Flow and transport properties: Assessment and outlook

Jean-François Paquet September 23, 2022

From impact geometry to momentum anisotropy

- Spatial anisotropy from partial overlap of nuclei & fluctuation
- Interactions transfer spatial anisotropy into momentum one
- Rapid development of momentum anisotropies consistent with strongly-coupled system

From impact geometry to momentum anisotropy

Luzum and Romatschke (2009) PRC

Based on figures by Derek Teaney, CMS Coll., MADAI, H. Elfner and J. Bernhard

"Elliptic flow" ALICE Coll. 0.1 PRL 2011 (1) \wedge $v_2\{2\}(|\Delta\eta|)$ Pb-Pb $\sqrt{s_{NN}} = 2.76 \text{ TeV}$ 10 20 30 50 60 80 0 40 70 centrality percentile

Effect of shear viscosity on v_2

(Shear viscosity inversely related to strength of interaction)

J-F PAQUET (VANDERBILT UNIVERSITY)

Shear and bulk viscosity of strongly-coupled quark-gluon plasma

Modified from the Hot QCD White Paper 2015

- Constrain temperature dependence of shear viscosity?
 - Minimum value?
 - Where is the minimum?
 - Increase at low and high temp.?

- Study bulk viscosity and constrain its temperature dependence?
 - Peak?

Shear viscosity of strongly-coupled quark-gluon plasma

OUTLOOK ON CONSTRAINING THE VISCOSITIES: BEYOND THE CURRENT "STANDARD MODEL" OF COLLISIONS

Multistage simulations of heavy ion collisions

Based on figures by Derek Teaney, CMS Coll., MADAI, H. Elfner and J. Bernhard

- Energy-momentum tensor of plasma: $T^{\mu\nu} = \epsilon u^{\mu}u^{\nu} (P(\epsilon) + \Pi)(g^{\mu\nu} u^{\mu}u^{\nu}) + \pi^{\mu\nu}$
- Conservation of energy and momentum: $\partial_{\nu}T^{\mu\nu} = 0$
- Mueller-Israel-Stewart-type relativistic viscous hydrodynamics

 $\tau_{\pi}\Delta^{\mu\nu}_{\alpha\beta}\dot{\pi}^{\alpha\beta} + \pi^{\mu\nu} = 2 \eta(T)(\partial^{\mu}u^{\nu} + \cdots) + (2^{nd} \text{ order}); \quad \tau_{\Pi}\dot{\Pi} + \Pi = -\zeta(T) \partial_{\mu}u^{\mu} + (2^{nd} \text{ order});$

Beyond the current "standard model" of collisions

Theoretical uncertainties limit accuracy of constraints on viscosity

Based on figures by Derek Teaney, CMS Coll., MADAI, H. Elfner and J. Bernhard

Beyond the current "standard model" of collisions

- Theoretical uncertainties limit accuracy of constraints on viscosity
 - Need smooth transition between stages of collision

Based on figures by Derek Teaney, CMS Coll., MADAI, H. Elfner and J. Bernhard

Smooth transition between models and their viscosities

OUTLOOK ON CONSTRAINING THE VISCOSITIES: EXPERIMENTAL AND THEORETICAL COLLABORATIONS

Leverage observables that target specific stages

Constraining energy deposition: See J. Jia's talk on Sat.

0 —	$\left\langle \frac{E_i}{S} \varepsilon_n^2 \right\rangle - \left\langle \frac{E_i}{S} \right\rangle \left\langle \varepsilon_n^2 \right\rangle$	$f'(\langle E_i/S \rangle)$
$p_n =$	$\sigma_{E_i/S}\sigma_{\varepsilon_n^2}$	$\overline{ f'(\langle E_i/S\rangle) }$

Giacalone, Gardim, Noronha-Hostler, Ollitrault (2020) PRC

Considering theoretical uncertainties of observables

Hydrodynamics

Viscosity is probed through the hydrodynamic phase

Energy deposition Early dynamics

 $\partial_{\nu}T^{\mu\nu} = 0; \quad T^{\mu\nu} = \epsilon u^{\mu}u^{\nu} - (P(\epsilon) + \Pi)(g^{\mu\nu} - u^{\mu}u^{\nu}) + \pi^{\mu\nu}$

JETSCAPE Collaboration, (2021) PRC, PRL

Hadronic transport

14

Considering theoretical uncertainties of observables

Hydrodynamics

Hadronic transport

Viscosity is probed through the hydrodynamic phase

Energy deposition Early dynamics

Reduced modelling uncertainties for energy/momentumbased observables (e.g. transverse energy)

 $\partial_{\nu}T^{\mu\nu} = 0;$ $T^{\mu\nu} = \epsilon u^{\mu}u^{\nu} - (P(\epsilon) + \Pi)(g^{\mu\nu} - u^{\mu}u^{\nu}) + \pi^{\mu\nu}$

[Analogy: inclusive and exclusive observables in p-p collisions]

- Also, consider the objective of the measurement
 - E.g. smaller systems (p+A) to push our understanding
 - Larger central collisions to constrain viscosity

OUTLOOK ON CONSTRAINING THE VISCOSITIES: MULTIMESSENGER

Beyond soft hadrons: electromagnetic probes

 Photons (γ) and dileptons (l⁺l⁻) are "holistic" probes: produced at all stages, reflects the local properties of the plasma

Considerable progress over past decade:

- Emission rates studied at NLO and on lattice
- Pre-equilibrium photons & dileptons
- $\gamma \& l^+l^-$ from hadronic transport

Considerable opportunities with more&better data

Beyond soft hadrons: electromagnetic probes from early time

 Photons (γ) and dileptons (l⁺l⁻) are "holistic" probes: produced at all stages, reflects the local properties of the plasma

Beyond soft hadrons: electromagnetic probes from early time

 Photons (γ) and dileptons (l⁺l⁻) are "holistic" probes: produced at all stages, reflects the local properties of the plasma

Beyond soft hadrons: electromagnetic probes

MORE TRANSPORT COEFFICIENTS

More transport coefficients

- Other conserved charges:
 e.g. finite baryon density
 - $\eta/s(T, \mu_B), \zeta/s(T, \mu_B)$
 - Charge diffusion
- Second order transport coefficients? (need to account for hydrodynamic fluctuations?)

$$\tau_{\pi} \Delta^{\mu\nu}_{\alpha\beta} \dot{\pi}^{\alpha\beta} + \pi^{\mu\nu} = 2 \, \eta (\partial^{\mu} u^{\nu} + \cdots) + (2^{\text{nd order}})$$

Temperature

Baryon chemical potential

SUMMARY

Summary

Considerable progress over past decade, with strong community involvement

- Specific shear viscosity η/s at T=150-200 MeV remains constrained around 0.1-0.15
- Temperature dependence of specific bulk viscosity ζ/s still under investigation

Outlook

- Precision constrains on viscosities with community-wide efforts
 - Consider capabilities of theory to describe measurements
 - Measurements to isolate and study specific collision stages
 - Leverage photons and dileptons, and additional probes

- Necessitates continued strong funding of:
 - Theoretical research groups, including multidisciplinary ones (e.g. statistics)
 - Topical collaborations and other theory/experimental collaboration

Support critical to ensure that the knowledge generated by analyses of RHIC data are fully incorporated into our understanding of emergent QCD.

QUESTIONS?

MANY THANKS TO STEFFEN A. BASS, CHARLES GALE, ANDREW GORDEEV, WEIYAO KE, BERNDT MUELLER, GOVERT NIJS, BJOERN SCHENKE, DEREK SOEDER, CHUN SHEN, PRITHWISH TRIBEDY, JULIA VELKOVSKA AND MANY MORE FOR THEIR INPUT

J-F PAQUET (VANDERBILT UNIVERSITY)

BACKUP

Considering theoretical uncertainties of observables

Derek Everett, J-F Paquet, Matt Luzum, unpublished

Photons: probing the early stage of the collisions

Hadrons

Energy deposition

Giacalone, arXiv:2208.06839

Beyond soft hadrons: electromagnetic probes

Photons (γ) and dileptons (l⁺l⁻) are "holistic" probes: produced at all stages, reflects the local properties of the plasma

Garcia-Montero et al (2020) PRC

Future of viscosity measurements: multimessenger

 Photons (γ) and dileptons (l⁺l⁻) are "holistic" probes: produced at all stages, reflects the local properties of the plasma

Considerable progress over past decade:

- Emission rates studied at NLO and on lattice
- Pre-equilibrium photons & dileptons
- $\gamma \& l^+l^-$ from hadronic transport
- Can help probe viscosities but also validate initial stage

Limited data is a challenge (few measurements, large uncertainties)

ORIGINS OF MOMENTUM ANISOTROPY

The initial momentum distribution is already anisotropic

The Color Glass Condensate predicts anisotropic particle production because of

- 1. Local anisotropies in the color fields
- 2. Local density gradients
- 3. Quantum interference effects

Gelis, Lappi Venugopalan PRD 78 054020 (2008), PRD 79 094017 (2009) Dumitru, Gelis, McLerran, Venugopalan NPA810, 91 (2008) Dumitru, Jalilian-Marian PRD 81 094015 (2010) Dusling, Venugopalan PRD 87 (2013) A. Dumitru, A.V. Giannini, Nucl.Phys.A933 (2014) 212 V. Skokov. Phys.Rev.D91 (2015) 054014 T. Lappi, B. Schenke, S. Schlichting, R. Venugopalan, JHEP 1601 (2016) 061 Kovner, Skokov, Phys.Rev. D98 (2018) no.1, 014004

BUT INITIAL STATE EFFECTS ARE THERE

Our calculation using the IP-Glasma initial state and hydrodynamics includes both effects Initial state anisotropies are significant and can affect the final result at low multiplicity

$$Q_{\varepsilon} = \frac{\operatorname{Re}\langle \mathscr{E}V_{2}^{*} \rangle}{\sqrt{\langle |\mathscr{E}|^{2} \rangle \langle |V_{2}|^{2} \rangle}}$$

CORRELATION OF THE FINAL ELLIPTIC FLOW V_2 with

THE GEOMETRIC ELLIPTICITY

$$\mathcal{E}_2 = \varepsilon_2 e^{i2\psi_2} = \frac{\langle x^2 - y^2 \rangle + i \langle 2xy \rangle}{\langle x^2 + y^2 \rangle}$$

AND

THE INITIAL MOMENTUM ANISOTROPY

$$\mathscr{E}_{p} = \varepsilon_{p} e^{i2\psi_{2}^{p}} = \frac{\langle T^{xx} - T^{yy} \rangle + i\langle 2T^{xy} \rangle}{\langle T^{xx} + T^{yy} \rangle}$$

BJÖRN SCHENKE

Dilepton sensitivity to bulk viscosity

Dilepton sensitivity to shear viscosity

Vujanovic et al (PRC) 2014

Hydrodynamic-based simulations of heavy ion collisions

Successful in describing broad sets of measurements

Nijs, van der Schee, Gürsoy, Snellings (2021) PRC, PRL

JETSCAPE Collaboration, (2021) PRC, PRL

- Adding data = stronger constraints on viscosity
 [Precision]
- Relaxing model assumptions = weaker but more accurate constraints
 [Accuracy]

Ref.: https://wp.stolaf.edu/it/gis-precision-accuracy/

Strongly-coupled quark-gluon plasma

Based on figures by Derek Teaney, CMS Coll., MADAI, H. Elfner and J. Bernhard

Strongly-coupled quark-gluon plasma

- Liquid phase characterized by macroscopic properties:
 - Equation of state
 - Transport coefficients (viscosities, ...)

Interaction and expansion

Beyond the current "standard model" of collisions

- Theoretical uncertainties limit accuracy of constraints on viscosity
 - Need smooth transition between stages of collision
 - Address challenges with viscous hydrodynamics (causality, large gradients, ...)

Targeted observables

