

Forward heavy flavor at the LHC

Matt Durham durham@lanl.gov

Heavy quarks in small systems

- Heavy quark pair production is **sensitive to structure of beam particles**
 - GOAL: quantitative understanding of parton distribution functions
- Nuclear modification sensitive to range of initial/final state effects
 - GOAL: understanding various contributions from
 - Energy loss in nucleus
 - Breakup outside the nucleus
 - Modification of hadronization mechanisms in medium
 - Hydrodynamic effects/short lived plasma phase
 - Baseline for interpreting AA data
- Well-known spectrum of conventional heavy quark states allows unambiguous identification of exotic hadrons – pentaquark, tetraquarks
 - GOAL: understand complete array of hadron structures allowed by QCD

Forward detectors

Access to extremes of *x* ranges

• Very low and very high x ranges can be probed by adjusting beam and target configurations

Forward detectors

• Very low and very high x ranges can be probed by adjusting beam and target configurations

Event display of the rare decay $B_s^0 \rightarrow \mu^+ \mu^-$

- Forward boost gives large distance between primary vertex and decay vertex – easier to reject prompt backgrounds
- High total momentum p aids access to relative low transverse momentum p_T

LHCb upgrade 1(a) - Run 3 (now)

- LHCb has advanced the state of the art with full streaming readout in pp at 40MHz
- All new tracking system reconstructs up to 30% most central PbPb collisions

LHCb upgrade 1(a) - Run 3 (commissioning now)

Example SMOG2 pAr at 115 GeV for one year

Int. Lumi.		80 pb-1
Sys.error of	^z J/Ψ xsection	~3%
J/Ψ	yield	28 M
D^0	yield	280 M
Λ_c	yield	2.8 M
Ψ'	yield	280 k
$\Upsilon(1S)$	yield	24 k
$DY \mu^+\mu^-$	yield	24 k

- LHCb has advanced the state of the art with full streaming readout in pp at 40MHz
- All new tracking system reconstructs up to 30% most central PbPb collisions
- Upgraded *SMOG2* storage cell in front of Vertex Locator greatly increases fixed target rates
 - Simultaneous running with *pp* collisions gives high statistics p+He, p+Ar, p+Xe, etc
 - Can record O+O, Ar+Ar, etc data at two energies simultaneously

Proton structure – intrinsic charm

PRL 128 082001 (2022)

• *Z* + jet production at forward rapidity probes high x region – sensitive to intrinsic charm

Proton structure – intrinsic charm

Z + jet production at forward rapidity probes
high x region – sensitive to intrinsic charm

• LHCb data favors calculations allowing IC at most forward rapidity

Recent global PDF analysis finds 3σ evidence for IC in proton: NNPDF collab, *Nature* 608 (2022)

Data currently statistics limited, Run 3+ fertile soil for future exploration

Fixed target collisions – intrinsic charm

Reconstructed beam+gas vertices inside LHCb VELO

- Unique LHCb SMOG system allows highest energy fixed target program
- Samples from anti-shadowing region in nPDF, relatively high x

Fixed target collisions – intrinsic charm

- Unique LHCb SMOG system allows highest energy fixed target program
- Samples from anti-shadowing region in nPDF, relatively high x

- HELAC-Onia with nCTEQ15 underpredicts J/ψ yield in *p*Ne collisions at 68.5 GeV
- Data consistent with (and without) IC

Constraining nPDFs – D mesons

Constraining nPDFs – D mesons

Incredible progress made on nPDF constraints at low x

Hadron collisions complementary to DIS for exploring nucleon structure

Challenging nPDFs – D mesons

LHCb 2205.03936

- Forward rapidity well described by updated nPDF calculations
- **Discrepancy** between data and nPDF occurs at **backwards** rapidity
 - Additional final-state effects coming into play? Energy loss? Hadronization modified?

Measuring how *b* quarks arrange into various hadrons gives information on the non-perturbative hadronization process

Measuring how *b* quarks arrange into various hadrons gives information on the non-perturbative hadronization process

• B_s fraction depends on \sqrt{s} , multiplicity

Measuring how b quarks arrange into various hadrons gives information on the non-perturbative hadronization process

 B_s fraction depends on \sqrt{s} , multiplicity Baryon fraction has strong p_{τ} dependence Points to other hadronization mechanisms beyond fragmentation

2.0<ŋ<4

Charged

Quarkonia in small systems

- Control of CNM effects crucial for understanding color screening in QGP
- Competing models with very different physical motivations both describe data
- Solution require further tests of models: fixed target data vs collider; flow measurements

New hadrons discovered at LHC

Exotic hadrons discovered at LHC

Sat 8:30 Conventional heavy quark states well known: exotics can be clearly identified 11000 Ο^{χ_b(3P)} 67 new hadrons at the LHC $\chi_{b2}(3P)$ Compact 10500 $\chi_{b1}(3P)$ tetraquark/pentaquark 59 new hadrons at LHCb 0^{*B*_c(25)⁺} $B_{c}^{*}(2S)^{+}$ $T_{\psi\psi}(6900)$ 7000 B_c(2S)⁺ **Diquark-diantiquark** $T_{\psi\psi}(6600)$ Ω_b(6350) $\Lambda_b(6152)^0 \Omega_b(6340)^-$ PRD 71, 014028 (2005) E_b(6227)⁰ Ξ_b(6327 $\Xi_{b}(6227)^{-}$ ∧_b(6146)⁰ PLB 662 424 (2008) E₆(6333)⁰ $\Xi_b(5945)^0 \Lambda_b(5920)^0$ $B_{l}(5970)^{+,0}$ En(5955)-E_b(6100) 6000 B₁(5840)^{+,0} Σ_b(6097) $\Lambda_{b}(6070)^{0}$ B * (6114)0 Λ_b(5912)⁰ E'_(5935) $B_s^*(6063)^0$ Σ_h(6097)⁻ Mass [MeV/c²] Hadrocharmonium/ 5000 X(4700) adjoint charmonium X(4685) $P_{w}^{N}(4450)^{+}$ X(4500) P_w^N(4457) X(4630) PLB 666 344 (2008) P^{(4338)0 $P_{w}^{N}(4440)^{+}$ X(4274) PLB 671 82 (2009) $T_{\psi s1}(4220)^+$ X(4140) P_w^N(4380) P_(4312) bb $T_{ws1}^{\theta}(4000)^{+}$ X(3960) 4000 bā $\psi_3(3842)$ $T_{cc}(3875)^{+}$ cc̄(qq̄) Ξ_cc Hadronic Molecules cccc сą $\Omega_{c}(3119)^{0}$ D^{θ} D,*(3000)+,0 cāaā $\Omega_{c}(3090)^{0}$ $T^{a}_{c30}(2900)^{++}$ Ec(2939)0 D*1(2860)+ 3000 D₁(3000)⁰ A_c(2860) $\Omega_{c}(3066)^{0}$ $T_{cs0}(2900)^0$ $T_{cs1}(2900)^0$ (u) PLB 590 209 (2004) bqq $T^{a}_{c\bar{s}0}(2900)^{0}$ D,*(2760)+ $\Omega_{c}(3050)^{0}$ Ec(2923)0 cqq PRD 77 014029 (2008) D3 (2760)0 $\Omega_{c}(3000)^{0}$ $D_{1}(2740)^{0}$ D_{s0}(2590)⁺ ccqqq PRD 100 0115029(R) (2019) D₁(2580)⁰ 2021 2022 2012 2014 2015 2020 2011 2013 2016 2017 2018 2019 Date of arXiv submission patrick.koppenburg@cern.ch 2022-09-14 Mixtures The quark model is rapidly expanding: $X = a \left| c\bar{c} \right\rangle + b \left| c\bar{c}q\bar{q} \right\rangle$ PLB 578 365 (2004) study of exotics states largely driven by experiment PRD 96 074014 (2017)

See also: Justin Stevens

- Most exotics have only been studied as products on B decays
- Medium effects on PROMPT exotics can potentially give information on their structure

-Prompt $X(3872)/\psi(2S)$ ratio decreases with multiplicity in pp

- Most exotics have only been studied as products on B decays
- Medium effects on PROMPT exotics can potentially give information on their structure

-Prompt $X(3872)/\psi(2S)$ ratio decreases with multiplicity in pp -Can be described by breakup of **compact tetraquark**: EPJC 81, 669 (2021)

- Most exotics have only been studied as products on B decays
- Medium effects on PROMPT exotics can potentially give information on their structure

-Prompt $X(3872)/\psi(2S)$ ratio decreases with multiplicity in pp -Can be described by breakup of **compact tetraquark**: EPJC 81, 669 (2021) -OR pion dissociation of **hadronic molecule**: PRD 103 071901 (2021)

- Most exotics have only been studied as products on B decays
- Medium effects on PROMPT exotics can potentially give information on their structure

-Prompt $X(3872)/\psi(2S)$ ratio decreases with multiplicity in pp

-OR pion dissociation of hadronic molecule: PRD 103 071901 (2021)

-Can be described by breakup of compact tetraquark: EPJC 81, 669 (2021)

Significant effort from theory and experiment needed for progress

Forward upgrades at the LHC

ALICE MFT, Run 3

- Precision vertexing in front of absorber
- Separate HF muons from charm vs bottom, prompt vs non-prompt J/ ψ

ALICE FoCal, Run 4

- Combination EM/hadron calorimeter at forward range $3.4 < \eta < 5.8$
- Access direct photons to probe gluon distribution without final state effects

LHCC-2020-009

LHCC-2013-014

See also: Anthony Timmins Fri 17:20

LHCb upgrade 1(b) – Magnet Station

- Scintillating bar tracker for very soft particles at LHCb, to be installed for Run 4, with US leadership
- Expands soft physics channels previously unreachable at the LHC.
- Allows access to very low x, Q^2 region where gluon saturation may exist in nuclei and isolated protons.

LHCb upgrade 2 - Run 5+

Further upgraded tracking to deal with high pp pileup and heavy ion collisions

- Full PbPb centrality range accessible
- B hadrons, exotic states, and more at low p_T in central collisions
- Solid target? Polarized target?

Summary

- Heavy quarks are extremely versatile for probing non-perturbative QCD:
- Production is sensitive to the partonic structure of protons and nuclei
 - New information on intrinsic charm currently statistics limited
 - Open questions remain on role of medium effects on PDF extractions
- Heavy hadron chemistry sensitive to final state effects in hadron collisions
 - Can be disentangled from PDF using multiple probes (HQ vs gamma vs PID hadrons)
- An explosion of new info on allowed configurations of quarks inside hadrons
 - Fundamental questions remain about the nature of many new particles
 - Guidance from experiment and theory needed to make progress

Los Alamos is supported by the DOE/Office of Science/Nuclear Physics,

and DOE Early Career Awards program

Challenging nPDFs – light flavor

- Prompt charged particle and π^0 modification agrees with nPDF at forward rapidity
- Discrepancy between data and nPDF occurs at backwards rapidity
- High x effect? Final state effects? *Does this data challenge assumptions of PDF fits?*
- To separate effects: non-interacting probes like Z, direct photons, gamma-h correlations

SMOG2

https://cds.cern.ch/record/2673690/files/LHCB-TDR-020.pdf

xample	e SMOG2 pAr at 115 Ge	eV for one yea
Int. Lun	ni.	80 pb-1
Sys.erro	or of J/Ψ xsection	~3%
J/Ψ	yield	28 M
D^0	yield	280 M
Λ_c	yield	2.8 M
Ψ'	yield	280 k
$\Upsilon(1S)$	yield	24 k
$DY \mu^+\mu$	ı [–] yield	24 k

- Upgraded SMOG 2 system at LHCb allows greatly increased rates of beam+gas collisions at LHCb
- Variable target gases allows hadronic environment to be adjusted (H, He, ..., Xe)
- Access to exotic states near RHIC energies
- Can potentially run concurrent with proton+proton collisions large data sets

Exotic X(3872)

- Comparison between X(3872) and ψ(2S) suggests *something different* may be happening to exotic vs conventional hadrons in medium
- Initial state effects (eg shadowing) should largely cancel in ratio
- Enhancing effects start to out compete breakup?

Prompt X(3872)/ ψ (2S) = 0.27 ± 0.08 ± 0.05 in forward pPb Prompt X(3872)/ ψ (2S) = 0.36 ± 0.15 ± 0.11 in backward pPb Falls between pp (~0.1) and PbPb (~1.0)

Exotic X(3872)

- Comparison between X(3872) and ψ(2S) suggests *something different* may be happening to exotic vs conventional hadrons in medium
- Initial state effects (eg shadowing) should largely cancel in ratio
- Enhancing effects start to out compete breakup?

Prompt X(3872)/ ψ (2S) = 0.27 ± 0.08 ± 0.05 in forward pPb Prompt X(3872)/ ψ (2S) = 0.36 ± 0.15 ± 0.11 in backward pPb Falls between pp (~0.1) and PbPb (~1.0)

 $X(3872)/\psi(2S)$ vs multiplicity

compact tetraquark model.

[,μ] / Br d[μ] 0.06 Br d[X] / Br d[μ] Br d[Λ] 0.02 0.00 20 80 40 60 dN/dy, $N_{\rm tracks}/2.2$ Constituent comover model: $\sigma^{\text{incl}}[\pi X] \approx \frac{1}{2} (\sigma[\pi D^0] + \sigma[\pi \bar{D}^0] + \sigma[\pi D^{*0}] + \sigma[\pi \bar{D}^{*0}])$ Data is consistent with hadronic molecule model.

PRD 103, 071901 (2021)

0.12

0.10

X(3872) in PbPb

SHMC model: Significant increase in X(3872) predicted for central AA collisions

Yield reaches up to ~1% of J/ψ yield

AMPT model: difference in molecule vs diquark-diquark coalescence gives dramatically different yields and centrality dependence:

 $N_{molecule} > N_{tetraquark}$

Transport calculation: molecules have larger reaction rate, formed later in fireball evolution

 $N_{tetraquark} > N_{molecule}$

