2022 Town Hall meeting on hot and cold OCD
Massachusetts Institute of Technology
Sep 23-25, 2022

Quantum Information Science for OCD Research

Zohreh Davoudi

University of Maryland, College Park

LATTICE OCD HAS CARRIED OUT A SUCCESSFUL PROGRAM

 THAT SUPPORTS A BROAD EXPERIMENTAL PROGRAM IN NP.

LATTICE QCD HAS CARRIED OUT A SUCCESSFUL PROGRAM THAT SUPPORTS A BROAD EXPERIMENTAL PROGRAM IN NP.

i) The complexity of systems grows factorially with the number of quarks.

ii) There is a severe signal-to-noise degradation in Euclidean nuclear correlators.
iii) Excitation energies of nuclei are much smaller than the QCD scale.

ADDITIONALLY THE SIGN PROBLEM FORBIDS:

i) Studies dense matter such as interior of neutron stars and phase diagram of QCD

Path integral formulation...

$$
e^{-S[U, q, \bar{q}]}
$$

...with a complex action:

$$
\mathcal{L}_{\mathrm{QCD}} \rightarrow \mathcal{L}_{\mathrm{QCD}}-i \mu \sum_{f} \bar{q}_{f} \gamma^{0} q_{f}
$$

ADDITIONALLY THE SIGN PROBLEM FORBIDS:

ii) Real-time dynamics of matter in heavy-ion collisions or after Big Bang...

...and a wealth of dynamical response functions, transport properties, parton distribution functions, and non-equilibrium physics of QCD.

Path integral formulation:

$$
e^{i S[U, q \bar{q}]}
$$

Hamiltonian evolution:

$$
U(t)=e^{-i H t}
$$

Nuclear Physics and Quantum Information Science
 Report by the NSAC OIS Subcommittee (October 2019)

[Recommendation 1A]

Quantum Computing and Simulation in
Nuclear Physics
[Recommendation 1B]
Quantum Sensing in Nuclear Physics
[Recommendation 2]
Exploratory Techniques and Technologies in
Combined NP and QIS
[Recommendation 3]
A Quantum-Ready Nuclear Physics Workforce

A meeting planned later in the Fall to discuss opportunities in OIS for NP, to provide input to the Long-Range Planning process.

Organizers: Joe Carlson and Martin Savage
[PART II]
WHAT HAS TO BE DEVELOPED IN THE COMING YEARS?

Atomic systems (trapped ions, cold atoms, Rydbergs)

- Condensed matter systems (superconducting circuits, dopants in semiconductors such as in Silicon, NV centers in diamond)
- Laser-cooled polar molecules
- Optical systems (cavity quantum electrodynamics)

Both bosonic and fermionic DOF are dynamical and coupled, exhibit both global and local (gauge) symmetries, relativistic hence particle number not conserved, vacuum state nontrivial in strongly interacting theories.

How to formulate QCD in the Hamiltonian language?

What are the efficient formulations? Which bases will be most optimal toward the continuum limit?

How to preserve the symmetries? How much should we care to retain gauge invariance?

How to quantify systematics such as finite volume, discretization, boson truncation, time digitization, etc?

Gauge-field theories (Abelian and non-Abelian):

Group-element representation
Zohar et al; Lamm et al
Link models, qubitization
Chandrasekharan, Wiese et al, Alexandru, Bedaque, et al.

Light-front quantization

Kreshchuk, Love, Goldstien, Vary et al.; Ortega at al

Prepotential formulation
Mathur, Raychowdhury et al

Loop-String-Hadron basis Raychowdhury and Stryker

Fermionic basis
Hamer et al; Martinez et al; Banuls et al
Local irreducible representations Byrnes and Yamamoto; Ciavarella, Klco, and Savage

Bosonic basis
Cirac and Zohar

Manifold lattices Buser et al

Dual plaquette (magnetic) basis
Bender, Zohar et al; Kaplan and Styker; UnmuthYockey; Hasse et al; Bauer and Grabowska

Spin-dual representation
Mathur et al

Scalar field theory

Field basis
Jordan, Lee, and Preskill

Continuous-variable basis Pooser, Siopsis et al

Harmonic-oscillator basis Klco and Savage

Single-particle basis Barata, Mueller, Tarasov, and Venugopalan.

Algorithmic developments [Digital]

Algorithmic developments [Analog]

Can practical proposals for current hardware be developed?

Can we simulate higherdimensional gauge theories?

Can non-Abelian gauge theories be realized in an analog simulator?

Can we robustly bound the errors in the analog simulation? What quantities are more robust to errors?

What is the capability limit of the hardware for gauge-theory simulations so far?

What is the nature of noise in hardware

> Implementation, benchmark, and co-design and how can it best be mitigated?

Can we co-design dedicated systems for gauge-theory simulations?

Can digital and analog ideas be combined to facilitate simulations of field theories?

We've got a long way to go to get to QCD but we know what to do! If one thing we learned from the successful conventional lattice-QCD program is that theory/ algorithm/experiment collaborations will be the key. It is even more important in the quantum-computing era since our computers are themselves physical systems!

Algorithmic developments
Implementation, benchmark, and co-development

Theory developments
[PART III]
EXAMPLES SHOWCASING PROGRESS IN A RANGE OF QCD-INSPIRED PROBLEMS...

DIGITAL COMPUTATIONS OF ABELIAN LGTs

Real-time dynamic of pure $S U(3)$ with global irrupts on IBM


```
Ciavarella, Klco, and Savage,
Phys. Rev. D 103, 094501 (2021).
```

Real-time dynamic of pure $\operatorname{SU}(2)$ with global irreps on IBM

Klco, Savage, and Stryker, Phys. Rev. D 101, 074512 (2020).

Low-lying spectrum of $S U(2)$ with matter in 1+1 D on IBM

Atas et al, Nature

Communications 12, 6499 (2021).
SU(3) example: Atas et al:
arXiv:2207.03473 [quant-ph].

See also studies on D-wave annealers: Rahman et al, Phys. Rev. D 104, 034501 (2021), Illa and Savage, arXiv:2202.12340 [quant-ph], Farrel et al, arXiv:2207.01731 [quant-ph].

SOME CO-DESIGN EXAMPLES: MULTI-DIMENSIONAL LOCAL HILBERT SPACES AND MULTI-MODE INTERACTIONS

Ciavarella, Klco, and Savage, Phys. Rev. D 103, 094501 (2021)

$$
\begin{aligned}
& \begin{array}{ccc}
\Theta_{\ell \mid \ell^{\prime}} & C_{\theta(0)}^{\ell^{\prime} \rightarrow \ell}(0) & C_{\theta(d-1)}^{\ell^{\prime} \rightarrow \ell}(d-1) \\
\ell-\square & -\quad, \\
\ell^{\prime}- & \ldots & -
\end{array} \\
& \left(\begin{array}{l}
\frac{G}{Z^{2}} d-1 \\
\bar{Z}_{2} \\
0
\end{array}\right) \\
& \begin{array}{l}
B-\mathcal{U}_{\ell}^{(B)} \\
-E-\mathcal{U}_{\ell}^{(E)}
\end{array}
\end{aligned}
$$

González-Cuadra, Zache, Carrasco, Kraus, Zoller, arXiv:2203.15541 [quant-ph].

```
ZD, Linke, Pagano,
Phys. Rev. Research 3,
043072 (2021).
```


(d)

Andrade, ZD, Grass, Hafezi, Pagano, Seif, arXiv:2108.01022 [quant-ph], Bermudez et al, Pays.Rev.A79, 060303 R (2009), Katz, Centina, Monroe, arXiv:2202.04230 [quant-ph].

FIRST STEPS TOWARD COLLISION PROCESSES - NUMERICAL SIMULATIONS -

(i) Ising

Ashley Milsted, Liu, John Preskill, and Vidal, PRX Quantum 3 (2022) 2, 020316.

Surace, Lerose, New J. Phys. 23 (2021) 062001.

PARTON DISTRIBUTION FUNCTIONS, DECAY AMPLITUDES

Either calculate PDFs directly since non-equal time amplitudes are possible on quantum computers...

Mueller, Tarasov, and Raju Venugopalan, PRD 102, 016007 (2020), Lamm, Lawrence, and Yamauchi, Phys. Rev. Res. 2, 013272 (2020), Echevarria, Egusquiza, Rico, and G Schnell, PRD 104, 014512 (2021).
...or expedite global fitting of PDFs with variational quantum eigensolvers...

```
Perez-Salinas, Cruz-
Martinez, Alhajri, and
Carrazza , PRD 103,
034027 (2021), Qian,
Basili, Pal, Luecke, and
Vary, arXiv:2112.01927
(2021).
```

qPDF Workflow

Quantum computing β decay in $1+1$ QCD

```
Farrell, Chernyshev, Powell,
Zemlevskiy, Illa, and Savage,
arXiv:2209.10781 [quant-ph].
```


2 Trotter steps .

Open quantum system dynamics: $q \bar{q}$ moving in medium

de Jong, Metcal, Mulligan, Ploskon, Ringer, and, Yao, Phys.Rev.D 104 (2021) 5, 051501.
Λ and Λ^{-}spin correlations provide novel insights into quantum features of many-body parton dynamics.

Quantum simulating a simple model of hadronization originating from QCD strings:

Gong, Parida, Tu, and Venugopalan,
Phys.Rev.D 106 (2022) 3, L031501.

FINITE TEMPERATURE AND FINTIE DENSITY PHASE DIAGRAM

```
Toward Quantum
Computing Phase
Diagrams of Gauge
Theories with
Thermal Pure
Quantum States,
ZD, Mueller,
Powers,
arXiv:2208.13112
[hep-lat] (2022).
```

Phase diagram of Z_{2}^{1+1} with fermions

Preparing thermal states on a quantum computer

Explorations within NJL model

Approximating
imaginary-time evolution with real-time evolution.

\qquad

Quantum Simulation of Chiral Phase Transitions, Czajkaa, Kang, Ma ,
Zhaoa, JHEP 08 (2022) 209 .

EMERGING UNDERSTANDING OF THERMALIZATION IN SIMPLE GAUGE THEORIES

Numerical study of Z_{2}
LGT in 2+1 D
Mueller, Zache, Ott,
Phys. Rev. Lett. 129,
011601 (2022).

TRANSPORT AND NON-EQUILIBRIUM PROPERTIES

Transport coefficients from real-time correlators of energy momentum tensor

```
Cohen, Lamm,
Lawrence, and
Yamauchi, Phys.
Rev. D 104, 094514
(2021).
```

How to define energymomentum tensor in Hamiltonian formulation

How to prepare a proton state? [Generally not developed sufficiently.]

Quark-Gluon-Plasma

A dynamical phase transition and topological order in lattice Schwinger model with an IonQ quantum computer:

Mueller, Carolan, Connelly, Dumitrescu, ZD, Mueller, Yeter-Aydeniz, to be released (2022).

QUANTUM ENTANGLEMENT IN HIGH- AND LOW-ENERGY NUCLEAR PHYSICS

Deep inelastic scattering as a probe of entanglement?

Entropy of hadrons derived from PDFs can be related to entanglement entropy.

[^0]$N N$ interactions at low energies are consistent with vanishing entanglement...

Beane, Kaplan, Klco and Savage, Phys. Rev. Lett. 122, 102001 (2019)
...as are low-energy BB interactions as obtained with lattice OCD.

Wagman, Winter, Chang, ZD, Detmold, Orginos, Savage, Shanahan (NPLQCD), Phys. Rev. D 96, 114510 (2017)
[FINALLY]
THOUGHTS AND REMARKS FOR THE LRP PROCESS...

Computational Nuclear Physics and AI/ML Workshop

6-7 September, 2022 / SURA headquarters

Organized by:

Alessandro Lovato - Joe Carlson (LANL), Phiala Shanahan (MIT), Bronson Messer (ORNL) Witold Nazarewicz (FRIB/MSU), Amber Boehnlein (JLab), Peter Petreczky (BNL) Robert Edwards (JLab), David Dean (JLab)

Computational Nuclear Physics and AI/ML
 Workshop

Workshop Resolution

High-performance computing is essential to advance nuclear physics on the experimental and theory frontiers. Increased investments in computational nuclear physics will facilitate discoveries and capitalize on previous progress. Thus, we recommend a targeted program to ensure the utilization of ever-evolving HPC hardware via software and algorithmic development, which includes taking advantage of novel capabilities offered by AI/ML.

The key elements of this program are to:

1) Strengthen and expand programs and partnerships to support immediate needs in HPC and $\mathrm{Al} / \mathrm{ML}$, and also to target development of emerging technologies, such as quantum computing, and other opportunities.
2) Take full advantage of exciting possibilities offered by new hardware and software and $\mathrm{AI} / \mathrm{ML}$ within the nuclear physics community through educational and training activities.
3) Establish programs to support cutting-edge developments of a multi-disciplinary workforce and crossdisciplinary collaborations in high-performance computing and AI/ML.
4) Expand access to computational hardware through dedicated and high-performance computing resources.

- Both QC and QC-inspired classical computations have the potential to address the NP science drives.
- Among areas of promise over the next decade are the exploration of prototype models with QCD-like features and identification of the right set of questions which are robust to errors so to acquire qualitative new understandings even with NISQ-era quantum technologies.
- Cross-cutting research involving collaboration with hardware developers and other domain scientists is essential. Quantum circuit design/algorithms/methodology requires collaboration with OIS, CS, and other domain sciences. Need to utilizes lattice QCD and other NP-centric techniques.
- Quantum information tools need to find their way into QCD simulations, classically and quantumly. The role of entanglement in NP need to be explored further.
- QC-inspired algorithms and state-of-the-art Hamiltonian-simulation strategies such as tensor networks need to be developed further. Need to take full advantage of HPC and new quantum-hardware emulators. HPC will be essential for pre/post-processing and hybrid classical-quantum computations.
- Need access to quantum devices dedicated to the NP program. Collaboration across NP will be valuable (through SciDAC-type programs).

[^0]: Kharzeev and Levin, , Phys. Rev. D 95, 114008 (2017), Zhang, Hao, Kharzeev, and Korepin, Phys. Rev. D 105, 014002 (2022).

