

LA-UR 21-24214

Flavor diagonal matrix elements require high precision measurements of quark bilinear operators within the nucleon state for both "connected" and "disconnected" 3-point correlation functions,

Nucleon charges g_A , g_T , and g_S obtained from ME $\langle N | \bar{q}_i \Gamma q_j | N \rangle$

Connected

Disconnected

Outline of talk

- Methodology for calculation of 3-point functions very well established
 - Signal in connected versus disconnected
- Removing excited state contributions (ESC)
 - Fits using the spectral decomposition to connected plus disconnected terms
 - What states contribute? Do $N\pi$ states contribute?
- Renormalization
 - Constructing the full mixing matrix
- Chiral-Continuum-Finite-Volume fits

When are n-state ESC fits reliable?

- Spectral decomposition of 3-point function tells us
 - Data for a given τ should be symmetric about $\tau/2$
 - Convergence should be monotonic for large enough τ especially when only "one" excited state contribution is left
 - Only positive parity intermediate states contribute in the fits

All discussion based on Clover-on-HISQ data $a \approx 0.09 fm, M_{\pi} = 135 MeV, M_{\pi}L = 3.9$

- Source-sink time separation $\tau = 8,10,12,14,16 (0.7 \sim 1.4 \text{ fm})$
- 1290/1270 configs
- 128 measurements of connected per config
- 10,000 sources for disconnected loop per config

Also see "anatomy of ESC" in appendix D in arXiv:2103.05599

g_A

- Signal in $g_A^{u,conn}$, $g_A^{d,conn}$, $g_A^{l,disc}$ versus τ improves together
- ESC in g_A^{u-d} adds
 - \Rightarrow Excited-state fits are reasonable
 - \Rightarrow Open issue of contribution of $N\pi$ state. (arXiv:2103.05599)
- ESC in $g_A^{u+d,conn}$ subtracts $\Rightarrow \tau$ dependence hard to resolve
- $g_A^{l,disc}$ converges to a more negative value ≈ -0.1 \Rightarrow Makes the quark contribution to the proton spin smaller

g_T

- ESC in $g_T^{u,conn}$ larger than in $g_T^{d,conn}$ \Rightarrow ESC $g_T^{u,conn}$ dominates all combinations
- ESC in g_T^{u-d} and $g_T^{u+d,conn}$ mainly driven by $g_T^{u,conn}$ \Rightarrow Excited-state fits are reasonable
- $g_T^{l,disc} \sim -0.01$ and noisy

 \Rightarrow A small contribution but makes g_T^{u+d} noisy

 $g_S^{d,conn}$

 $g_{S}^{u+d,conn}$

 g_S^{u-d}

 $g_S^{d,conn}$

 $g_{S}^{u+d,conn}$

 g_S^{u-d}

10

g_s

- ESC in $g_S^{u,conn}$ and $g_S^{d,conn}$ are similar
- ESC in g_S^{u-d} cancels \Rightarrow Excited-state fits need high statistics
- ESC in $g_A^{u+d,conn}$ add $\Rightarrow \tau$ dependence well-resolved
- $g_S^{l,disc}$ has a good signal \Rightarrow Makes a big contribution

without $N\pi$

with $N\pi$

16 —

g_S and the nucleon sigma-term

- Signal in $g_S^{u+d,conn}$ and $g_S^{l,disc}$ is good $\Rightarrow \tau$ dependence well-resolved
- ESC in $g_S^{u+d,total}$ from u, d, disc terms adds
- n-state fits to get the ground state ME are good
- ME (Nucleon σ -term) depends strongly on whether $N\pi$ is included in excited-state fits

- χ^2 are equally good

• χ PT analysis points to significant contribution of $N\pi$ state

Paper in preparation

Z factors in RI-sMOM

2 connected diagrams

4 disconnected diagrams

Work in the (- + s) basis

$$Z_{\Gamma} = \begin{pmatrix} Z_{\Gamma}^{u-d} & 0 & 0 \\ 0 & Z_{\Gamma}^{u+d,u+d} & Z_{\Gamma}^{u+d,s} \\ 0 & Z_{\Gamma}^{s,u+d} & Z_{\Gamma}^{s,s} \end{pmatrix} = \begin{pmatrix} c_{l} & 0 & 0 \\ 0 & c_{l} - 2d_{ll} & -2d_{sl} \\ 0 & -d_{ls} & c_{s} - d_{ss} \end{pmatrix}^{-1}$$

• $c_{f} = \frac{1}{Z_{\psi}^{f}} \operatorname{Tr} \left[\hat{P}_{\Gamma} \langle f | O_{\Gamma}^{f} | f \rangle_{\text{conn}} \right]$
• $d_{ff'} = \frac{-1}{Z_{\psi}^{f}} \operatorname{Tr} \left[\hat{P}_{\Gamma} \langle f | O_{\Gamma}^{f'} | f \rangle_{\text{disc}} \right]$

Z factors in RI-sMOM

Diagonal elements are roughly equal

Axial:
$$Z_A^{u-d,u-d} \sim Z_A^{u+d,u+d} \sim Z_A^{s,s}$$
Tensor: $Z_T^{u-d,u-d} \sim Z_T^{u+d,u+d} \sim Z_T^{s,s}$ Scalar: $Z_S^{u-d,u-d} \sim Z_S^{u+d,u+d} \sim Z_S^{s,s}$

$$Z_{S} = \begin{pmatrix} Z_{S}^{u-d} & 0 & 0 \\ 0 & Z_{S}^{u+d,u+d} & Z_{S}^{u+d,s} \\ 0 & Z_{S}^{s,u+d} & Z_{S}^{s,s} \end{pmatrix} = \begin{pmatrix} 0.92338(5) & 0 & 0 \\ 0 & 0.910(4) & -0.012(3) \\ 0 & -0.007(2) & 0.914(1) \end{pmatrix}$$

Summary

- Higher statistics needed to resolve τ dependence in
 - $\begin{array}{l} g_A^{l,disc} \,, \,\, g_A^{u+d,conn} \\ g_T^{l,disc} \,, \,\, g_T^{u+d,conn} \\ g_S^{u-d,conn} \end{array}$
- Evidence of large contribution of $N\pi$ in ES fits to g_S^{u+d}
- Nucleon σ -term changes from ~40 MeV to ~60 MeV on including the $N\pi$ excited state