
MEMORANDUM
To: Yi, MIT AMS group

From: Peter

Subject: Memo #93 - Energy Loss by a bare monopole

Date: September 7, 2022

Assume monopoles are bare, qe = 0 and qm ̸= 0. qe has units A-s and qm has units A-m. From
∇⃗ · B⃗ = µoρm, Figure 1,

B⃗ =
µo

4π

qm
r2

r̂

gives the static magnetic field for a monopole. Equating the forces between two electrons and two
monopoles the same distance apart gives an arbitrary quantization of qm,

1

4πϵo

q2e
r2

=
µo

4π

q2m
r2

→ qm = cqe.

Figure 2 shows the scattering of a magnetic monopole from a stationary atomic electron. The
moving monopole creates an azimuthal electric field,

E⃗ϕ =
vµo

4π

qm
r2

ϕ̂

Figure 1: Maxwell’s equations with magnetic monopoles in MKS units[?]
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resulting in a force Fϕ = eEϕ on the electron. r =
√
v2t2 + b2 and

∆p =

∫ +∞

−∞

vµoeqm
v2t2 + b2

(1)

= Qm
πµoe

2

4b
= Qm

απℏ
b

(2)

where Qm = qm/e and α = e2/4πϵoℏc. K = ∆p2/2me gives the kinetic energy transferred to the
electron from the monopole, assuming the electron does not move much during the collision, see
below.
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Figure 2: Layout of scattering. The orange disk show the position of the monopole that follows
the orange vector with a speed β = v/c. The blue disk shows the electron, initially at reast.
The monopole has a radial magnetic field shown in green and the red vectors shows the the
monopole’s circumferential electric arising from its motion.

Next,
dσ

dK
= b

∣∣∣∣ dbdK

∣∣∣∣ = Qmα2meb
4

π2ℏ2
= Qmα2π

2hbar2

4meK2

gives the differential cross section and d2P/dKdx = n dσ
dK gives the probability for the monopole to

transfer kinetic energy K to an atomic electron while cross a medium of electron number density
n and thickness dx. Finally, 〈

dK

dx

〉
=

∫ Kmax

Kmin

Kn
dP

dxdK
dK (3)

= Qmα2π
2ℏ2n
4me

ln
Kmax

Kmin
(4)
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gives the energy energy loss per unit length. The electron binding energy fixes Kmin ∼10 eV,
depending on the material, and, the maximum energy transfer to the electron,

Kmax =
1 + β2

1− β2
me

fixes Kmax ∼ 2γme if β ∼ 1.

For silicon, n = 7 × 1029/m3. For a monopole moving with β = 0.5. Mmax = 4 MeV, giving
bmin = 303 fm. Kmin = 8 eV, giving bmax = 216 pm. ⟨dK/dx⟩ = 0.36MeV/g/cm2, compared
with ∼ 2MeV/g/cm2 for minimum ionizing particles.

Does the electron move during the collision? Equation 2 remains valid if the electron move by
d << b during the collision. The collision takes place over a time τ ∼ 2v/b, which translates to a
condition,

β >>
∆p

me
(5)

>>

√
2K

me
(6)

1

2
meβ

2 = 2.5keV >> K, (7)

implying the approximation remains valid for recoil energies up to Kvalid = meβ
2/2=2.5 keV.

Higher energy recoild contribute very little to the cross section: the differential cross section
dσ/dK gives the probability of a recoil energy K and,∫Kvalid

Kmin

dσ
dK dK∫Kmax

Kmin

dσ
dK dK

= 0.997.

In experiments, base monopole will show up in at least two ways: anomalous energy loss and
parabolic trajectory in a magnetic spectrometer. Figure 3 shows the average energy loss in silicon
for a variety of energies compared with the light isotopes.

For Qm, monopoles traversing a magneitc spectrometer will show large deflections. For exam-
ple, in a 0.15 T field and a 1 m measuring distance, a β = 0.3 1 GeV monopole will deflect by 25
cm.
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Figure 3: Bare monopole energy loss in silicon for QM = 1.
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