Tr
#
F N

13
F N

23

$
. (52)

As before, the spatial plaquettes in Eq. (52) can be di-
rectly converted to operators. The time-like plaquettes in
Eq. (51) will ultimately appear as various fî. Using R̂(g)
operators, T̂‘ can be written

T̂‘ =
⁄

Dg e
iK(g)≠i‘

a
4g2

s a0
Tr[(g

†
n0,1≠gn0,1)(g

†
n0,2≠gn0,2)]+iV̂‘ .

(53)
Evaluating the integral via the saddle point x = 0 (exact
in the limit a0 æ 0) gives:

T̂‘ ≥

⁄
dx eixflfîfl≠xflMfl‡x‡+iV̂‘ = Ae≠

1
4 fîflM

≠1
fl‡ fî‡+iV̂‘

Mfl‡ = ≠ia

2g2
s
a0

”fl‡ + ‘
ia

g4
s
a0

”nn0”mn0”i1”j2”ab (54)

which at O(‘) yields Ĥ‘:

Ĥ‘ = ĤKS ≠ ‘
g2

s

a
Tr[fîn0,1fîn0,2] ≠ ‘a3Tr

Ë
F̂ N

ik
(n0)F̂ N

jk
(n0)

È

(55)
where the second term in RHS correspond to a0a3F10F20.
More generally, operators for Fi0Fj0 are

Tr
Ë
F̂ N

i0
F̂ N

j0
(n0)

È
= g2

s

a4
Tr[fîn0,ifîn0,j ] (56)

Thus the naive T̂ij(n0) in the Hamiltonian formulation is

T̂ N

ij
(n0) = ≠

g2

s

a4
Tr [fîn0,ifîn0,j ] + Tr

Ë
F̂ N

ik
(n0)F̂ N

jk
(n0)

È
.

(57)

The clover approximations are obtained from F C

ij
in

Eq. (16) and F B

i0
in Eq. (18). As before, the transition

from the action formalism to the Hamiltonian is straight-
forward for Fij , so we focus only on the F10F20 term. For
these,

K‘(U Õ, U) = K + ‘a0a3Tr
#
F B

10
(n0)F B

20
(n0)

$
. (58)

We use the definitions of Fig. 2 for the links around n0. For
the example of Un0,1, we denote operators and functions
on them as U1, Û1, fî1, and g1 = eix

a
1 ⁄

2 . Then T̂‘ is

FIG. 2. Half-clovers B10(n0) and B20(n0) at site n0.

T̂‘ =
⁄

Dg e
iK(g)≠i

‘a
16g2

s a0
Tr[(g

†
1≠g1+Û

†
0 (g

†
0≠g0)Û0)(g

†
3≠g3+Û

†
2 (g

†
2≠g2)Û2)]+iV̂ (59)

After the saddle-point approximation around x = 0, T̂‘ simplifies and becomes

T̂‘ ≥

⁄
dx eixflfîfl≠xflMfl‡x‡+iV̂ = Ae≠

1
4 fîflM

≠1
fl‡ fî‡+iV̂

with Mfl‡ = ≠
ia

2g2
s
a0

”fl‡ ≠
i‘a

4g2
s
a0

(M1)fl‡ (60)

13

Initialize |ÂÍpump

to ground state of H
pump

Switch H on suddenly
Start time evolution

Allow coupled sys-
tem to evolve for ·3

Switch H o� suddenly
Stop time evolution

I II

IIIIV

ÈHsysÍ = EI

ÈHsysÍ = EI

ÈHsysÍ = EIII

EIII < EI

E
New
I = EIIIÈHsysÍ = EIII < EI

FIG. 4. An active cooling cycle.

Suppose at step I the full density matrix, fl̂I is given by

fl̂I =
ÿ

a,aÕ,b,bÕ

|aÕ
Í
sys

|bÕ
Í
pump fl̂a,b;aÕbÕ

pump
Èb|

sys
Èa| (83)

where the states |aÍ
sys and |bÍ

pump are states in an or-
thonormal basis for the system space and complementary
space respectively. Thus matrix elements of the reduced
matrix elements are given by

fl̂I sys

a,aÕ =
ÿ

b,bÕ,bÕÕ

pump
ÈbÕÕ

||bÍ
pumpfl̂a,b;aÕbÕ

pump
ÈbÕÕ

||bÍ
pump

(84)
Thus the full density matrix at step II is given by

fl̂II =
ÿ

a,aÕ

|aÕ
Í
sys

|gÍ
pump

Q

a
ÿ

b,bÕ,bÕÕ

pump
ÈbÕÕ

||bÍ
pumpfl̂I

a,b;aÕbÕ
pump

ÈbÕÕ
||bÍ

pump

R

b pump
Èg|

sys
Èa| (85)

where |gÍ
pump is the ground state of the pump. In the

remainder of the cycle fl̂ evolves to fl̂III = U†

III
flIIUIII

with UIII = exp
!
≠i(Hsys + Hpump + Hcouple)·3

"
where

·3 is the time the system evolves for in step III.
In the active cycle, energy is pumped out of the com-

bined system (system plus pump) and into the environ-
ment by the act of initializing the pump. In the process
the entropy of the pump drops and thus the entropy of
the environment increases. For that reason we label this
approach an active cooling cycle. One might quibble that
this is a bit of a misnomer since the system is not ther-
mally equilibrated and thus, it is not clear that the energy
pumped out can be accurately described as heat. But the
essence of this active cycle is very much the same as the
cooling in a quantum refrigerator. Moreover as described
below one can use a variation on this approach to achieve
a good approximation to a true thermal equilibrium.

Clearly, this active cycle approach is rather general and
variations on this theme can be developed. As formulated,
the approach requires explicit choices for the size of the
pump as well as for the form and strength of Hcouple, and
Hpump, and ·3. It is clear that to get high performance
with this method one must choose these well. It is an
open question as to what optimal choices are for these.

One obvious approach is to tailor the overall strength
of Hcouple to the iteration. There is a trade o�: strong
coupling leads to rapid transmission of energy from the
system to the pump and reduce the overall time for re-
ducing the energy. However, this comes at cost; large
coupling limits the lowest energy density of the system
one can achieve. The cycle can only be shown to remove
energy from the system when the energy in Hcouple is
negligible. Thus a sensible approach would be to make
Hcouple large during early cycles in order to facilitate
rapid energy transfer and in later cycles reduce it to allow

reduction to lower energy densities.
A similar approach might be taken with regard to the

pump. There is a freedom to set the overall energy scale
of Hpump. It is straightforward to see that N cycles, the
number of cycles needed to go from ÈHsys

Í = Ei (presum-
ably with energy density at the lattice scale) to a final
configuration with ÈHsys

Í = Ef scales logarithmically
with the ratio of Ei to Ef :

N cycles = A log
3

Ei

Ef

4
(86)

where A is a numerical coe�cient of order unity, provided
that one tailors the value of the overall strength of the
cycle to the cycle in an appropriate way.

To see how this comes about, consider the trade o�s
involved in setting the scale of Hpump. If it is set too
large then it is di�cult to induce transition in the pump
and this energy flow will be very slow. On the other hand
if it is too small the maximum amount of energy that can
be absorbed in a cycle is limited. This is clearly true since
the system is finite. Moreover, at some point the energy
flow from the system of interest to the pump becomes
negligibly small (either because the system and pump
are equilibrating towards zero net flow). The amount
of energy transferred before the energy flow becomes
negligible will clearly depends sensitively on Hpump.

A simple compromise would be to choose the overall
strength of Hcomp to be large enough so that some modest
fixed fraction, f of the system energy at the beginning of
the cycle is transferred before the energy flow becomes
negligible. However, the exact value depends on the initial
configuration of system with the strength increasing with
ÈHsys

Í. Thus one might change the strength of each cycle
to keep f approximately the same in each cycle. It would
be natural to end each cycle well before the fraction of the
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FIG. 1. The entanglement power, E(Ŝ), of the S-matrix as a
function of p, the center-of-mass nucleon momentum. The 1S0

and 3S1 phase shifts used to calculate E(Ŝ) were taken from
four di↵erent models [53–57] to provide a näıve estimate of
systematic uncertainties. Data for this figure may be found
in Table II in the supplemental material.

| outih out| with | outi = Ŝ| ini. By describing the av-
erage action of Ŝ to transition a tensor-product state to
an entangled state, the entanglement power expresses a
state-independent entanglement measure that vanishes
when | outi remains a tensor product state for any | ini.

Following the analysis of Ref. [20], we consider the
spin-space entanglement of two distinguishable particles,
the proton and neutron for nf = 2 QCD. Neglecting the
small tensor-force-induced mixing of the 3S1 channel with
the 3D1 channel, the S-matrix for low-energy scattering
below inelastic threshold in these sectors can be decom-
posed as

Ŝ =
1

4

�
3ei2�1 + ei2�0

�
1̂ +

1

4

�
ei2�1 � ei2�0

�
�̂ · �̂, (2)

where 1̂ = Î2 ⌦ Î2 and �̂ · �̂ =
3P

↵=1

�̂↵ ⌦ �̂↵. It follows

that the entanglement power of Ŝ is

E(Ŝ) = 1

6
sin2 (2(�1 � �0)) , (3)

which vanishes when �1 � �0 = m⇡
2
for any integer m.

This includes the SU(4) symmetric case �1 = �0 where
the coe�cient of �̂·�̂ vanishes. Special fixed points where
the entanglement power vanishes occur when the phase
shifts both vanish, �1 = �0 = 0, or are both at unitarity,
�1 = �0 = ⇡

2
, or when �1 = 0, �0 = ⇡

2
or �1 = ⇡

2
, �0 =

0. The S-matrices at these fixed points with vanishing
entanglement power are Ŝ = ±1̂ and ±(1̂+ �̂ · �̂)/2 2.

The entanglement power in nature is plotted in Fig. 1
as a function of the center-of-mass nucleon momentum,
p, up to pion production threshold, making use of the
1S0 and 3S1 phase shifts derived from the analyses of

2 The S-matrices at the four fixed points realize a representation
of the Klein four-group, Z2 ⌦ Z2.

Refs. [53–56]. The four regions indicated are distin-
guished by the role of non-perturbative physics. Region
I shows that entanglement power approaches zero in the
limit p ! 0, as will be the case for any finite range inter-
action not at unitarity. At momenta around the scale
of the inverse scattering lengths, region II, poles and
resonances of Ŝ produce highly-entangling interactions.
This non-perturbative structure could be considered a
source of ultra-low-momentum entanglement power; ex-
perimental evidence for this is expected to be found in
the vanishing modification of np-scattering quantum cor-
relations at 19.465(42) MeV where the phase shifts dif-
fer by ⇡/2 and |p ", n #i scatters into |p #, n "i. In re-
gion IV, where energies are of order the chiral symme-
try breaking scale, the entangling interactions of quark
and gluon degrees of freedom become prominent. It is
region III that is the main focus of this paper—away
from the far-infrared structure but with nucleons as fun-
damental degrees of freedom, the entanglement power
is suppressed. Once relativistic corrections and 3S1-3D1

mixing—parametrically suppressed at low-energy—are
included in Eq. (19), E(Ŝ) is expected to remain sup-
pressed but non-zero, indicating that the entanglement
suppression in nature is only partial.
Much progress has been made in nuclear physics in re-

cent years by considering low-energy e↵ective field theo-
ries (EFTs), constrained by data from nucleon scattering.
The �0,1 phase shifts can be computed for energies below
the pion mass, from the pionless EFT for nucleon-nucleon
interactions. The leading interaction in the e↵ective La-
grangian is

Lnf=2

LO
= �1

2
CS(N

†N)2� 1

2
CT

�
N†�N

�
·
�
N†�N

�
, (4)

where N represents both spin states of the proton and
neutron fields. These interactions can be re-expressed as
contact interactions in the 1S0 and 3S1 channels with cou-
plings C0 = (CS�3CT ) and C1 = (CS+CT ) respectively,
where the two couplings are fit to reproduce the 1S0 and
3S1 scattering lengths. The C coe�cients both run with
the renormalization group as described in Ref. [58, 59]
with a stable IR fixed point at C = 0, corresponding to
free particles, and a nontrivial, unstable IR fixed point
at C = C? corresponding to a divergent scattering length
and constant phase shift of � = ⇡/2 (the “unitary” fixed
point). At the four fixed points (described above), where
{C0, C1} take the values 0 or C?, the theory has a con-
formal (“Schrödinger”) symmetry; there is also a fixed
line of enhanced symmetry at CT = 0, or equivalently
C0 = C1, where the theory possesses the Wigner SU(4)
symmetry, as apparent from the form of Eq. (4) with
CT = 0. When fitting to the scattering lengths one
finds CT ⌧ CS ' C?, since scattering lengths are un-
naturally large in both channels. Therefore, low-energy
QCD has approximate SU(4) symmetry and sits close
to the {C?, C?} conformal fixed point [60]. The emer-
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function of p, the center-of-mass nucleon momentum. The 1S0

and 3S1 phase shifts used to calculate E(Ŝ) were taken from
four di↵erent models [53–57] to provide a näıve estimate of
systematic uncertainties. Data for this figure may be found
in Table II in the supplemental material.
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state-independent entanglement measure that vanishes
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which vanishes when �1 � �0 = m⇡
2
for any integer m.

This includes the SU(4) symmetric case �1 = �0 where
the coe�cient of �̂·�̂ vanishes. Special fixed points where
the entanglement power vanishes occur when the phase
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�1 = �0 = ⇡
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, or when �1 = 0, �0 = ⇡

2
or �1 = ⇡

2
, �0 =
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The entanglement power in nature is plotted in Fig. 1
as a function of the center-of-mass nucleon momentum,
p, up to pion production threshold, making use of the
1S0 and 3S1 phase shifts derived from the analyses of
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Refs. [53–56]. The four regions indicated are distin-
guished by the role of non-perturbative physics. Region
I shows that entanglement power approaches zero in the
limit p ! 0, as will be the case for any finite range inter-
action not at unitarity. At momenta around the scale
of the inverse scattering lengths, region II, poles and
resonances of Ŝ produce highly-entangling interactions.
This non-perturbative structure could be considered a
source of ultra-low-momentum entanglement power; ex-
perimental evidence for this is expected to be found in
the vanishing modification of np-scattering quantum cor-
relations at 19.465(42) MeV where the phase shifts dif-
fer by ⇡/2 and |p ", n #i scatters into |p #, n "i. In re-
gion IV, where energies are of order the chiral symme-
try breaking scale, the entangling interactions of quark
and gluon degrees of freedom become prominent. It is
region III that is the main focus of this paper—away
from the far-infrared structure but with nucleons as fun-
damental degrees of freedom, the entanglement power
is suppressed. Once relativistic corrections and 3S1-3D1

mixing—parametrically suppressed at low-energy—are
included in Eq. (19), E(Ŝ) is expected to remain sup-
pressed but non-zero, indicating that the entanglement
suppression in nature is only partial.
Much progress has been made in nuclear physics in re-
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where the two couplings are fit to reproduce the 1S0 and
3S1 scattering lengths. The C coe�cients both run with
the renormalization group as described in Ref. [58, 59]
with a stable IR fixed point at C = 0, corresponding to
free particles, and a nontrivial, unstable IR fixed point
at C = C? corresponding to a divergent scattering length
and constant phase shift of � = ⇡/2 (the “unitary” fixed
point). At the four fixed points (described above), where
{C0, C1} take the values 0 or C?, the theory has a con-
formal (“Schrödinger”) symmetry; there is also a fixed
line of enhanced symmetry at CT = 0, or equivalently
C0 = C1, where the theory possesses the Wigner SU(4)
symmetry, as apparent from the form of Eq. (4) with
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gion IV, where energies are of order the chiral symme-
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Deep inelastic scattering as a probe of entanglement?
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Deep inelastic scattering (DIS) samples a part of the wave function of a hadron in the vicinity of
the light cone. Lipatov constructed a spin chain which describes the amplitude of DIS in leading
logarithmic approximation. Kharzeev and Levin proposed the entanglement entropy as an observ-
able in DIS [Phys. Rev. D 95, 114008 (2017)], and suggested a relation between the entanglement
entropy and parton distributions. Here we represent the DIS process as a local quench in the Li-
patov’s spin chain, and study the time evolution of the produced entanglement entropy. We show
that the resulting entanglement entropy depends on time logarithmically, S(t) = 1/3 ln (t/τ ) with
τ = 1/m for 1/m ≤ t ≤ (mx)−1, where m is the proton mass and x is the Bjorken x. The central
charge c of Lipatov’s spin chain is determined here to be c = 1; using the proposed relation between
the entanglement entropy and parton distributions, this corresponds to the gluon structure function
growing at small x as xG(x) ∼ 1/x1/3.

I. INTRODUCTION

Fifty years ago, Balitsky, Fadin, Kuraev and Lipa-
tov (BFKL) set out a study of the high-energy behavior
of the hadron scattering amplitude within perturbative
QCD. They identified the terms (αs ln s)n (where s is
the squared centre-of-mass energy and αs is the strong
coupling) resulting from the gluon ladders exchanged be-
tween the colliding hadrons. Since at high energies ln s
is large, even at weak coupling it was necessary to resum
the entire series of these leading logarithmic terms. The
result was that the total cross section grows as sαBFKL−1,
where αBFKL > 1 is the intercept of the resulting “BFKL
pomeron” [1–4].
The growth of the cross section, and the corresponding

increase of the gluon structure function at low Bjorken
x, has been observed in deep inelastic scattering (DIS)
at HERA [5–8], which excited interest in the studies of
BFKL dynamics. In a ground-breaking paper [9], Lipa-
tov discovered that in the leading logarithmic approxi-
mation (LLA), DIS can be effectively described by the
XXX spin chain with zero spin.
At high energy, the scattering amplitudes in QCD are

described by the exchange of gluons between the virtual
quark-antiquark pair (resulting from the splitting of the
virtual photon) and the hadron. The gluons are dressed
by virtual gluon loops, which leads to their ”Reggeiza-
tion”. See Fig. 1. In the limit of large number of col-
ors Nc (with fixed g2Nc, where g is the QCD coupling),
the Hamiltonian describing the interactions of Reggeized

∗ haoke72@163.com
† dmitri.kharzeev@stonybrook.edu
‡ vladimir.korepin@stonybrook.edu

gluons reduces to the sum of terms describing the near-
neighbor interactions, as a Hamiltonian of a spin chain.

γ∗ γ∗

FIG. 1. Feynman diagram describing DIS at small Bjorken
x. The virtual photon γ∗ emitted by the scattered lepton
(not shown) splits into a virtual quark-antiquark pair. The
Reggeized gluons are exchanged between the virtual quark-
antiquark pair and the hadron.

The chain was mapped to the spin (−1) [10] and to
lattice nonlinear Schrödinger model [11]. Here we will
use the nonlinear Schrödinger (NLS) equation [12–15] to
describe the entanglement entropy evolution in DIS. In
our treatment, we will rely on the conformal field theory
(CFT) description of quantum lattice NLS.
Ideas of information theory find new applications in

physics. In particular, the quantum information ap-
proach to high-energy interactions was extended in a re-
cent paper [16], where it was argued that the phases of
light cone wave functions cannot be measured in high-
energy collisions – therefore, the corresponding density
matrix has to be averaged over the phase, with the cor-
responding Haar measure. This leads to the emergence
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FIG. 1: Comparison of the experimental data of the H1 collaboration [6] on the entropy of produced hadrons in DIS [6] with
our theoretical predictions, for which we use the sea quark distributions from the NNLO fit[12, 13] to the combined H1-ZEUS
data.

where N is the average multiplicity of color-singlet dipoles. The distribution (9) leads to the following von Neumann
entropy:

S = �
X

pn ln pn = ln(N � 1) + N ln

✓
1 +

1

N � 1

◆
(10)

One can see that at large N we obtain S ' lnN , but corrections are sizable when N  10 (see Fig. 3). It should
be noted that the distribution of Eq. (9) describes quite well the experimental hadron multiplicity distributions in
proton-proton collisions (see Refs. [1–3]).

For comparison with the H1 experimental data [6](see Fig. 1), we first assume, following [1], that the hadron
multiplicity is equal to the number of color-singlet dipoles. This assumption is based on “parton liberation” picture
[5] and on the ”local parton-hadron duality” [4]. For sea quark and gluon structure functions in Fig. 1 we use NNLO
fit [12, 13] to the combined H1 and ZEUS data.

One can see that our approach in fact describes the H1 data quite well – this is the first test of the relation between
entanglement and the parton model in DIS enabled by the H1 analysis. We stress that once the data in the target
fragmentation region at smaller value of x becomes available at the Electron-Ion Collider, one should be able to use
xG(x,Q2) in the relation (1), as it has been done in Refs. [1–3, 14, 15]. However, the general formula is given by
Eq. (2) which at small x reduces to S = ln(xG(x,Q2)) since x⌃(x,Q2) ! xG(x,Q2).
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The quantum mechanics of partons
and entanglement

A

B

The proton is described by 
a vector

in Hilbert space

If                                               only one term

contributes, then the state is separable (not our case!).
Otherwise, the state is entangled. 

Entropy of hadrons derived from PDFs can be related 
to entanglement entropy.
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Workshop Resolution

High-performance computing is essential to advance nuclear physics on the experimental and theory frontiers. 
Increased investments in computational nuclear physics will facilitate discoveries and capitalize on previous 
progress. Thus, we recommend a targeted program to ensure the utilization of ever-evolving HPC hardware 
via software and algorithmic development, which includes taking advantage of novel capabilities offered by 
AI/ML.

The key elements of this program are to:

1) Strengthen and expand programs and partnerships to support immediate needs in HPC and AI/ML, and 
also to target development of emerging technologies, such as quantum computing, and other 
opportunities.

2) Take full advantage of exciting possibilities offered by new hardware and software and AI/ML within the 
nuclear physics community through educational and training activities.

3) Establish programs to support cutting-edge developments of a multi-disciplinary workforce and cross-
disciplinary collaborations in high-performance computing and AI/ML.

4) Expand access to computational hardware through dedicated and high-performance computing 
resources.

Computational NP workshop 2



Both QC and QC-inspired classical computations have the potential to address the NP science drives. 

Among areas of promise over the next decade are the exploration of prototype models with QCD-like 
features and identification of the right set of questions which are robust to errors so to acquire 
qualitative new understandings even with NISQ-era quantum technologies. 

Cross-cutting research involving collaboration with hardware developers and other domain scientists is 
essential. Quantum circuit design/algorithms/methodology requires collaboration with QIS, CS, and 
other domain sciences. Need to utilizes lattice QCD and other NP-centric techniques. 

Quantum information tools need to find their way into QCD simulations, classically and quantumly. The 
role of entanglement in NP need to be explored further. 

QC-inspired algorithms and state-of-the-art Hamiltonian-simulation strategies such as tensor networks 
need to be developed further. Need to take full advantage of HPC and new quantum-hardware 
emulators. HPC will be essential for pre/post-processing and hybrid classical-quantum computations.  

Need access to quantum devices dedicated to the NP program. Collaboration across NP will be 
valuable (through SciDAC-type programs).

Remarks collected on QC for NP at the Computational NP Workshop:



THANK YOU


