Vector Meson Domestic Zoo

- Some vector mesons can, compared to other mesons, be measured to very high precision.
- This stems from fact that *vector mesons* have *same* quantum numbers as *photon*.

• We will focus on **5** *vector mesons* from $\bar{q}q$ *Nonet* which widths are **narrow** enough to study *meson photoproduction* @ threshold & where data are available.

9/22/2022

Vector Meson – Nucleon SL

9/22/2022

Total Cross Sections for Vector Meson Photoproduction off Proton

• Traditionally, σ_t behavior of near-threshold binary *inelastic* reaction

 $m_a + M_b < m_c + M_d$

is described as series of *odd* powers in *q* (*even* powers in case of *elastic*).

as slopes (b_1) of σ_t @ threshold as function of q varies significantly from ω to ϕ to J/ψ .

Therefore, such big difference in *Scattering Length* is determined mainly by *hadronic* factor h_{V_D}

2022 Town Hall Meeting on Hot & Cold QCD, MIT, September 2022

• Most theoretical calculations using gluonic van der Waals interaction disagree with our phenomenological results. Specifically, they do not consider *VM* young effect

Vector Meson – Nucleon SL

- Such big difference in *SLs* of *Vp* systems is determined mainly by hadronic factor h_{Vp} , & reflects strong weakening of interaction in $bb - p \& \bar{c}c - p$ systems compared to that of *light* $\bar{q}q$ -*p* (q = u, d) configurations.
- Interaction in $\bar{s}s p$ has intermediate strength that is manifested in intermediate value of ϕSL .

• Such small value of ϕp SL compared to typical *hadron* size of **1 fm**, indicates that proton is more transparent for ϕ -meson compared to ω -meson, & is much less transparent than for J/ψ -meson.

$|\alpha_{\gamma p}| << |\alpha_{\psi' p}| < |\alpha_{J/\psi p}| << |\alpha_{\phi p}| << |\alpha_{\omega p}|$

• $p \rightarrow V$ coupling $\bar{q}q$ is proportional to α_s & *separation* of corresponding quarks. • This *separation* (in *zero approximation*) is proportional to $\frac{1}{m_v}$.

2022 Town Hall Meeting on Hot & Cold QCD, MIT, September 2022

- It is remarkable that proton is quite so *transparent* to J/ψ , $|\alpha_{\gamma p}| \ll |\alpha_{\psi p}| \leq |\alpha_{J/\psi p}| \ll |\alpha_{\phi p}| \ll |\alpha_{\omega p}|$ though general progression from ω to ϕ to J/ψ to probably $\chi \ll \psi$
- Due to *small size* of "*young*" V vs "*old*" V, measured & predicted *SL* is very small. V crated by photon @ threshold then most probably V is not formed completely & its radius is smaller than that for normal ("*old*") V.
 Therefore, one observe stronger suppression for Vp interaction.
- *Light V*s can be "*young*" as well. This depends on kinematics. Another point is that for slow *heavy* quark, one need more time to reach *equilibrium*, *i.e.*, to form final (long-living/static) *V*.
- Our phenomenology determined *q-bar-q p SL* which is smaller than *V-p SL* Quantitatively, there will be some difference between *V-p SL* & that for *q-bar-q* pair & *p*.
 Or our results are low level of *Vp SL* determination.
- Most *theoretical* calculations using gluonic *van der Waals* interaction disagree with our *phenomenological* results. Specifically, they do not consider *V young* effect.
- This should be calculated within some *model*.
 In general, result depends on *energy*, *quark mass*, & *overlap integral* between *q-bar-q* pair WF & VWF (this put some constrain on size of *q-bar-q* pair).
- We found strong exponential increase of V_p SL with inverse mass of Vs. $|\alpha_{V_p}|$

SUMMAR