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• Vacuum birefringence leads to a cos 4𝜙 in the 𝑒!𝑒"
from the Breit-Wheeler process 

• Sensitive to charge distribution within nuclei at 
high-energy  

• Precision source of linearly polarized photons

Discoveries with Polarized Photons

Experimentally access electromagnetic field 
strength / charge distribution at high energy
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PRL 127, 052302 (2021)
EPJA 57, 299, (2021)

Breit Wheeler process and Vacuum Birefringence Entanglement enabled intensity interferometry 

Final-state Interference between distinguishable particles
• Resolves a 20-year puzzle in diffractive photonuclear 

measurements

Calibrated source of linearly polarized photons provides a 
precision probe of gluon distribution within heavy nuclei

PRD 101, 034015 (2020)
PLB 795, 576 (2019)
arXiv:2207.05595

September 8th, 2022 Daniel Brandenburg 2



Quantum Entanglement and Gluon Tomography
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FIG. 2: The asymmetry is plotted as the function of q? for
RHIC energy

p
S = 200GeV. The rapidities y1, y2 of produced

pions are integrated over the region [�1, 1] and Q is integrated
over the region [0.6GeV , 1GeV ]. The contributions from the
final state soft photon radiation and elliptic gluon distribution
to the asymmetry are shown separately.
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FIG. 3: The asymmetry in photon production of di-pion in
eA collisions at EIC is plotted as the function of q? for the
center of mass energy

p
S = 100GeV. The rapidities y1, y2

of produced pions are integrated over the region [2, 3] and
the invariant mass of di-pion Q is integrated over the re-
gion [0.6GeV , 1GeV ]. Transverse momentum carried by the
quasi-real photon emitted from electron beam is required to
be smaller than 0.1GeV.
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FIG. 2: The asymmetry is plotted as the function of q? for
RHIC energy

p
S = 200GeV. The rapidities y1, y2 of produced

pions are integrated over the region [�1, 1] and Q is integrated
over the region [0.6GeV , 1GeV ]. The contributions from the
final state soft photon radiation and elliptic gluon distribution
to the asymmetry are shown separately.

FIG. 3: The asymmetry in photon production of di-pion in
eA collisions at EIC is plotted as the function of q? for the
center of mass energy

p
S = 100GeV. The rapidities y1, y2

of produced pions are integrated over the region [2, 3] and
the invariant mass of di-pion Q is integrated over the re-
gion [0.6GeV , 1GeV ]. Transverse momentum carried by the
quasi-real photon emitted from electron beam is required to
be smaller than 0.1GeV.
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FIG. 1: cos 4� azimuthal asymmetry results from the in-
terference between the p wave and the f wave of pion pairs
that are from the decay of ⇢0 meson in conjugate amplitude,
and are from direct production in the amplitude. The color
neutral exchange in the amplitude described by the elliptic
gluon distribution e↵ectively carries two unit orbital angular
momentum. The incident photon is linearly polarized.

calculations. First of all, the dipole-nucleus scat-
tering amplitude (the azimuthal independent part) is
parametrized in terms of dipole-nucleon scattering am-
plitude N (r?) [74–78],

N(b?, r?) ⇡ 1� [1� 2⇡BpTA(b?)N (r?)]
A (21)

where we adopt the GBW model for N (r?). We
also made the numerical estimates with a more so-
phisticated treatment for N (r?) [76–79], which leads
to the similar results. The nuclear thickness function
TA(b?) is determined with the Woods-Saxon distribu-
tion in our numerical calculation, and Bp = 4GeV �1.
For the scalar part of vector meson function, we use
“Gauss-LC” wave function also taken from Ref. [74, 75]:

⌦⇤(|r?|, z) = �z(1 � z) exp
h
� r2?

2R2
?

i
with � = 4.47,

R2
? = 21.9GeV�2. The nuclear thickness function is

estimated with the Woods-Saxon distribution, F (~k2) =R
d3rei

~k·~r C0

1+exp [(r�RWS)/d] where RWS (Au: 6.38fm) is

the radius and d (Au.:0.535fm) is the skin depth. C0 is
the normalization factor.
UPCs events measured at RHIC are triggered by de-

tecting accompanied forward neutron emissions. The im-
pact parameter dependence of the probability for emit-
ting any number of neutrons from an excited nucleus
(referred to as the “Xn” event) is described by the

function, P (b̃?) = 1 � exp
h
�P1n(b̃?)

i
with P1n(b̃?) =

5.45 ⇤ 10�5 Z3(A�Z)

A2/3b̃2?
fm2. Therefore, the “tagged” UPC

cross section is defined as,

2⇡

Z 1

2RA

b̃?db̃?P
2(b̃?)d�(b̃?, ...) (22)

With all these ingredients, we are ready to perform nu-
merical study of the cos 4� azimuthal asymmetry for
RHIC kinematics.
We first compute the azimuthal averaged cross section

and compare it with STAR data to fix the coe�cient
C ⇡ �10 which determines the relative magnitude be-
tween the direct pion pair production and that via ⇢0

decay. We then are able to compute the cos 4� asymme-
try from the elliptic gluon distribution. The QED and
the elliptic gluon distribution contributions to the asym-
metry are separately presented in Fig. 2. If we only take
into account the final state soft photon radiation e↵ect,
the theory calculation severely underestimates the ex-
perimental data. To match the STAR data [39], a rather
large value of the coe�cient E = 0.4 in the Eq. 15 which
is roughly one order of magnitude larger than the per-
turbative estimate for E [10, 17], has been used in our
numerical calculation. Since we are dealing with the deep
non-perturbative region, it is hard to tell whether such
large value for E is reasonable or not. Moreover, there is
a lot of uncertainties associated with the transition from
quark pair to di-pion. Other non-perturbative model for
describing this transition might lead to a much larger
asymmetry with the same value of E. Nevertheless, as
demonstrated in Fig. 2, it is clear that the elliptic gluon
distribution is a necessary element to account for the ob-
served asymmetry (around 10% ).

We also compute the cos 4� azimuthal asymmetry in
the process � + A ! A0 + ⇡+ + ⇡� for EIC kinematics
with the same set parameters. It is shown in Fig. 3 that
the contribution from the elliptic gluon distribution to
the asymmetry flips the sign as the result of the absence
of the double slit interference e↵ect in eA collisions. It
would be very interesting to test this predication at the
future EIC. In view of the recent findings [23, 24], this
might be the only clean observable to probe the gluon
Wigner function at EIC, because it is free from the con-
tamination due to the final state soft gluon radiation ef-
fect.

Conclusion. We studied cos 4� azimuthal asymmetry
in exclusive di-pion production near ⇢0 resonance peak in
UPCs. Both the final state soft photon radiation e↵ect
and the elliptic gluon distribution can give rise to such a
asymmetry. It is shown that the QED e↵ect alone, which
can be cleanly computed, is not adequate to describe the
STAR data. On the other hand, with some model de-
pendent input, a better agreement with the preliminary
STAR data is reached after including the elliptic gluon
distribution contribution, though the theory calculation
still underestimates the measured asymmetry. This thus
leads us to conclude that the observed cos 4� asymmetry
might signal the very existence of the non-trivial quan-
tum correlation encoded in elliptic gluon distribution.
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and Chi Yang for valuable discussions. J. Zhou has been
supported by the National Natural Science Foundation of
China under Grant No. 11675093. Y. Zhou has been sup-
ported by the Natural Science Foundation of Shandong
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supported by the China Postdoctoral Science Foundation
under Grant No. 2019M662317.

Coulomb-Nuclear Interference to 
probe entanglement 

Phys. Rev. D 104, 094021 (2021)

Gluon tomography at RHIC and EIC

Final state asymmetries due to QED-QCD 
interference, reveals phase between photon 
and gluon fields, and possible entanglement

Clear signature of elliptic gluon 
distribution within nuclei.
Complimentary measurements at RHIC 
and EIC needed

Phys. Rev. D 103, 074013 (2021)

RHIC Au+Au
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LRP Message:
The discovery of the Breit-Wheeler process in heavy ion collisions marks 
a milestone in QED and has led to the discovery of entanglement enabled 
quantum interference of non-identical particles which enables precise 
tomography of gluon distributions at RHIC and the future EIC.
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Precision Pb Neutron Skin Measurement at RHIC
Precision measurement of '()𝐴𝑢 and *+,𝑈
mass radii via interference effect in diffractive 
photonuclear production 
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Interference effect causes apparent increase of 
nuclear size. For 20 years, extracted radius 
appeared ~1 fm too large 

• Direct measurement of the radius (R) and skin 
depth (a) with small uncertainty

• Compliments the flow-based nuclear structure 
measurements (See Jiangyong’s talk)



Case for a short Pb+Pb run at RHIC

of the 208Pb charge, weak and total baryon densities together
with their uncertainty bands. The precise 2.5%determination
of ρ0b for 208Pb will facilitate a sensitive examination of its
close relationship to the nuclear saturation density [24].
After the 208Pb run, data were also collected to measure

Ameas
PV for 48Ca (CREX) [54]. The improved systematic

control of helicity correlated beam asymmetries and several
other PREX experimental innovations will inform the
design of future projects MOLLER [55] and SoLID [56]
at JLab measuring fundamental electroweak couplings, as
well as a more precise 208Pb radius experimental proposal at
Mainz [5,57].

We thank the entire staff of JLab for their efforts to
develop and maintain the polarized beam and the exper-
imental apparatus, and acknowledge the support of the U.S.
Department of Energy, the National Science Foundation
and NSERC (Canada). This material is based upon the
work supported by the U.S. Department of Energy, Office
of Science, Office of Nuclear Physics Contract No. DE-
AC05-06OR23177.
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FIG. 4. 208Pb weak and baryon densities from the combined
PREX datasets, with uncertainties shaded. The charge density
[46] is also shown.
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PREX-2 neutron skin measurement for $%&𝑃𝑏
𝑆'( = 0.283 ± 0.071 fm

Tension between PREX-2 measurement and 
other measurements / theoretical models

All past neutron skin measurements at LOW ENERGY

NEW quantum entanglement enabled interference 
technique provides precision neutron skin 
measurement at RHIC/LHC at HIGH ENERGY

~Two weeks of Pb+Pb at RHIC in 2023:
• Precision neutron skin measurement of Pb
• Provides crucial information on initial state of 

heavy ion collisions
• Complimentary to flow-based nuclear structure 

measurements (see Jiangyong’s presentation)
• Investigate/cross check the higher-than-expected 

PREX-2 neutron skin result
• Fundamental importance for nuclear physics
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cases incompatible—with experimental determinations of
R208
skin by methods that are highly model dependent [27–30].

A notable exception is the dispersive optical model analysis
of the Washington University group that reported a neutron
skin thickness of R208

skin ¼ ð0.25# 0.05Þ fm [31]; a revised
lower value of R208

skin ¼ ð0.18# 0.07Þ fm—still consistent
with [31]—was reported shortly thereafter in Ref. [32].
To further underscore the tension between PREX-2 and

our current understanding of the EOS, we display in Fig. 2
a summary of simultaneous constraints on both J and L as
reported in Refs. [20,33]. We have adapted Fig. 2 from
Ref. [20] by including the PREX-2 limits on both J and L
derived in Eq. (5). Note that with the exception of the
analysis of Ref. [22], all other approaches suggest a positive
correlation between L and J. In the context of density
functional theory, such a positive correlation is easy to
understand. Using Eq. (3) at ρ̃0 yields

Sðρ̃0Þ ¼ J −
L
9
→ J ≈

!
26 MeVþ L

9

"
: ð6Þ

The value of Sðρ̃0Þ ≈ 26 MeV [15] follows because the
symmetry energy at ρ̃0 is tightly constrained by the binding
energy of heavy nuclei. The PREX-2 inferred value for L
yields a corresponding value of J ¼ ð37.7# 4.1Þ MeV,
that is entirely consistent with the limit obtained in Eq. (5).
Although consistent at the 2σ level, the “Intersection”
region in Fig. 2 obtained from a variety of experimental and
theoretical approaches lies outside the 1σ PREX-2 limits.

Next, we explore the impact of PREX-2 on a few
neutron-star observables. We start by displaying in
Fig. 3 the minimum central density and associated neutron
star mass required for the onset of the direct Urca process.
Neutron stars are born very hot (T ≃ 1011 K ≃ 10 MeV)
and then cool rapidly via neutrino emission through the
direct Urca process that involves neutron beta decay
followed by electron capture:

n → pþ e− þ ν̄e; ð7aÞ

pþ e− → nþ νe: ð7bÞ

After this rapid cooling phase is completed, neutrino
emission proceeds in the standard cooling scenario through
the modified Urca process—a process that may be millions
of times slower as it requires the presence of a bystander
nucleon to conserve momentum at the Fermi surface [34].
The transition into the much slower modified Urca process
is solely based on the expectation that the proton fraction in
the stellar core is too low to conserve momentum at the
Fermi surface. However, given that the proton fraction is
controlled by the poorly known density dependence of
the symmetry energy [35], the minimal cooling scenario
may need to be revisited. In particular, a stiff symmetry
energy—as suggested by PREX-2—favors large proton
fractions that may trigger the onset of the direct Urca
process at lower central densities. This analysis is particu-
larly timely given that x-ray observations suggest that some
neutron stars may require some form of enhanced cooling.
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FIG. 2. Constraints on the J-L correlation obtained from a
variety of experimental and theoretical approaches. The figure
was adapted from Refs. [20,33] and noticeably displays the
tension with the recent PREX-2 result.
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associated correlation coefficients.
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