

2022 Town Hall Meeting on Hot and Cold QCD Sep 23-25, 2022

Gluon Saturation from RHIC and Future EIC

Xiaoxuan Chu Brookhaven National Laboratory Sep 23rd, 2022

High gluon density in nucleon

- One can "take snapshots" of partonic structure of the proton with a probe particle in high energy collisions
- Results from DIS: Gluon density rapidly increases towards small x, which can be explained by gluon splitting

Gluon saturation

- The rapid increase of gluon density: gluon splitting \rightarrow linear evolution
- Increase should be tamped at a certain point: gluon recombination \rightarrow non-linear evolution
- A new regime of QCD: Gluon saturation ($Q^2 < Q_s^2$) at gluon recombination = gluon splitting
- Saturation region is easier to be reached in nuclei: $Q_s \propto A^{1/3}$

How to probe nuclear gluon distributions at saturation region?

2022 Town Hall Meeting

Di-hadron measurement in d+Au

- CGC successfully predicted the strong suppression of the inclusive hadron yields in d+Au relative to p+p by gluon saturation effects → nuclear modified fragmentation serves as another interpretation?
- **Di-hadron** as another observable provides further test, was first proposed by D. Kharzeev, E. Levin and L. McLerran from NPA 748 (2005) 627-640

• Following theoretical predictions on di-hadron:

- Di-hadron in p+p as baseline: 2-to-2 process
- Suppression of away-side peak in d+A relative to p+p as a saturation feature

Saturation signatures on p_T , y, b, A

Can we observe the nonlinear gluon dynamics signatures from RHIC p+p, p+A, d+A data?

STAR data in $x - Q^2$ phase space

10⁴

p_T and A dependence

STAR

- Suppression at low p_T not high p_T
- Fixed p_T (smallest p_T) bin $\rightarrow x Q^2$ phase space is fixed, suppression is dominantly affected by various A:
 - Suppression linearly depends on $A^{1/3}$
 - Slope from the fitting = -0.09 ± 0.01

7

E.A. dependence

- Suppression increases with *E.A., highest E.A. data is consistent with predictions at b = 0;
 E.A. is not identical to centrality
- No broadening is observed

*E.A. (event activity): energy deposited in BBC in nuclei-going direction

STAR

$Di-\pi^0$ measurement in d+Au at STAR

Challenging to conclude the forward di- π^0 correlation measurement in d+Au

Xiaoxuan Chu

- π^0 PID: much higher background in d+Au than p+p/Au; combinatoric contribution is large in d+Au
- Double parton interactions affect the correlation? \rightarrow two π^0 s separately from two hard scatterings? Previous measurement in d+Au from PHENIX: PRL 107, 172301 (2011); DPS: M. Strikman et al., PRD 83, 034029 (2011)

$Di-\pi^0$ measurement favors for cleaner p+A than d+A collisions

2022 Town Hall Meeting

Future measurements with STAR Forward Upgrade

STAR Forward Upgrade: $2.5 < \eta < 4$

Three new systems:

- Forward Silicon Tracker (FST)
- 2 Forward sTGC Tracker (FTT)
- Sorward Calorimeter System (FCS)

Future STAR data with forward upgrade

Year	System	$\sqrt{s} \; (\text{GeV})$
2023	Au+Au	200
2024	$p+p, p+{ m Au}$	200
2025	Au+Au	200

To explore nonlinear gluon dynamics with expanded observables:

- Di- $h^{+/-}$: access lower p_T
- di-jet: more accurate proxy to di-parton
- Direct photon (-jet): $q+g\rightarrow q+\gamma$

Future measurement at EIC and the LHC

- RHIC results will be an important basis for very similar measurements at the future EIC
 - Very similar $x Q^2$ phase space at close collision energy
 - Nonlinear effects seen with different complementary probes (eA and pA), one can claim a discovery of saturation effects and their universality
- Data from RHIC + the LHC access the full phase space: *LHC data \rightarrow low x at high Q^2 ; RHIC data \rightarrow low/moderate Q^2

*ALICE FoCal and LHCb pushing the small-*x* program at LHC, see backup

Di-hadron correlations at EIC

Constrain sat. and nosat. models a lot with limited statistics of $1 fb^{-1}$

• Strong suppression is reproduced by sat. model not by nosat. model (EPS09 nPDF) including energy loss

Effects from intrinsic k_T , initial and finall-state radiation (Sudakov effect), fragment p_T^{frag} are investigated:

- Near side peak width mainly affected by final state parton shower and fragment $p_T^{\rm frag}$
- Away side peak width dominated by initial state parton shower

Diffraction at EIC

Diffraction in eA

- Diffractive processes most sensitive to the underlying gluon distribution: $F^{diff} \propto k_g^2$
- Double ratio sensitive to saturation and shadowing
 - $\sigma_{diff} / \sigma_{tot}$ (eAu > ep): saturation
 - $\sigma_{diff} / \sigma_{tot}$ (ep > eAu): shadowing

Summary and outlook

Di-hadron measurements at RHIC provide insights into the understanding of nonlinear gluon dynamics in nuclei

p+p, p+A results: A, E.A., p_T dependence

Di-hadron measurement favors for cleaner p+Au collisions than d+Au collisions

Nuclear gluon distributions remain largely unconstrained in the nonlinear regime: important input from RHIC at low and moderate $Q^2\,$

STAR forward upgrade with expanded observables in p+Au More opportunities with diffraction measurements

RHIC data deeply connected to EIC: close energy, similar phase space, complementary probes to test universality

Back up

ALICE FoCal and LHCb pushing the small-*x* program at LHC

- Si-W ECAL with high effective pointing resolution: resolves direct photons from decay photos of neutral pions and eta mesons
- Cu-SciFi spaghetti HCAL: isolation and jets
- Logarithmic dep. of QCD evolution on x and Q, requires several measurements over largest possible kinematic coverage within and/or across experiments
- FoCal + LHCb at uniquely low x, where saturation scale may be large enough at small x
 - Measure isolated γ , DY, open charm, W/Z, jets and correlations as well as vector mesons in UPC
- FoCal also enables correlation measurements over extreme phase space using central ALICE and muon arm

Inclusive charged hadron at BRAHMAS

- Yields suppression R_{dAu} < 1 at p_T < 2 GeV; first hint of gluon saturation at small x?
- R_{cp} is more pronounced in central dAu collisions
- R_{cp} decreases with increasing rapidities: scan x by varying rapidities

Inclusive charged hadron at PHENIX

$Di-\pi^0$ measurement at STAR

Simulated *x*

Simulated Q^2

How about d+Au?

- Away-side correlation: suppression dependence on rapidity and centrality is studied by PHENIX
- Open questions: *DPS affects the correlation in d+Au? Background correlation not fully understood?

 $\text{Di-}\pi^0$ measurement favors for cleaner p+A collisions

2022 Town Hall Meeting

DPS in d+Au?

- DPS is predicted to be enhanced and not negligible at high rapidities; different in p+p, p+A and d+A
- Open questions: Two π^0 generated from the same or different hard scattering? DPS affects the correlation?

$Di-\pi^0$ measurement in d+Au at STAR

- π^0 PID: much higher background in d+Au than p+p/Au
- Combinatoric contributions are different in d+Au and p+p/Au: much higher in d+Au than p+p/Au
- Challenging to perform the forward π^0 π^0 correlation measurement in d+Au: Favors for cleaner p+Au collisions

$Di-\pi^0$ measurement favors for cleaner p+A than d+A collisions

STAR Xiaoxuan Chu

2022 Town Hall Meeting

E.A. dependence in d+Au

- In the overlapping p_T range of two collaborations, no suppression or E.A. dependence in d+Au relative to p+p
- Suppression exits at very low p_T at PHENIX, where STAR FMS cannot reach