





- New constraints on the neutron star EOS from inspiralling neutron stars – that's great.
- But if we stop there, we will miss a great opportunity.
- Transport is critical for finding new phases of matter (e.g. color superconductivity): we must go beyond equilibrium!



# Ideal fluids Viscous fluids

in flat spacetime

In heavy ions this led to a **paradigm shift** and many insights:

Nearly perfect fluidity of the quark-gluon plasma



- Better characterization of the initial state
- Emergence of hydrodynamics even far from equilibrium
- Connection to other fields: AdS/CFT, cold atoms, astro



## Viscous neutron star mergers! $\zeta \neq 0$

$$\zeta \neq 0$$

E. Most, A. Haber, S. P. Harris, Z. Zhang, M. G. Alford, and JN, arXiv:2207.00442 [astro-ph]



Beta equilibrium deviations = bulk viscous hydrodynamics

$$\mu_n - \mu_p - \mu_e \sim \Pi$$

Same viscous hydro theories used in heavy-ions!



• Neutron star mergers should also give us key information about hot and dense QCD matter out of equilibrium.

#### **NEW OPPORTUNITIES!!!**

**NEW QUESTIONS!!!** 

• The developments and discoveries in relativistic hydrodynamics made in heavy ions will be crucial here.

#### **NEW CHALLENGES!!!**

• Synergy between heavy-ions and neutron star mergers is bound to unravel new phenomena in hot and dense QCD.

### THINK BIG, BOLD, DEEPER

NP Long Range Plan should be driven by new questions, new challenges, pushing the envelop as much as possible to create new opportunities.

