

ALICE + ALICE 3 & other experiments beyond Run 4 Anthony Timmins

Many thanks to ALICE and LHC collaborators for input

LHC program at CERN

LHC experiments and upgrades

intermediate upgrade

major upgrade

ALICE 2 - Upgrades for Run 3 Run 3 hardware and software achievements

- New Gem based TPC detector for continuous readout \checkmark Two orders of magnitude increase in collected Pb-Pb data (10/nb)
- New Inner Tracking System (ITS2) ✓ Factor 3 improvements in pointing resolution
- Muon Forward Tracker at -3.6 < η < -2.5 and overhaul in online systems/processing

US ALICE BTU project

ALICE 2.1 - Upgrades for Run 4

Focal Calorimeter (FoCal)

✓ Electromagnetic and hadronic calorimeters covering $3.4 < \eta < 5.8$

✓ Probes parton densities down to x ~10⁻⁶
 ✓ Complementary to EIC and LHCb

US ALICE Focal project

New HCAL prototype

ALICE 2.1 - Upgrades for Run 4

Inner Tracking System (ITS3)

✓ Three new inner new layers ✓ Further improved (x2) pointing resolution ✓ Pioneering wafer thin sensors - 0.03% of radiation length

Synergies with EIC R&D

Thermal radiation and flow in Run 3 & 4

- Inclusive γ and di-electron invariant mass probe QGP thermal radiation
- High precision identified particle v_n vs p_T constrain η/s and ζ/s simultaneously

Charm hadronization and QGP transport in Run 3 & 4

- Charmed baryon/meson ratios probe collective flow and hadronization mechanisms
- Pinning down hadronization important for QGP charm diffusion D_s constraints

Heavy-flavor jets and di-jets in Run 3 & 4

- Heavy-flavor tagged jets probe QCD dead-cone effect over large momentum in QGP
- Large angle (Moliere) scatterings off QGP scattering centers explorable

Nuclear parton distribution functions in Run 4

, Isolated $\gamma R_{\rm pPb}$ performance by FoCal provides large constraints for gluon nPDFs.

Nuclear parton distribution functions in Run 4

- , Isolated $\gamma R_{\rm pPb}$ performance by FoCal provides large constraints for gluon nPDFs.
- Vector meson photo-production from UPC explores proton saturation to x~10⁻⁶

- O-O collisions will allow for searches for α clustering in ¹⁶O

• Comprehensive tests of hydro in p-O and O-O possible with suite of low $p_{\rm T}$ ALICE measurements

Particle production in small systems in Run 3 & 4

- Enhanced pp statistics enable Ω/π with x6 larger $dN_{ch}/d\eta$ than Runs 1 & 2 ✓ Resembles Pb-Pb in overlap? Increase due to non-QGP effects i.e. color ropes?

• **Precision probes of proton-hyperon interactions** \rightarrow implications for LQCD, neutron star EOS

ALICE 3 - next generation heavy-ion detector in Run 5

- Compact all-silicon tracker with highresolution vertex detector and low material budget
- Superconducting magnet system up to B=2T
- Particle Identification over large acceptance: muons, electrons, hadrons, photons
- Fast read-out and online processing

ALICE 3 Letter of Intent 13

ALICE 3 - expected luminosities and performance

• Will collect all ion luminosity provided by LHC \rightarrow 100s billions of Pb-Pb events!

- Factor 3 improvement in pointing resolution compared to ALICE ITS3 in Run 4
- Momentum resolution 1-2% over broad 0.2 < p_T < 100 GeV/c and $-4 < \eta < 4$ range

ALICE 3 planning

- 2023-25: Selection of technologies, small-scale proof of concept prototypes
- 2026-27: Large-scale engineered prototypes ✓Technical Design Reports
- 2028-31: Construction and testing
- 2032: Contingency
- 2033-34: Preparation of cavern and installation of ALICE 3

Retractable vertex detector ✓ 5mm from beam

Physics topics to be explored in ALICE 3

- Thermal radiation, chiral symmetry restoration
- Heavy flavor transport, thermalisation, production
- Net-quantum-number fluctuations
- Hadron structure and interactions
- Ultra-soft photon production
- Beyond Standard Model searches
- Not exclusive!

Direct QGP temperatures from intermediate di-electron invariant mass spectrum

• Increasing electron $p_{\rm T}$ probes earlier times \rightarrow possible window to pre-equilibrium stage

Searches for Chiral Symmetry Restoration in ALICE 3

Heavy-flavor transport in ALICE 3

- Two particle D⁰ correlations probe microscopic aspects of charm diffusion more directly
- Beauty hadron vn will provide ultimate constraints on bottom quark diffusion coefficient Ds

Quantum number fluctuations in ALICE 3

- Measurements of net-charm fluctuations open new window to test Lattice QCD
- ALICE 3 necessary for higher order net-proton fluctuations to be explored at LHC

IU

IU

Heavy-flavor production and interactions in ALICE 3

- Multi-charm baryons accessible \rightarrow novel tests of hadronization mechanisms
- Two particle D⁰ femto correlations can be used to **explore formation of D⁰ molecules**

Ultra soft photons and BSM searches in ALICE 3

- Forward Conversion Tracker used to measure ultra-soft photons very forward Low's theorem can be used to test infrared limits of quantum field theories
- Light by light scattering via UPC events provide competitive limits on axion searches

Many more physics topics opportunities with ALICE 3

• Large η and $p_{\rm T}$ acceptance + excellent PID enable for example:

✓ Heavy-flavor jet correlations or photon-heavy-flavor jet correlations with unprecedented purity at low transverse momentum scales

✓ Full 3D imagining of nuclear collisions via anisotropic flow measurements

 \checkmark Two-particle correlations with large $\Delta \eta$ to probe early time dynamics and diffusion

ATLAS, CMS, LHCb in Runs 5 and beyond

ALTAS

- ✓ Improved ZDC
- ✓ Extend tracker acceptance to $|\eta| < 4$
- ✓ Time-of-flight PID 2.5 < $|\eta|$ < 4
- ✓ Endcap calorimeters with higher granularity

CMS

✓ Charged particle tracking up to $|\eta| < 4$, muons up to $|\eta| < 3$ ✓ Time-of-flight PID up to $|\eta| < 3$ ✓ High-precision vertexing ✓ Wide coverage calorimetry

LHCb

- ✓ 50 kHz for Pb-Pb and no centrality limitation
- ✓ Excellent vertexing capabilities
- ✓ Fixed target

Summary

Rich physics plan ahead for ALICE in Runs 3 & 4 (2023-2032):

✓ Improvements in detector performance thanks to vital U.S. contributions ✓ Unique opportunity for Hot and Cold measurements QCD after RHIC and before EIC \checkmark Continued support for all US LHC upgrades e.g. FoCal essential.

• ALICE $3 \rightarrow$ designed by heavy-ion physicists for heavy-ion physics: Opens new era of discovery potential and precision in QCD ✓Technology selection, prototypes, beginning of construction in 2023 LRP period

• Runs 5 and beyond \rightarrow Major expansion of capabilities for all LHC detectors ✓US participation essential for realization of physics opportunities in Hot QCD Opportunities for growth of US contributions and leadership

Back-up - Quarkonia in Run 3 & 4

• MFT improves allows separation of prompt and B decays for J/ψ

Back-up - Fixed target in Run 4?

proton beam and $z_{target} = -4.7 \text{ m}$

Back-up - ALICE 3 luminosities

Quantity	pp	0–0	Ar–Ar	Ca–Ca	Kr–Kr	In–In	Xe–Xe	Pb–Pb
$\sqrt{s_{\rm NN}}$ (TeV)	14.00	7.00	6.30	7.00	6.46	5.97	5.86	5.52
$L_{\rm AA}~({\rm cm}^{-2}{\rm s}^{-1})$	$3.0\cdot10^{32}$	$1.5\cdot 10^{30}$	$3.2\cdot10^{29}$	$2.8\cdot 10^{29}$	$8.5\cdot10^{28}$	$5.0\cdot10^{28}$	$3.3\cdot 10^{28}$	$1.2\cdot 10^{28}$
$\langle L_{\rm AA} \rangle ~({\rm cm}^{-2}{\rm s}^{-1})$	$3.0\cdot10^{32}$	$9.5\cdot 10^{29}$	$2.0\cdot10^{29}$	$1.9\cdot 10^{29}$	$5.0\cdot10^{28}$	$2.3\cdot 10^{28}$	$1.6 \cdot 10^{28}$	$3.3\cdot 10^{27}$
$\mathscr{L}_{AA}^{month} \left(nb^{-1} \right)$	$5.1 \cdot 10^5$	$1.6 \cdot 10^{3}$	$3.4 \cdot 10^{2}$	$3.1\cdot 10^2$	$8.4\cdot 10^1$	$3.9\cdot10^1$	$2.6 \cdot 10^1$	5.6
$\mathscr{L}_{\mathrm{NN}}^{\mathrm{month}}\left(\mathrm{pb}^{-1} ight)$	505	409	550	500	510	512	434	242
$R_{\rm max}(\rm kHz)$	24 000	2169	821	734	344	260	187	93
μ	1.2	0.21	0.08	0.07	0.03	0.03	0.02	0.01
$\mathrm{d}N_{\mathrm{ch}}/\mathrm{d}\eta$ (MB)	7	70	151	152	275	400	434	682
	at $R = 0.5 \text{cm}$							
$R_{\rm hit}~({\rm MHz/cm^2})$	94	85	69	62	53	58	46	35
NIEL (1 MeV n_{eq}/cm^2)	$1.8\cdot 10^{14}$	$1.0\cdot10^{14}$	$8.6\cdot10^{13}$	$7.9\cdot 10^{13}$	$6.0\cdot10^{13}$	$3.3\cdot10^{13}$	$4.1\cdot10^{13}$	$1.9\cdot10^{13}$
TID (Rad)	$5.8\cdot 10^6$	$3.2 \cdot 10^{6}$	$2.8 \cdot 10^{6}$	$2.5\cdot 10^6$	$1.9\cdot 10^6$	$1.1 \cdot 10^{6}$	$1.3\cdot 10^6$	$6.1 \cdot 10^5$
	at $R = 100 \text{cm}$							
$R_{\rm hit}~(\rm kHz/cm^2)$	2.4	2.1	1.7	1.6	1.3	1.0	1.1	0.9
NIEL (1 MeV n_{eq}/cm^2)	$4.9 \cdot 10^9$	$2.5\cdot 10^9$	$2.1 \cdot 10^{9}$	$2.0\cdot 10^9$	$1.5 \cdot 10^9$	$8.3 \cdot 10^8$	$1.0\cdot 10^9$	$4.7\cdot 10^8$
TID (Rad)	$1.4 \cdot 10^2$	$8.0 \cdot 10^1$	$6.9 \cdot 10^1$	$6.3\cdot10^1$	$4.8 \cdot 10^1$	$2.7\cdot 10^1$	$3.3 \cdot 10^1$	$1.5 \cdot 10^1$

Y	1	9
0		
	3	

Back-up - ALICE 3 PID

Back-up - ALICE 3 PID

Back-up - Multi-charm

Back-up - ALICE 3 detector requirements

Component	Observables	Barrel ($ \eta < 1.75$)	Forward (1.75 < $ \eta $ < 4)	Detectors
Vertexing	(Multi-)charm baryons, dielectrons	Best possible DCA resolution, $\sigma_{\rm DCA} \approx 10 \mu{\rm m}$ at $p_{\rm T} = 200 {\rm MeV}/c, \eta = 0$	Best possible DCA resolution, $\sigma_{\rm DCA} \approx 30 \mu{\rm m}$ at $p_{\rm T} = 200 {\rm MeV}/c, \eta = 3$	retractable Si-pixel tracker: $\sigma_{pos} \approx 2.5 \mu m$, $R_{in} \approx 5 m m$, $X/X_0 \approx 0.1 \%$ for first layer
Tracking	(Multi-)charm baryons, dielectrons, photons	$\sigma_{p_{\mathrm{T}}}/p_{\mathrm{T}} \approx$	Silicon pixel tracker: $\sigma_{pos} \approx 10 \mu m$, $R_{out} \approx 80 cm$, $L \approx \pm 4 m$ $X/X_0 \approx 1 \%$ per layer	
Hadron ID	(Multi-)charm baryons	$\pi/K/p$ separation	Time of flight: $\sigma_{tof} \approx 20 \text{ ps}$ RICH: $n \approx 1.006 - 1.03$, $\sigma_{\theta} \approx 1.5 \text{ mrad}$	
Electron ID	Dielectrons, quarkonia, $\chi_{c1}(3872)$	pion rejection by 1000x up to 2–3 GeV/ <i>c</i>		Time of flight: $\sigma_{tof} \approx 20 \text{ ps}$ RICH: $n \approx 1.006 - 1.03$, $\sigma_{\theta} \approx 1.5 \text{ mrad}$
Muon ID	Quarkonia, $\chi_{c1}(3872)$	reconstruction of J/ψ at rest, i.e. muons from $p_T \sim 1.5 \text{ GeV}/c$ at $\eta = 0$	steel absorber: $L \approx 70 \mathrm{cm}$ muon detectors	
ECal	Photons, jets	large ac	Pb-Sci sampling calorimeter	
ECal	χ_c	high-resolution segment		PbWO ₄ calorimeter
Soft photon detection	Ultra-soft photons		measurement of photons in $p_{\rm T}$ range 1–50 MeV/ <i>c</i>	Forward conversion tracker based on silicon pixel tracker

