Prospects for Lattice Supersymmetry and Chiral Fermions

Simon Catterall (Syracuse)

USQCD All Hands Meeting April 302021

Overview:

Lattice gauge theory and USQCD are poised to have significant impact on long standing problems in theoretical physics

- Holographic approaches to quantum gravity. Formulation (and parallelized code) available for $\mathcal{N}=4$ SYM - capable of probing quantum gravity away from large N_{c} and weak coupling.
- Recent work in condensed matter physics - symmetric mass generation (SMG) - opens up new possibilities for constructing lattice models targeting chiral fermions in the continuum limit.

Not comprehensive review. Reflects personal interests. There are other things out there eg DWF/overlap approaches to SUSY and chiral fermions

$\mathcal{N}=4$ SUSY on lattice

Key features:

- Fermions - Kähler-Dirac (KD) fields. Can discretize KD fermions and obtain staggered fermions BUT DON'T!. Instead place fermions on links ... no (unwanted) doubling !
- Bosons: Complex gauge field (to accommodate the scalars). Scalar supersymmetry: $\mathcal{U}_{\mu}(x)=\psi_{\mu}(x)$. Compatible with lattice gauge invariance.
- $\mathcal{Q}^{2}=0$. Lattice action $S=\mathcal{Q}$ (something).
- Optimized parallel code (based on MILC libraries) exists (David Schaich). Recent work (JHEP 12 (2020) 140) with modified action allows simulations at strong coupling $\lambda \sim 10-100$
- Sign problem observed to be negligible .. no proof (yet) ? ..

Applications: Wilson loops

Maldacena tell us that (supersymmetric) Wilson loops ($N_{c}, \lambda \rightarrow \infty$):

$$
W(R, T) \sim e^{-\frac{c \sqrt{\lambda}}{R} T}
$$

No confinement: non-abelian Coulomb form.
Note: $\sqrt{\lambda} \sim g-$ non-perturbative. Property of dual gravity

To do ..

- Detailed studies of static quark potential for $N=2$, 3 on larger lattices. Planar result seems to appear even for $N=2$ - why ? (string loops ..)
- Conformal phase: anomalous dimensions of non-BPS ops eg. Konishi operator $\sum_{A} \operatorname{Tr} X_{A}^{2}$ at strong coupling.
- $\mathcal{N}=4$ has Higgs phases where $<X>\neq 0$. Good place to study S-duality $-g \rightarrow \frac{1}{g}$. Exchanges (massive) W boson with monopole \leftarrow twisted boundary conditions.
- At finite temperature can compute thermodynamics of black holes in dual gravity theory. Simulate theory in
- $D=3$ (PRD102 (2020) 106009, only USQCD)
- $D=2$ (PRD97 (2018) 086020, only USQCD)
- $D=1$ (eg PRD 94 (2016) 094501, many groups ..).

Bigger question: how can we use simulations of $\mathcal{N}=4$ to probe the nature of the dual quantum gravity theory ?

Lattice chiral fermions

Very little is known about strongly coupled chiral gauge theories

Many efforts to construct lattice chiral gauge theories. Wilson, staggered, DWF and overlap formulations. No success ..

- Nielsen-Ninomiya forces one to start with Dirac fermions.
- Two main approaches:
- Separate L and R modes in 5th dimension. Decoupling tricky with dynamical gauge fields.
- Design bulk interactions to lift say R modes to the cut-off - mirror models. Use four fermion operators to gap. Typically symmetry breaking fermion condensates form recoupling L and R.

Symmetric Mass Generation - part 1

Can we gap fermions without breaking symmetries? In principle yes - provided we cancel off all anomalies

Consider $S U(5)$ gauge theory with global $G=U(1)$
L Weyl fields: $\chi_{\alpha \beta}(1)$ and $\psi^{\alpha}(-3)$
No mass term possible but gauge anomaly cancels $A(\overline{\mathbf{5}})=-\mathbf{A}(\mathbf{1 0})$
But can imagine weakly gauging G - 't Hooft anomaly:

$$
\sum_{a} Q_{a}^{3}=5 \times(-3)^{3}+10 \times(1)^{3}=-125
$$

Key: 't Hooft anomalies must be same in IR and UV Options in IR:

- Composite gauge singlet massless fermions
- Goldstone bosons from breaking $G \leftarrow$ avoid ?

Symmetric mass generation - part 2

Expect color singlet composites in I.R. One obvious candidate:

$$
\bar{\xi}=\chi_{a b} \psi^{a} \psi^{b}-U(1) \text { charge }-5
$$

Precisely what is needed for the anomaly $(-5)^{3}=-125$!
Can satisfy 't Hooft anomaly if $\bar{\xi}$ remains massless!.

A small twist

If all states are to be massive in I.R must cancel anomaly in U.V Just add a singlet $\xi(+5)$!
Can now gap $\bar{\xi}$ with Dirac mass term $G \bar{\xi} \xi=G \chi_{a b} \psi^{a} \psi^{b} \xi \leftarrow$ four fermion term Preserves G - symmetric mass generation SMG

Another observation

Notice for SMG sixteen Weyl fermions needed.

Discrete anomalies

In fact 16 fermions necessary to cancel off a new discrete anomaly:

$$
\begin{gathered}
\psi_{L} \rightarrow-i \psi_{L} \quad \psi_{R} \rightarrow+i \psi_{R} \quad \leftarrow \text { spin- } Z_{4} \text { symmetry } \\
\text { Anomaly cancels if } \\
n_{L}-n_{R}=0 \bmod 16
\end{gathered}
$$

To gap states in IR without breaking symmetries must ensure that all anomalies cancel in the U.V - gauge, 't Hooft and discrete

Successful mirror model must start with sixteen L and sixteen R Weyl fermions.
Must (obviously) have no gauge anomalies
Must achieve gapping using gauge/four fermion interactions
CMT studies have furnished some examples in low dimension using specific quartic interactions

New lattice mirror constructions

- CMT constructions use the Fidkowski-Kitaev interaction $\left(\chi^{T} \Gamma_{A} \chi\right)^{2}$
- χ single component fermions in real eight dim spinor rep of $\operatorname{Spin}(7)$
- This interaction can gap out eight Majorana modes in $D=1$ number needed to cancel discrete anomaly there.

Staggered fermions are single component

8 copies of REAL staggered field in $D=4 \rightarrow 16 \mathrm{~L}$ and 16 R Weyl Identify L with $\epsilon(x)=-1$ and R with $\epsilon(x)=+1$ as $a \rightarrow 0$ Notice similarity spin- Z_{4} with lattice symmetry: $\chi \rightarrow i \epsilon(x) \chi$

Gap even parity fields yields a continuum limit with just 16 free L Weyl.

Assumes Lorentz invariance is restored.
No (obvious) obstruction to gauging $\operatorname{Spin}(7)$...sign problem?

Gapping the even states in $D=2$

Fermion op $M=\eta \cdot D+G P_{+} \sigma_{A} \Gamma_{A}$

$$
<n|\epsilon(x)| n>=<\sum_{x} \phi_{n}(x) \epsilon(x) \phi_{n}(x)>\quad \phi_{n} \text { eigenvector of } \mathrm{M}
$$

$\mathrm{D}=2 \mathrm{apbc} \mathrm{G}=5.0 \mathrm{~g}=0.01 \mathrm{~s}^{2}$

(a) $<\epsilon(x)>$ vs eigenvalue
$\mathrm{D}=2 \mathrm{apbc} \mathrm{g}=0.01$

(b) Histogram of parity of modes

Most modes have parity $\epsilon(x) \sim \pm 1$ for large G. $\epsilon=+1$ modes have large eigenvalue. $\epsilon=-1$ modes are light.

Summary

- Ongoing, exciting and potentially fruitful program of studies in lattice SUSY and chiral fermions.
- Benefited from both theoretical developments and optimized code development.
- Understanding some of the remaining puzzles in SM may require new non-perturbative insights from lattice studies of eg. strongly coupled chiral gauge theories.
- Lattice SUSY + holography may shed light on (quantum) gravity.
- Plenty of room and need for more people to join in !

Thanks!

Backups

Lattice Model - D dims

$$
\begin{gathered}
S=S_{\text {kin }}+S_{\text {Yuk }} \\
S_{\text {kin }}=\sum_{x} \sum_{\mu=1}^{D} \sum_{a=1}^{8} \eta_{\mu}(x) \chi^{a}(x) D_{\mu} \chi^{a}(x) \\
S_{\text {Yuk }}=\sum_{x} \sum_{A=1}^{7}\left(g_{+} P_{+}+g_{-} P_{-}\right) \sigma_{A}(x) \chi^{a}(x) \Gamma_{A}^{a b} \chi^{b}(x)+\frac{1}{2} \sigma_{A}^{2}
\end{gathered}
$$

where

$$
P_{ \pm}=\frac{1}{2}(1 \pm \epsilon(x)) \text { with } \epsilon(x)=(-1)^{\sum_{i=1}^{D} x_{i}} \text { and } \eta_{\mu}(x)=(-1)^{\sum_{i=1}^{\mu-1} x_{i}}
$$

$\sigma_{A}(x)$ real scalars and $\chi^{a}(x)$ real single component Grassman Γ_{A} real, 8×8 antisymmetric Dirac matrices for Spin(7)

$$
D_{\mu} f(x)=\frac{1}{2}(f(x+\mu)-f(x-\mu))
$$

Symmetries

Comment

Integrate $\sigma_{A} \rightarrow$ Fidkowski-Kitaev interaction $-\left(\chi^{\top} \Gamma_{A} \chi\right)^{2}$.
Gaps Majorana fermions without breaking symmetries in 1d

Global $\operatorname{Spin}(7)$

Global $Z_{2}: \chi \rightarrow-\chi$
Discrete shift: $\chi(x) \rightarrow \xi_{\rho}(x) \chi(x+\rho)$ with $\xi_{\rho}(x)=(-1)^{\sum_{i=\rho+1}^{D}}$
Discrete rotations (Eucl. Lorentz)

Why Spin(7)?

Want smallest orthogonal group with real spinor representation Why real ? Crucial for continuum chiral fermions

Symmetries protect theory from all fermion bilinear terms

Continuum Fermions: 2 dims

Assemble staggered fields in unit square into 2×2 matrix fermion (neglect $\operatorname{Spin}(7)$ indices. Site parity shown explicitly)

$$
\Psi=\left[\begin{array}{ll}
\left(\chi_{+}(x)+i \chi_{+}(x+1+2)\right) & \left(\chi_{-}(x+1)+i \chi_{-}(x+2)\right) \\
\left(\chi_{-}(x+1)-i \chi_{-}(x+2)\right) & \left(\chi_{+}(x)-i \chi_{+}(x+1+2)\right)
\end{array}\right]
$$

ψ defined on lattice with twice the lattice spacing. Staggered fields coeffs in expansion on products of 2d Dirac matrices $\left\{I, \sigma_{1}, \sigma_{2}, \sigma_{1} \sigma_{2}\right\}$

$$
\text { In continuum: } \Psi \rightarrow L \Psi F^{T}
$$

Contains two Majorana spinors - defined on even and odd sites

Restore Spin(7) indices

Continuum: sixteen massless Majorana fermions.
Equivalent to 8 L and 8 R Weyl.

Continuum fermions: 4 dims

Unit hypercube:

$$
\Psi(x)=\sum_{n} \chi(x+n) \gamma_{\mu}^{n}
$$

with $\gamma^{b}=\gamma_{1}^{b_{1}} \ldots \gamma_{4}^{b_{4}}$ and $n_{\mu}=0,1$
Block structure (chiral basis):

$$
\Psi=\left(\begin{array}{ll}
E & O^{\prime} \\
O & E^{\prime}
\end{array}\right) \quad\left(\mathrm{E}, \mathrm{E}^{\prime}\right) \text { consist of } \chi_{+} \text {while }\left(\mathrm{O}, \mathrm{O}^{\prime}\right) \text { contain } \chi_{-}
$$

Real staggered fields $\rightarrow \Psi^{\dagger}=\gamma_{2} \Psi^{\top} \gamma_{2}$

$$
\text { Implies } O^{\prime}=-\sigma_{2} O^{*} \sigma_{2} \text { and } E^{\prime}=\sigma_{2} E^{*} \sigma_{2}
$$

Generalized charge conjugation condition
Yields 2 pairs of Majoranas:

$$
\binom{-\sigma_{2} O_{L}^{*} \sigma_{2}}{O_{L}} \quad \text { and } \quad\binom{E_{R}}{\sigma_{2} E_{R}^{*} \sigma_{2}}
$$

Restore $\operatorname{Spin}(7)$: sixteen L and sixteen R Weyl

Strategy: Symmetric Mass Generation

- Consider limit $g_{+} \rightarrow \infty$ and $g_{-} \rightarrow 0$. Will show that even parity fields receive large masses without breaking symmetries Symmetric Mass Generation (SMG). Odd parity fields become massless free fields.
- In continuum $(L \rightarrow \infty)$ the odd parity fields yield sixteen L Weyl fermions. This number of fermions is no accident!

In 2 dims eight Weyl fermions are needed to cancel off a discrete anomaly - chiral fermion parity $\psi_{L} \rightarrow-\psi_{L}$ and $\psi_{R} \rightarrow \psi_{R}$
In 4 dims sixteen Weyls are needed to cancel off spin- Z_{4} anomaly

$$
\psi_{L} \rightarrow-i \psi_{L} \text { and } \psi_{R} \rightarrow i \psi_{R}
$$

SMG and anomaly cancellation are entwined:
Cannot hope to decouple the mirrors if remaining massless fermions have a non-zero anomaly.

Numerical results: Two dims

Rescale $\chi_{-} \rightarrow \frac{1}{g_{-}} \chi_{-}, \chi_{+} \rightarrow \frac{1}{g_{+}} \chi_{+}$. Set $\mu=\frac{g_{-}}{g_{+}} \rightarrow 0$

$$
\begin{aligned}
\eta \cdot D \chi_{-}+\mu\left(\chi_{+} \Gamma_{A} \chi_{+}\right) & \Gamma_{A} \chi_{+}
\end{aligned}=00
$$

Gaps subsets of fermions:

Odd parity sector weakly coupled
Even sector strongly coupled
(with Goksu Can Toga and Nouman Butt)

Gapping the even states

$$
\begin{gathered}
M=\eta \cdot D+\left(g_{+} P_{+}+g_{-} P_{-}\right) \sigma_{A} \Gamma_{A} \\
<n|\epsilon(x)| n>=<\sum_{x} \phi_{n}(x) \epsilon(x) \phi_{n}(x)>\quad \phi_{n} \text { eigenvector of } \mathrm{M}
\end{gathered}
$$

$\mathrm{D}=2$ apbc $\mathrm{G}=5.0 \mathrm{~g}=0.01 \mathrm{8}^{2}$

(a) $\langle\epsilon(x)>$ vs λ
$\mathrm{D}=2$ apbc $\mathrm{g}=0.01$

(b) Histogram of parity of modes

Most modes have parity $\epsilon(x) \sim \pm 1$ for large g_{+}. $\epsilon=+1$ modes have large eigenvalue. $\epsilon=-1$ modes are light.

No SSB

Add explicit source terms to action with coupling m and examine limit $m \rightarrow 0$ as L increases.

$$
\left.\mathrm{g}=0.01 \mathrm{G}=5.0<\chi^{\mathrm{T}} \Gamma \chi\right\rangle_{\text {odd }}
$$

(a) $<\chi^{\top}(x) \Gamma \chi(x)>$ vs source

$$
\mathrm{g}=0.01 \mathrm{G}=5.0<\Sigma_{\mu} \chi(\mathrm{x}) \chi(\mathrm{x}+\mu)>
$$

(b) $<\sum_{\mu} \xi_{\mu}(x) \epsilon(x) \chi(x) \chi(x+\mu)>$

No sign of symmetry breaking via bilinear condensates on or off site

Key Points

- Strong lattice four fermi interactions appear capable of separating the eigenstates of the lattice parity operator in eigenvalue space. [Compare with DWF setup which separates eigenstates of γ_{5} along 5th dim.]
- In general $\epsilon=-1$ modes are not eigenstates of γ_{5}. However, provided we impose a reality condition on RSF ϵ becomes a proxy for γ_{5} at non-zero lattice spacing and in continuum limit spinors built from χ_{-}have $\gamma_{5}=-1$.
- Absence of spontaneous symmetry breaking consistent with this picture.
- Not clear we need to find new strongly coupled continuous transition. Just drive $g_{+} \rightarrow \infty$ as $L \rightarrow \infty$. Important sector is free and has chiral continuum limit at $g_{-}=0$

More on four dimensions

If SMG happens left with pair of massless Majorana fermions in continuum:

$$
\binom{-\sigma_{2} O_{L}^{*} \sigma_{2}}{O_{L}}
$$

Can write in terms of just pair of Weyl O_{L}. Transform in $(\mathbf{8}, \mathbf{2}, \mathbf{1})$ of $\operatorname{Spin}(7) \times S U(2) \times S U(2)$ global symmetry

Trivial to gauge $\operatorname{Spin}(7)$:

$$
\begin{gathered}
D_{\mu} \chi(x) \rightarrow \frac{1}{2}\left(U_{\mu}(x) \chi(x+\mu)-U_{\mu}^{T}(x-\mu) \chi(x-\mu)\right) \rightarrow \\
\text { where } U_{\mu}(x)=e^{\frac{1}{4}\left[\Gamma_{A}, \Gamma_{B}\right] \omega_{\mu}^{A B}(x)}
\end{gathered}
$$

Interaction term already locally $\operatorname{Spin}(7)$ invariant. Need Wilson term for $U_{\mu}(x)$ too
chiral lattice gauge theory in continuum limit !

Connection to Pati-Salam GUT

Now Higgs $\operatorname{Spin}(7) \rightarrow \operatorname{Spin}(6) \equiv S U(4)$

$$
\text { eg. } \sigma_{A}^{2}=1
$$

fermion rep. $\mathbf{8} \rightarrow \mathbf{4}+\overline{\mathbf{4}}$

Pati Salam GUT:

fermions $(\mathbf{8}, \mathbf{2}, \mathbf{1})_{\mathbf{L}} \xrightarrow{\text { Spin(7) } \rightarrow \operatorname{Spin}(\mathbf{6})}(\mathbf{4}, \mathbf{2}, \mathbf{1})_{\mathbf{L}} \oplus(\mathbf{4}, \mathbf{1}, \mathbf{2})_{\mathbf{R}}$ Notice: charge conjugation flips internal flavor $(2,1) \rightarrow(1,2)$ unbroken symmetry: $S U(4) \times S U(2) \times S U(2)$ matter reps+symmetries of Pati-Salam!

Pati-Salam \rightarrow SM

Leptons as fourth color

$$
\begin{aligned}
& S U(4) \rightarrow S U_{c}(3) \times U(1) \\
& 4 \rightarrow 3+1 \\
& \overline{4} \rightarrow \overline{3}+1 \\
& \text { triplet colored quarks }+1 \text { lepton }
\end{aligned}
$$

Left-right symmetric weak interaction

$$
\begin{aligned}
S U_{W}(2) \times S U_{W^{\prime}}(2) & \rightarrow S U_{W}(2) \\
(2,1)_{L}+(1,2)_{R} & \rightarrow 22_{L}+1_{R}
\end{aligned}
$$

doublet of L fermions and singlet R

Summary

- Reduced (Majorana-like) staggered fermions with carefully chosen Yukawa interactions may realize a mirror model and allow for chiral continuum limit.
- Requires symmetric mass generation (SMG) - non-perturbative physics. Shown evidence in $D=2$.
- A necessary condition for SMG is cancellation of discrete anomalies - continuum limit of lattice model consistent with this ..
- Spin(7) symmetry that arises in the model can be gauged $-\rightarrow$ chiral lattice gauge theory
- Connection to Pati-Salam after breaking $\operatorname{Spin}(7) \rightarrow \operatorname{Spin}(6)$.
- SMG remains to be checked by simulation in $D=4$. Is spectrum really chiral ..? How to tune couplings with L ? Can we decouple chiral modes after switching on gauge interactions ?
- Sign problems likely inevitable - application for QC ?

Thanks!

KD fermions

Generalization of staggered fermions

- Staggered fermions best understood as a discretization of Kähler-Dirac (KD) fermions
- KD equation alternative to Dirac equation. In locally flat backgrounds describes $2^{D / 2}$ degenerate Dirac spinors.

Kähler-Dirac equation

$$
\begin{gathered}
K \Omega=\left(d-d^{\dagger}\right) \Omega=0 \\
\text { Note: } K^{2}=-\square \text {. Thus } K \text { alternative to } \gamma . D . \\
\Omega \text { - collection of forms. }
\end{gathered}
$$

More on Kähler-Dirac

From Kähler-Dirac field $\Omega=\left(\omega_{0}, \omega_{1}, \ldots, \omega_{D}\right)$ form matrix

$$
\Psi=\sum_{p=0}^{D} \omega_{n_{1} \ldots n_{p}(x)} \gamma_{1}^{n_{1}} \gamma_{2}^{n_{2}} \cdots \gamma_{p}^{n_{p}}
$$

Can show that the Kähler-Dirac equation:

$$
\left(d-d^{\dagger}\right) \Omega=0
$$

equivalent to:

$$
\gamma_{\mu} \partial_{\mu} \Psi=0
$$

In $D=4$:
Four copies of Dirac equation where Dirac spinors correspond to columns of Ψ.

Reduced Kähler-Dirac field \equiv real forms.
Implies $\Psi^{\dagger}=\gamma_{2} \Psi^{T} \gamma_{2}$

Staggered fermions off the torus ...

Staggered fermions \rightarrow discrete Kähler-Dirac fermions
16 staggered fields in unit hypercube \rightarrow set of antisymmetric tensors $\Omega=\left(\omega_{0}, \omega_{\mu}, \omega_{\mu \nu}, \ldots \omega_{1234}\right)$ associated with p-simplices in lattice

Staggered Dirac op \rightarrow discrete Kähler-Dirac operator

$$
\eta_{\mu} D_{\mu} \rightarrow K=(\delta-\bar{\delta})
$$

$\delta, \bar{\delta}$ (co-)boundary operators - analogs of d and d^{\dagger} eg. eg. $\delta(p-$ simplex $)=\sum(\pm)$ boundary $(p-1)-$ simplices

Discrete Kähler-Dirac equation

$$
(\delta-\bar{\delta}) \Omega=0 \equiv \text { staggered equation on regular torus }
$$

Valid for any (oriented) random triangulation of any topology. No fermion doubling !

