

Drell-Yan at FNAL Cold QCD at Town Hall Meeting

- Past and Future Drell-Yan Program at Fermilab
- The Need for sea-quark Information
- SpinQuest (A polarized Target Experiment to explore the Sea)
- Experiment Status and Timeline
- The Transverse Structure of the Deuteron in DY

Dustin Keller

9/23/2022

DOE contract DE-FG02-96ER40950

Past and Future Drell-Yan Program At Fermilab

- E605 (1983) High Pt particle pair with Beryllium target (800 GeV)
- E772 (1988) A-dependence of the Drell-Yan process (800 GeV)
- E789 (1991) A-dependence J/psi, psi', DY, D and B (800 GeV)
- E866 (1997) Asymmetry in nucleon sea using Drell-Yan (800 GeV)
- E906 (2017) Asymmetry in nuclear sea using Drell-Yan (120 GeV)
- E1039 (2025) Drell-Yan with a Transversely Polarized Target (120 GeV)
- L1039x (2026) Transverse Structure of the Deuteron (120 GeV)
- E1027 (??) Polarized Proton Beam Drell-Yan (120 GeV)

E866/NuSea

Phys.Rev.Lett.80:3715-3718,1998

Fermilab Proton Beam Main Injector

E866/NuSea

Data in 1996-1998 ¹*H*, ²*H* and nuclear targets 800 GeV proton beam

$$\frac{d^2\sigma}{dx_1 dx_2} = \frac{4\pi\alpha^2}{9x_1 x_2} \frac{1}{s} \times \sum_i e_i^2 [q_{ti}(x_t)\bar{q}_{bi}(x_b) + \bar{q}_{ti}(x_t)q_b]$$

- Optimized for Improved Statistics
 - Cross-Section scales as ~7 times compared to the 800 GeV
 - Luminosity is ~7 times greater than NuSea
 - About 49 times the statistics significance

E906/SeaQuest

Data in 2013-2017 ${}^{1}H$, ${}^{2}H$ and nuclear targets 120 GeV proton beam

 $b_{bi}(x_b)]$

E906\SeaQuest **Asymmetry of Antimatter in the Proton**

- Targets: (LH2, LD2, C, Fe, W)
- EMC study
- Nuclear P_T broadening/eloss
- Absolute cross-section
- Boer-Mulders
- J/psi physics

Nature Vol 590, 561-565 (2021)

Future Investigation Must Relate Isospin and Spin Asymmetries

So What Spin Asymmetries

- What we expect from pQCD:
 - TSSA should be very small (collinear, leading twist)
- What we know from experiment:
 - Data tells a different story (E704, PHENIX, STAR) lacksquare

Sivers Mechanism Data Indicates its a real (SIDIS)

Separate this mechanism from Collins (Drell-Yan)

Map distributions of unpolarized quarks

Pavia, PLB 827 136961 (2022)

Sivers Mechanism Data Indicates its a real (p+p?)

Need experimental data to determine non-perturbative part Need to completely map phase space in both DY and SIDIS

- Sivers in the most accessible TMD
 - Universality (In observables)
 - Is Factorization valid with TMDs
 - TMD Evolution

Sivers Mechanism Data Indicates its a real

Modified Universality

- Gauge link provides the phase for the interference
- Can be interpreted as an interaction of the struck quark with the color field of the target remnant
- Colored Objects surrounded by gluons with profound consequence of gauge invariance
- Opposite sign when gluon couple after quark scatters (SIDIS) or before quark annihilates (DY)

$$\left. f_{1T}^{\perp} \right|_{\mathrm{SIDIS}} = - \left. f_{1T}^{\perp} \right|_{\mathrm{DY}}$$

Recent Global Analysis

- Similar Results (Valence)
- Sign-change is preferred
- Statistics and Kinematics limited
- Most experiments focus on Valence
- Sea contribution suppressed in SIDIS

"…The sign of the sea-quark Sivers" function plays the central role here..."

PHYSICAL REVIEW LETTERS 126, 112002 (2021)

Physics Letters B 827 (2022) 136961

We really need more data!!

SpinQuest is designed for sea-quarks Designed investigate sea-quarks in a polarized proton/neutron

SpinQuest at Fermilab A measurement of the contribution of the vacuum to spin

- 120 GeV proton beam
- $\sqrt{s} = 15.5 \text{ GeV}$
- ~ 1×10^{12} pro/sec for 4.4 sec/min
 - SpinQuest will measure the correlation between the momentum of the struck sea-quark and the spin of parent nucleon
 - A none zero asymmetry is evidence of sea-quark OAM
 - SpinQuest will fill in important and critical information about the sea

Accessing TMDs

 $A_{UU}^{\cos 2\phi_h} \propto h_1^{\perp q} \otimes H_{1q}^{\perp h}$ $A_{UT}^{\sin(\phi_h - \phi_s)} \propto f_{1T}^{\perp q} \otimes D_{1q}^h$ $A_{UT}^{\sin(\phi_h + \phi_s)} \propto h_1^q \otimes H_{1q}^{\perp h}$ $A_{UT}^{\sin(3\phi_h - \phi_s)} \propto h_{1T}^{\perp q} \otimes H_{1q}^{\perp h}$

 $A_T^{\cos 2\varphi_S} \propto h_1^{\perp q} \otimes h_1^{\perp q}$ $A_T^{\sin\varphi_s} \propto f_1^q \otimes f_{1T}^{\perp q}$ $A_{T}^{\sin(2\varphi_{S}-\varphi_{s})} \propto h_{1}^{\perp q} \otimes h_{1T}^{\perp q}$ $A_{T}^{\sin(2\varphi_{c}s+\varphi_{s})} \propto h_{1}^{\perp q} \otimes h_{1}^{q}$

Accessing TMDs mining p $f_{1T}^{\perp,q}|x$ $\left. h_1^q \right|_{SIDIS} = \left. h_1^q \right|_{DY}$ $A_{UU}^{\cos 2\phi_h} \propto h_1^{\perp q} \otimes H_{1q}^{\perp h}$ $A_{UT}^{\sin(\phi_h - \phi_s)} \propto f_{1T}^{\perp q} \otimes D_{1q}^h$ $A_{UT}^{\sin(\phi_h + \phi_s)} \propto h_1^q \otimes H_{1q}^{\perp h}$ $A_{UT}^{\sin(3\phi_h - \phi_s)} \propto h_{1T}^{\perp q} \otimes H_{1q}^{\perp h}$ $f_{1T}^{\perp q}$ **SIDIS**

SpinQuest Projection

$$\begin{split} A_{N}(p_{beam}+p_{target}^{\uparrow}\rightarrow DY) &\propto \frac{N_{L}^{DY}-N_{R}^{DY}}{N_{L}^{DY}+N_{R}^{DY}} \propto \frac{f_{1T}^{\perp,\bar{u}}(x_{t})}{f_{1}^{\bar{u}}(x_{t})} \\ A_{N}(p_{beam}+d_{target}^{\uparrow}\rightarrow DY) &\propto \frac{N_{L}^{DY}-N_{R}^{DY}}{N_{L}^{DY}+N_{R}^{DY}} \propto \frac{f_{1T}^{\perp,\bar{u}}(x_{t})}{f_{1}^{\bar{u}}(x_{t})} \end{split}$$

•
$$\sqrt{s} = 15.5$$
 GeV

- 4.4 seconds spill $<10^{12}$ p/s
- ~ 10^{17} protons per year for 2 years
- We are set to have the highest instantaneous proton intensity on PT

SpinQuest Experiment

High Intensity Proton Running With a Polarized Target

- Magnet limitation
- Fridge limitation
- Punctuated heat load
- Long target cell

1.4 W at 1 K assuming a flow rate of 20 SLPM but can support as high as 4 W of cooling power

High Intensity Proton Running With a Polarized Target

Config	pro/s	Rel. error
No Pumping	$< 1 \times 10^{12}$	10%
100 SLM	$< 3 \times 10^{12}$	20%

SpinQuest Important (rough) Dates

- February 2021: Started commissioning using cosmic rays • Spring 2022: QT and Polarized target installed
- July 2022: QT Commissioning started
- September 2022: Target Magnet first cooldown October 2022: Accelerator Readiness Review • November 2022: Polarized Target Commissioning January 2023: Polarized Target and Beam Commissioning • March 2023: Day-1 Physics (J/psi asymmetry)

- Summer 2023: Operational Readiness Review
- Begin production runs for 2+ years

The SpinQuest Timeline (unofficial) at Fermilab

		FY18	FY19	FY20	FY21	FY22	FY23	FY24	FY25	FY26	FY27	FY28	FY29	FY30	
LBNF /	SANFORD				DUNE	DUNE	DUNE	DUNE	DUNE	DUNE	DUNE	DUNE	D UNE	DUNE	
PIP II	FNAL				LBNF	LBNF	LBNF	LBNF	LBNF	LBNF	LBNF	LBNF	LBN F	LBNF	
NUM	MI	IINERV	IINERV	DPE	OPEN	2x2	2x 2	2x2	2x2	2x2			Sa	Nota	
Nulvii		NOVA	NOvA	NOV/	NOvA	NOVA	NOVA	NOVA	NOvA	NOvA			Jee	e Note 4	\mathbf{v}
2.		LBOON	ιBooN	Bool	OPEN	OPEN	OPEN	OPEN	OPEN	OPEN	·		OPEN	OPEN	v
BNB	В	CARU:	CARU:	ARL	CARU:	CARU	CARU:	CARUS	CARUS	ICARUS			OPEN	OPEN	
		SBND	SBND	BN	SBND	SBND	SBND	SBND	SBND	SBND		ONG O	OPEN	OPEN	
		g-2	g-2	g-2	g-2	g-2	g-2				SHU	TOOWN			
Wiuon	Complex	Mu2e	Mu2e	<mark>/lu2</mark>	Mu2e	Mu2e	Mu2e	Mu2e	Mu2e	Mu2e			Mu2e	Mu2e	μ
	MT	FTBF	FTBF	FTBR	FTBF	FTBF	FTBF	FTBF	FTBF	FTBR			FTBF	FTBF	
SY 120	MC	FTBF	FTBF	FTBF	FTBF	FTBF	FTBF	FTBF	FTBF	FTBF			FTBF	FTBF	-
	NM4	OPEN	SpinQ	ipin(SpinQ	SpinQ	SpinQ	SpinQ	Sp ^y EN	DPE			OPEN	OPEN	p
LINAC	MTA				ITA	ITA	ITA	ITA	ITA	ITA					
		FY18	FY19	FY20	FY21	FY22	FY23	FY24	FY25	FY26	FY27	FY28	FY29	FY30	

Construction / commissioning

Capability ended

Run Subject to further review

Shutdown

Capability unavailable

Separation of sea-quark and gluon TMDs A way to extract information on the dynamics and spin structure of nuclei

J. L. Forest et al. Phys. Rev. C54,646-667 (1996)

Sivers TMD

Boer-Mulders

transversal helicity TMD

longitudinal transversity TMD

	Leading Twist	Unpolarized	Circular	
	u lite	f_1		
cation	or Pola		$oldsymbol{g}_1$	
Polariz	Veod	f_{1T}^{\perp}	g_{1T}	1
Target	Te u	f_{1LL}		E E E E E E E E E E E E E E E E E E E
	r Pola	f_{1LT}	g _{1LT}	h_{11}
	μ Tense	f_{1TT}	g _{1TT}	h ₁₂

		U	L		I
pol.	U	f_1		ŀ	ı
leon	L		g_1	h	1
nuc	Т	f_{1T}^{\perp}	g_{1T}	h_1	

Gluon Operator

quark pol.

The Transverse Structure of the Deuteron With Drell-Yan

- Quark transversely distributions decoupled from the gluon transversity in O^2
- Polarized nuclei with spin ≥ 1 , due to helicity-flip (chiral-odd) property
- Tensor Force Largely responsible for the geometry
- Use DY as a probe to understand this geometric properties in terms of quark gluon dynamics
- Vanish for nucleus made up of just protons and neutrons (gluon distribution not related to the nucleons: deep binding, polarized EMC, hidden color, geometry)
- Cleanly access d sea-quark and gluon transversity using novel DY-asymmetries
- A probe of linearly polarized gluons in the target using h_{1TT}^8

https://arxiv.org/pdf/2205.01249.pdf

$$h_{1TT}^g|_{SIDIS} = h_{1TT}^g|_{DY}$$

Transverse Structure of the Spin-1 Target

SeaQuark Transversity

- Very High Proton Luminosity from main Injector
- Large Kinematic coverage that overlaps with SIDIS JLab and Future EIC
- Beam cycle allows target RF manipulations between spills
- June FNAL PAC (Transversity/Dark) encouraged us to move forward and return to request stage-1 approval (Nov 2022)

http://twist.phys.virginia.edu/E1039/

Thinking of Joining SpinQuest or Future Projects: (liuk.pku@gmail.com, dustin@virginia.edu)

https://spinquest.fnal.gov/

The SpinQuest Collaboration

INSTITUTIONS 20	FULL MEMBERS 48 Postdocs 6 Grad. Students 12
<u>1) Abilene Christian</u> University	Donald Isenhower (PI), Michael Daugherity, Shon Wa
2) Argonne National Laboratory	Paul Reimer (PI), Donald Geesaman
3) Aligarh Muslim University	Huma Haider (PI)
4) Boston University	David Sperka (PI), Zijie Wan
<u>5) Fermilab</u>	Richard Tesarek (PI)
<u>6) KEK</u>	Shin'ya Sawada (PI)
<u>7) LANL</u>	Kun Liu (SP), Ming Liu, Kei Nagai
<u>8) Mississippi State</u> <u>University</u>	Lamiaa El Fassi (PI), Eric Fuchey
9) New Mexico State	Stephen Pate (PI), Vassili Papavassiliou, Abinash Pu
University	Forhad Hossain, Dinupa Nowarathne, Harsha Sirilal
<u>10) RIKEN</u>	Yuji Goto (PI)
11) Shandong University	Qinghua Xu (PI), Zhaohuizi Ji
12) Tokyo Institute of Technology	Toshi-Aki Shibata (PI)
13) University of Colombo	Hansika Atapattu (PI), Vibodha Bandara
14) University of Illinois, Urbana-Champaign	Jen-Chieh Peng (PI)
15) University of Michigan	Wolfgang Lorenzon (PI), levgen Lavrukhin, Noah Wu
16) University of New Hampshire	Karl Slifer (PI)
17) Tsinghua University	Zhihong Ye (PI)
18) University of Virginia	Dustin Keller (SP), Kenichi Nakano, Ishara Fernando Zulkaida Akbar, Liliet Diaz, Anchit Arora, Arthur Con
19) Yamagata University	Yoshiyuki Miyachi (PI)
20) Yerevan Physics Institute	Hrachya Marukyan (PI)

	AFFILIATE MEMBERS
atson	Roy Salinas, Rusty Towell, Shannon McNease, Yves Ngenzi, Thomas Fitch
	Kevin Bailey, Thomas O'Connor
	Carol Johnston, Chuck Brown, Nhan Tran
	Shigeru Ishimoto
	Jan Boissevain, Patrick McGaughey
un,	
d	Jason Dove, Mingyan Tian,Bryan Dannowitz, Randall McClellan, Shivangi Prasad
uerfel	Daniel Morton, Richard Raymond, Marshall Scott
	Maurik Holtrop
o, lover, Jay	Donal Day, Donald Crabb, Oscar Rondon
	Takahiro Iwata, Norihiro Doshita

High Intensity Proton Running With a Polarized Target

Config	prot/s	Rel. error
No Pumping	$< 1 \times 10^{12}$	10%
100 SLM	$< 3 \times 10^{12}$	20%

Simulation study: Zulkaida Akbar, UVA

	NIQ	lon source
uest mal ball		
ND.000 wotons per KF bucket		,

1 CPU: 110 minutes for 40K

Automated Microwave System

	U	
	— Signal Hit — Background Hit — Signal Hit	
	i	
1	- Signal Hit	
TM	AX	

Linearly Polarized Gluons in the Target Drell-Yan DIS \boldsymbol{p}_A p_A $\Phi_{A,q}$ $\Delta s = 2$ + 000000 00000 p_a \boldsymbol{p}_c г **p**_b 0000 \boldsymbol{p}_d 2000

Gluon-deuteron forward scattering amplitude A++,-with the spin flip of 2 ($\Delta s = 2$) for gluon transversity.

The Quark-gluon process contribution to the cross-section.

S. Kumano and Qin-Tao Song, Phys. Rev. D 101, 054011 (2020).

 p_B

One of the leading contributions in DIS

PHYSICAL REVIEW D 94, 014507 (2016)

Accessing Transversity

$$A_{UT}^{\sin(\varphi_{cs}+\varphi_{s})\frac{q_{T}}{M_{N}}}\Big|_{pD^{\uparrow}\to l^{+}l^{-}X} \simeq -\frac{\left[4h_{1u}^{\perp(1)}\left(x_{p}\right)+h_{1d}^{\perp(1)}\left(x_{p}\right)\right]\left[\bar{h}_{1u}\left(x_{D^{\uparrow}}\right)+\bar{h}_{1d}\left(x_{D^{\uparrow}}\right)\right]}{\left[4f_{1u}\left(x_{p}\right)+f_{1d}\left(x_{p}\right)\right]\left[\bar{f}_{1u}\left(x_{D^{\uparrow}}\right)+\bar{f}_{1d}\left(x_{D^{\uparrow}}\right)\right]}$$

$$A_{E_{xy}} = \frac{2\sigma_{pd \to \mu^+ \mu^- X}^{E_x} - \sigma_{pd \to \mu^+ \mu^- X}^{U}}{\sigma_{pd \to \mu^+ \mu^- X}^{U}} = \frac{1}{fP_{zz}} \frac{2N_{pd \to \mu^+ \mu^- X}^{E_x} - N_{pd \to \mu^+ \mu^- X}^{U}}{N_{pd \to \mu^+ \mu^- X}^{U}},$$

- With E906 and E1039 data \bar{u} and d Transversity can be separated and extracted (only possible with the SpinQuest kinematics)

 SpinQuest-X has primary focus on Deuteron Transversity and particularly gluon Transversity but also helps with clean d Transversity for m=+/-1 states

Al in Future Experiments Automated Spin-1 Configuration with AI Drive RF

New NMR technology developed at UVA can manipulate spin but is optimized by AI controls so that the spin manipulation and polarization measurements are continuous across the frequency domain.

> The use of the TMDs of polarized nuclei offers the necessary connective bridge, allowing us to explore how these geometric properties emerge from quark and gluon dynamics.

For the case of spin-1 there are not an equal number of up and down quarks pairs. In the deuteron there are 1.5 pairs of down quarks and 1.5 pairs of up quarks.

Target with integer spin like deuterium, nitrogen14, lithium6, boron10, can be be Tensor Enhanced with RF

More Partonic Organization with More Polarization Axes Polarizing Higher Mass Nuclei with Spin ≥ 1

- For spin-1 there are three independent polarization components of a second-rank tensor, for higher than spin-1 you get additional polarization components
- Additional polarization components lead to more polarization axes
- Additional polarization axes leads to reduced partonic complexity and more observables
- With spin ≥ 1 for many nuclei with increase mass number
- Integer and half-integer provide different information
- New RF techniques to polarize nuclei at higher temperatures
 - Spin-1: ²D, ⁶Li, ¹⁴N
 - Spin-2: ²²Na
 - Spin-3:¹⁰B

DY at FNAL (Much Critical Information)

 $p A \rightarrow \mu^+ \mu^- X$

Figure 3 Proton-induced Drell-Yan production from experiments NA3 (8) (triangles) at 400 GeV/c, E605 (9) (squares) at 800 GeV/c, and E772 (10; PL McGaughey et al, unpublished data) (circles) at 800 GeV/c. The lines are absolute (no arbitrary normalization factor) next-to-leading order calculations for p + d collisions at 800 GeV/c using the CTEQ4M structure functions (11).

Annu. Rev. Nucl. Part. Sci. 1999. 49:217-53

Figure 12 Ratio of Drell-Yan cross sections per nucleon for heavy nuclei to deuterium versus target momentum fraction from E772 (104). The two columns show data for different bins of $Q^2 = M^2$.

Publications of the Fermilab Drell-Yan Program

E866/NuSea

- 80, 3715 (1998).
- J.C. Peng et al. d-bar/u-bar Asymmetry and the Origin of the Nucleon Sea, Phys. Rev. D58, 092004 (1998).
- M.A. Vasiliev et al. Parton energy loss limits and shadowing in Drell-Yan dimuon production, Phys. Rev. Lett. 83, 2304 (1999).
- **M.J.** Leitch et al. Measurement of Differences between J/ψ and ψ Suppression in p-A Collisions, Phys. Rev. Lett. 84, 3256 (2000).
- C.N. Brown et al. Observation of Polarization in Bottomonium Production at sqrt s = 38.8 GeV, Phys. Rev. Lett. 86, 2529 (2001).
- R.S. Towell et al. Improved Measurement of the d-bar/u-bar Asymmetry in the Nucleon Sea, Phys. Rev. D64, 052002 (2001).
- T.H. Chang et al. J/w polarization in 800-GeV p Cu interactions, Phys. Rev. Lett. 91 211801 (2003).
- L.Y. Zhu et al. Measurement of Angular Distributions of Drell-Yan Dimuons in p + d Interaction at 800-GeV/c, Submitted to Phys. Rev. Lett. arxiv:hep-ex/0609005.

E789 Publications:

- -Lett. 72, 1318 (1994).
- M.J. Leitch et al. Nuclear Dependence of Neutral D Production by 800 GeV/c Protons, Phys. Rev. Lett. 72, 2542 (1994).
- C.S. Mishra et al. Search for the decay $D^0 \rightarrow \mu^+ \mu$, Phys. Rev. **D50**, 9 (1994).

E.A. Hawker et al. Measurement of the Light Antiquark Flavor Asymmetry in the Nucleon Sea, Phys. Rev. Lett.

M.S. Kowitt et al. Production of J/ψ at Large x_F in 800 GeV/c p-Copper and p-Beryllium Collisions, Phys. Rev.

Publications of the Fermilab Drell-Yan Program

E789 Publications (Cont.):

- D.M. Jansen et al. Measurement of the Bottom-Quark Production Cross Section in 800 GeV/c Proton-Gold Collisions, Phys. Rev. Lett. 74, 3118 (1995).
- M.H. Schub et al. Measurement of J/ψ and ψ Production in 800 GeV/c Proton-Gold Collisions, Phys. Rev. D52, 1307 (1995); Phys. Rev. D53, 570 (1996).
- 4251 (1995).
- C.N. Brown et al. Nuclear Dependence of Single-Hadron and Dihadron Production in p-A Interactions at sqrt s = 38.8 GeV, Phys. Rev. C54, 3195 (1996).
- D₀ decays, Phys. Rev. **D61**, 032005 (2000).

E772 Publications:

- D.M. Alde et al. Nuclear Dependence of Dimuon Production at 800 GeV, Phys. Rev. Lett. 64, 2479 (1990).
- D.M. Alde et al. A Dependence of J/w and w Production at 800 GeV/c, Phys. Rev. Lett. 66, 133 (1991).
- **66**, 2285 (1991).
- P.L. McGaughey et al. Cross sections for the production of high-mass muon pairs from 800 GeV proton bombardment of ²H, Phys. Rev. D50, 3038 (1994).
- P.L. McGaughey et al. Limit on the d-bar/u-bar asymmetry of the nucleon sea from Drell-Yan production, Phys. Rev. Lett. 69, 1726 (1992).

M.J. Leitch et al. Nuclear Dependence of J/ψ Production by 800 GeV/c Protons near $x_F = 0$, Phys. Rev. D52,

D. Pripstein et al. Search for flavor-changing neutral currents and lepton-family-number violation in two-body

D.M. Alde et al. Nuclear Dependence of the Production of Upsilon Resonances at 800 GeV, Phys. Rev. Lett.

