## MEMORANDUM

To: Yi, MIT AMS group

From: Peter

**Subject:** Memo #93 - Energy Loss by a bare monopole

Date: September 7, 2022

Assume monopoles are *bare*,  $q_e = 0$  and  $q_m \neq 0$ .  $q_e$  has units A-s and  $q_m$  has units A-m. From  $\nabla \cdot \vec{B} = \mu_o \rho_m$ , Figure 1,

$$\vec{B} = \frac{\mu_o}{4\pi} \frac{q_m}{r^2} \hat{r}$$

gives the static magnetic field for a monopole. Equating the forces between two electrons and two monopoles the same distance apart gives an arbitrary quantization of  $q_m$ ,

$$\frac{1}{4\pi\epsilon_o}\frac{q_e^2}{r^2} = \frac{\mu_o}{4\pi}\frac{q_m^2}{r^2} \to q_m = cq_e.$$

Figure 2 shows the scattering of a magnetic monopole from a stationary atomic electron. The moving monopole creates an azimuthal electric field,

$$\vec{E}_{\phi} = \frac{v\mu_o}{4\pi} \frac{q_m}{r^2} \hat{\phi}$$

| Name                                    | Without magnetic monopoles                                                              | With magnetic monopoles                                                                                                                                                                                          |                                                                                                                                                                                                      |
|-----------------------------------------|-----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                         |                                                                                         | Weber convention                                                                                                                                                                                                 | Ampere-meter convention                                                                                                                                                                              |
| Gauss's law                             | $ abla \cdot {f E} = { ho_{ m e} \over arepsilon_0}$                                    |                                                                                                                                                                                                                  |                                                                                                                                                                                                      |
| Gauss's law for magnetism               | $ abla \cdot {f B} = 0$                                                                 | $ abla \cdot {f B} =  ho_{ m m}$                                                                                                                                                                                 | $ abla \cdot {f B} = \mu_0  ho_{ m m}$                                                                                                                                                               |
| Faraday's law of induction              | $- abla 	imes {f E} = {\partial {f B}\over\partial t}$                                  | $- abla 	imes {f E} = {\partial {f B}\over\partial t} + {f j}_{ m m}$                                                                                                                                            | $- abla 	imes {f E} = {\partial {f B} \over \partial t} + \mu_0 {f j}_{ m m}$                                                                                                                        |
| Ampère's law (with Maxwell's extension) | $ abla 	imes {f B} = {1\over c^2} {\partial {f E}\over\partial t} + \mu_0 {f j}_{ m e}$ |                                                                                                                                                                                                                  |                                                                                                                                                                                                      |
| Lorentz force equation                  | $\mathbf{F} = q_{	ext{e}} \left( \mathbf{E} + \mathbf{v} 	imes \mathbf{B}  ight)$       | $egin{aligned} \mathbf{F} &= q_\mathrm{e} \left( \mathbf{E} + \mathbf{v} 	imes \mathbf{B}  ight) + \ &rac{q_\mathrm{m}}{\mu_0} \left( \mathbf{B} - \mathbf{v} 	imes rac{\mathbf{E}}{c^2}  ight) \end{aligned}$ | $egin{aligned} \mathbf{F} &= q_\mathrm{e} \left( \mathbf{E} + \mathbf{v} 	imes \mathbf{B}  ight) + \ & q_\mathrm{m} \left( \mathbf{B} - \mathbf{v} 	imes rac{\mathbf{E}}{c^2}  ight) \end{aligned}$ |

Maxwell's equations and Lorentz force equation with magnetic monopoles: SI units

Figure 1: Maxwell's equations with magnetic monopoles in MKS units[?]

resulting in a force  $F\phi = eE_{\phi}$  on the electron.  $r = \sqrt{v^2t^2 + b^2}$  and

$$\Delta p = \int_{-\infty}^{+\infty} \frac{v\mu_o eq_m}{v^2 t^2 + b^2} \tag{1}$$

$$= Q_m \frac{\pi \mu_o e^2}{4b} = Q_m \frac{\alpha \pi \hbar}{b}$$
(2)

where  $Q_m = q_m/e$  and  $\alpha = e^2/4\pi\epsilon_o\hbar c$ .  $K = \Delta p^2/2m_e$  gives the kinetic energy transferred to the electron from the monopole, assuming the electron does not move much during the collision, see below.



Figure 2: Layout of scattering. The orange disk show the position of the monopole that follows the orange vector with a speed  $\beta = v/c$ . The blue disk shows the electron, initially at reast. The monopole has a radial magnetic field shown in green and the red vectors shows the the monopole's circumferential electric arising from its motion.

Next,

$$\frac{d\sigma}{dK} = b \left| \frac{db}{dK} \right| = Q_m \alpha^2 \frac{m_e b^4}{\pi^2 \hbar^2} = Q_m \alpha^2 \frac{\pi^2 h bar^2}{4m_e K^2}$$

gives the differential cross section and  $d^2P/dKdx = n\frac{d\sigma}{dK}$  gives the probability for the monopole to transfer kinetic energy K to an atomic electron while cross a medium of electron number density n and thickness dx. Finally,

$$\left\langle \frac{dK}{dx} \right\rangle = \int_{K_{min}}^{K_{max}} Kn \frac{d^P}{dxdK} dK$$
(3)

$$= Q_m \alpha^2 \frac{\pi^2 \hbar^2 n}{4m_e} \ln \frac{K_{max}}{K_{min}}$$
(4)

gives the energy energy loss per unit length. The electron binding energy fixes  $K_{min} \sim 10$  eV, depending on the material, and, the maximum energy transfer to the electron,

$$K_{max} = \frac{1+\beta^2}{1-\beta^2}m_e$$

fixes  $K_{max} \sim 2\gamma m_e$  if  $\beta \sim 1$ .

For silicon,  $n = 7 \times 10^{29}$ /m<sup>3</sup>. For a monopole moving with  $\beta = 0.5$ .  $M_{max} = 4$  MeV, giving  $b_{min} = 303$  fm. Kmin = 8 eV, giving  $b_{max} = 216$  pm.  $\langle dK/dx \rangle = 0.36 MeV/g/cm^2$ , compared with  $\sim 2MeV/g/cm^2$  for minimum ionizing particles.

Does the electron move during the collision? Equation 2 remains valid if the electron move by  $d \ll b$  during the collision. The collision takes place over a time  $\tau \sim 2v/b$ , which translates to a condition,

$$\beta \implies \frac{\Delta p}{m_e} \tag{5}$$

$$>> \sqrt{\frac{2K}{m_e}}$$
 (6)

$$\frac{1}{2}m_e\beta^2 = 2.5\text{keV} >> K,$$
(7)

implying the approximation remains valid for recoil energies up to  $K_{valid} = m_e \beta^2/2=2.5$  keV. Higher energy recoild contribute very little to the cross section: the differential cross section  $d\sigma/dK$  gives the probability of a recoil energy K and,

$$\frac{\int_{K_{min}}^{K_{valid}} \frac{d\sigma}{dK} dK}{\int_{K_{min}}^{K_{max}} \frac{d\sigma}{dK} dK} = 0.997.$$

In experiments, base monopole will show up in at least two ways: anomalous energy loss and parabolic trajectory in a magnetic spectrometer. Figure 3 shows the average energy loss in silicon for a variety of energies compared with the light isotopes.

For  $Q_m$ , monopoles traversing a magnetic spectrometer will show large deflections. For example, in a 0.15 T field and a 1 m measuring distance, a  $\beta = 0.3$  1 GeV monopole will deflect by 25 cm.



Figure 3: Bare monopole energy loss in silicon for  $Q_M = 1$ .