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MEMORANDUM
To: Yi, MIT AMS group
From: Peter
Subject: Memo #93 - Energy Loss by a bare monopole
Date: September 7, 2022

Assume monopoles are bare, g. = 0 and ¢, # 0. ¢. has units A-s and ¢, has units A-m. From
V- B = iopm, Figure 1,
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gives the static magnetic field for a monopole. Equating the forces between two electrons and two
monopoles the same distance apart gives an arbitrary quantization of ¢,
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Figure 2 shows the scattering of a magnetic monopole from a stationary atomic electron. The
moving monopole creates an azimuthal electric field,
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Maxwell's equations and Lorentz force equation with magnetic monopoles: Sl units
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Figure 1: Maxwell’s equations with magnetic monopoles in MKS units|?]



resulting in a force F'¢ = eEy on the electron. r = v/v2t? + b2 and
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where Q. = g /e and a = €?/dme,hic. K = Ap?/2m, gives the kinetic energy transferred to the
electron from the monopole, assuming the electron does not move much during the collision, see
below.

S

A

Figure 2: Layout of scattering. The orange disk show the position of the monopole that follows
the orange vector with a speed § = v/c. The blue disk shows the electron, initially at reast.
The monopole has a radial magnetic field shown in green and the red vectors shows the the
monopole’s circumferential electric arising from its motion.

Next,
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gives the differential cross section and d>P/d K dx = nj—}‘{ gives the probability for the monopole to
transfer kinetic energy K to an atomic electron while cross a medium of electron number density
n and thickness dz. Finally,
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gives the energy energy loss per unit length. The electron binding energy fixes K,,;, ~10 eV,
depending on the material, and, the maximum energy transfer to the electron,
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fixes Kz ~ 2yme if B ~ 1.

For silicon, n = 7 x 1029/m?. For a monopole moving with 5 = 0.5. My, = 4 MeV, giving
bmin = 303 fm. Kmin = 8 eV, giving by,q, = 216 pm. (dK/dx) = 0.36MeV/g/cm?, compared
with ~ 2MeV/g/ cm? for minimum ionizing particles.

Does the electron move during the collision? Equation 2 remains valid if the electron move by
d << b during the collision. The collision takes place over a time 7 ~ 2v/b, which translates to a
condition,
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implying the approximation remains valid for recoil energies up to Kyaia = me3?/2=2.5 keV.
Higher energy recoild contribute very little to the cross section: the differential cross section
do /dK gives the probability of a recoil energy K and,
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In experiments, base monopole will show up in at least two ways: anomalous energy loss and
parabolic trajectory in a magnetic spectrometer. Figure 3 shows the average energy loss in silicon
for a variety of energies compared with the light isotopes.

For @,,, monopoles traversing a magneitc spectrometer will show large deflections. For exam-
ple,in a 0.15 T field and a 1 m measuring distance, a 3 = 0.3 1 GeV monopole will deflect by 25
cm.
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Figure 3: Bare monopole energy loss in silicon for Qs = 1.



