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ii) Real-time dynamics of matter (heavy-ion collisions, early universe…)

…and a wealth of dynamical response functions, transport properties, 
hadron distribution functions, and non-equilibrium physics of QCD.
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Simulations based in Standard Model


Both bosonic and fermionic DOF are dynamical 
and coupled, exhibit both global and local (gauge) 
symmetries, relativistic hence non-conservation of 
particle number, vacuum state nontrivial in strongly 
interacting theories.

QUANTUM CHEMISTRY, CM vs. QUANTUM FIELD THEORY:

SOME SIMILARITIES BUT MAJOR DIFFERENCES



Attempts to cast QFT problems in a language 
closer to quantum chemistry and NR simulations:
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Conventional lattice field 
theory program


+

Classical computation

Theory developments

Algorithmic developments

Implementation and benchmark

QUANTUM SIMULATION OF QUANTUM FIELD THEORIES: A MULTI-PRONG EFFORT
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U.-J. Wiese: Ultracold quantum gases and lattice systems: quantum simulation of lattice gauge theories

charge − 1
3 e), while neutrons consist of one u-quark and

two d-quarks. In addition, protons and neutrons con-
tain a fluctuating number of gluons and quark-anti-
quark pairs. The non-Abelian vector potential, Gµ(x) =
ig Ga

µ(x)T a, describing the gluons is constructed from
real-valued fields Ga

µ(x) multiplying the N2 − 1 traceless
Hermitean generators T a of SU(N) — the group of uni-
tary N × N matrices with determinant 1. In the real world
the number of colors is N = 3. For N = 2 the genera-
tors T a = 1

2 σ a are given by the Pauli matrices, while for
N = 3 they are given by the Gell-Mann matrices T a =
1
2 λa. Here g is the strong coupling constant, i.e. the non-
Abelian analog of the elementary electric charge e. The
non-Abelian covariant derivative takes the form

Dµ = ∂µ + Gµ(x) ⇒

Dµi j = ∂µδi j + Gµi j (x) = ∂µδi j + ig Ga
µ(x)T a

i j , (25)

and the gluon field strength tensor is given by

Gµν(x) = ∂µGν(x) − ∂νGµ(x) + [Gµ(x), Gν(x)]. (26)

Unlike photons, which are electrically neutral, gluons
carry color charge. This manifests itself in the non-
Abelian commutator term in Gµν(x), which is absent in
QED. The QCD Lagrangian is invariant under color gauge
transformations &(x) ∈ SU(N) of the quark and gluon
fields

ψ f (x)′ = &(x)ψ f (x) ⇒ ψ f i(x)′ = &i j (x)ψ f j (x),

Gµ(x)′ = &(x)[Gµ(x) + ∂µ]&(x)† ⇒

Gµν(x)′ = &(x)Gµν(x)&(x)†. (27)

It should be pointed out that, unlike Fµν in Abelian gauge
theories, the non-Abelian field strength Gµν is not gauge
invariant. The gluon field couples to the color index i of
the quark field ψ f i(x), but does not distinguish between
quarks of different flavors f , which differ only in their
masses m f .

Quarks and anti-quarks are distinguished by their
baryon numbers B = ± 1

N . In the real world (with N =
3) three quarks form a baryon (e.g. a proton or neu-
tron), while three anti-quarks from an anti-baryon (e.g.
an anti-proton or anti-neutron). Under the global U(1)B

baryon number symmetry the quark fields transform as
ψ f i(x)′ = exp(iα)ψ f i(x), which leaves LQCD invariant. In
the absence of quark masses, i.e. for m f = 0, the QCD
Lagrangian has a global SU(Nf )L × SU(Nf )R chiral sym-
metry acting separately on the left- and right-handed
quark and anti-quark fields. At low temperature, chi-
ral symmetry is spontaneously broken to its vector sub-

group SU(Nf )L=R, known as isospin for Nf = 2. The or-
der parameter for this symmetry breaking is the chiral
condensate 〈ψψ〉 = 〈0|

∑
f,i ψ

f,i
(x)ψ f,i(x)|0〉. Here |0〉 is

the QCD vacuum state, the lowest energy eigenstate in
the sector with baryon number B = 0. According to the
Goldstone theorem, the spontaneous breakdown of chi-
ral symmetry gives rise to N2

f − 1 Goldstone bosons — 3
pions in the Nf = 2 case. In the real world, the masses mu

and md of the up and down quarks are small, but non-
zero, which turns the pions into light, but not exactly
massless, pseudo-Goldstone bosons. Besides the pions,
the QCD spectrum contains other mesons (states with
baryon number B = 0 that contain an equal number of
quarks and anti-quarks), as well as baryon resonances
that decay into nucleons (protons or neutrons) and pi-
ons. Most important, the QCD spectrum does not con-
tain states of isolated quarks or gluons, which are instead
permanently confined inside hadrons.

4.2 Lattice QCD

The standard formulation of lattice QCD is due to Wilson.
He represented the gluon field by parallel transporter
N × N unitary matrices Uxy of determinant 1, that take
values in the non-Abelian color gauge group SU(N), and
are associated with the link connecting nearest neigh-
bor lattice sites x and y. While Wilson originally con-
structed the theory in the Lagrangian formulation, it was
soon expressed by Kogut and Susskind in the Hamilto-
nian formulation [96]. In close analogy to lattice QED,
again using staggered fermions, the lattice QCD Hamil-
tonian takes the form

HQCD = −t
∑

〈xy〉
sxy

(
ψ†

xUxyψy + ψ†
yU†

xyψx
)
+ m

∑

x

sxψ
†
xψx

+ g 2

2

∑

〈xy〉

(
L2

xy + R2
xy

)
− 1

4g 2

∑

!
Tr

(
U! + U†

!
)

.

(28)

Here we are using one “flavor” of staggered fermions with
mass m. Due to fermion doubling, in the continuum limit
this will give rise to multiple fermion species. We have
suppressed the color indices, which in a hopping term
would appear as ψ

†
xUxyψy = ψ i

x
†Ui j

xyψ
j

y . As in the Abelian
case, the plaquette product U! = UwxUxyU†

zyU†
wz repre-

sents the color magnetic field. The color electric field is
described by the flux operators Lxy and Rxy, associated
with the left and right end of the link xy. These non-
Abelian analogs of Exy are operators that take appropri-
ate derivatives with respect to the matrix elements of Uxy.
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Kogut and Susskind formulation:

QUANTUM SIMULATION OF GAUGE FIELD THEORIES: THEORY DEVELOPMENTS

Hamiltonian formalism maybe more natural than the path integral formalism for quantum 
simulation/computation:

Hackett et al, Phys. Rev. 
A 99, 062341 (2019)

ZD, Raychowdhury, and Shaw, 
arXiv:2009.11802 [hep-lat]

SU(2) pure gauge in 3+1 D

in group element basis

SU(2) with matter in 1+1 D

in electric-field basis

SU(3) pure gauge in 2+1 D

in local-irreps basis

Ciavarella, Klco, and Savage, 
arXiv:2101.10227 [quant-ph]

10

FIG. 3. On a grid (left panel) of irreducible representations organized by their dimensionality and plaquette connectivity (as
shown in Fig. 2), support of the the ground state wavefunction  (R), shown for g = 0.5, is localized to low irrep dimensionalities
(center panel). Conjugate irreps appear on the left half of the grid with real irreps appearing along the center vertical. The
right panel shows log (R) on a scaled quadratic grid for visual clarity of the convergence structure.
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FIG. 4. Mass gap (left panel) and vacuum expectation value of the Hermitian magnetic plaquette operator ⇤̂+ ⇤̂† (right panel)
for one plaquette in SU(3) gauge theory as a function of ⇤p, the irrep tensor index truncation. Convergence is demonstrated
for six di↵erent values of the coupling (g = 0.1 to 1). Inset panels show the percent deviation in observables from their values
without truncation. The inset x-axes are squared for visual clarity of the convergence structure.

structure of the irrep-space wavefunction is visually clear.

The exponential localization of the single plaquette wavefunction extends this profitable convergence also to static

and dynamic observables. Figure 4 shows the convergence of the mass gap and the magnetic plaquette operator

expectation value at a range of couplings. Static observables for the unit coupling are found to converge to 10�8

percent of their asymptotic values at a low irrep truncation of ⇤p = 4 up to and including tensor irreps with four

fundamental and four anti-fundamental indices. As g is lowered and the wavefunction disperses in irrep space,

truncation errors naturally become more dramatic. Interestingly, the mass gap demonstrates low g-dependence at

high truncation, ⇤p, throughout the shown coupling range. The insets of Fig. 4 provide convergence information

with tensor index truncations scaled quadratically, as in the right panel of Fig. 3, such that the linear trajectories

experienced at large tensor index truncations express Gaussian-type convergence structure. From these insets, one

can connect necessary quantum resources to the attainable precision of local observables as the weak-coupling limit is

approached. For example, percent-level precision for these quantities at couplings g � 0.3 is expected to be achievable

with ⇤p  10 or equivalently 3-4 qubits per index register. These features are expected to apply to the link-space

localization and convergence on larger lattices of SU(3) gauge theory. This suggests that SU(3) Yang-Mills simulations

in a cubic spatial lattice of extent 10⇥ 10⇥ 10 could be performed with <
⇠ 104 qubits at this coupling.

It is important to keep in mind that our analysis has been performed in the electric basis, and requires increasing
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FIG. 17. The quantity �E0

E0 ⌘
E0

(⇤)�E0
(⇤=8)

E0(⇤)
as a function

of ⇤ for various values of x, and for the 1st, 21st, and 283rd
lowest-lying states in the spectrum of the KS Hamiltonian
in the physical Hilbert space with N = 6 and ⌫ = 1 with
PBC. E

0(⇤) is the scaled energy corresponding to the scaled
Hamiltonian in Eq. (89). The dashed lines denote the first
⇤ values at which the corresponding scaled energies become
equal or less than 10% of their values at ⇤ = 8 (which are
approximated as the ⇤ ! 1 values). When needed for pre-
sentational clarity, the points are artificially displaced along
the horizontal axis by a small amount. The numerical val-
ues associated with these plots are provided in Supplemental
Material.
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E0 ⌘
E0

(⇤)�E0
(⇤=8)

E0(⇤)
as a function of

p
x for given values of ⇤ as denoted in the plots, and for the

1st and 21st states in the spectrum of the KS Hamiltonian
in the physical Hilbert space with N = 6 and ⌫ = 1 with
PBC. E

0(⇤) is the scaled energy corresponding to the scaled
Hamiltonian in Eq. (89). The asymptotic (x ! 1) values of
the quantity, r, are obtained from the fits to data points in
each case with an exponentially varying function of

p
x, and

are denoted in the plots. The colored regions denote the
p

x

values excluded from the fits. The numerical values associated
with these plots are provided in Supplemental Material.

tonian H
0(KS):

H
0(KS)

⌘
2

ag2
H

(KS)

= x

N1X

x=0

⇥
 

†(x)U(x) (x + 1) + h.c.
⇤
+

N2X

x=0

E2(x) + µ

N3X

n=0

(�1)n
 

†(x) (x), (89)

where x = 1

a2g2 , µ = 2m

g2a
, and N1, N2, and N3 are defined

in Sec. II. The limit x ! 0 corresponds to the strong-
coupling limit of the theory, while the limit x ! 1 at a
fixed m

g
provides a trajectory in parameter space along

which the continuum limit can be taken. The matrix el-
ements of this Hamiltonian can be formed using the KS
angular-momentum or LSH bases, giving rise to identical
results in the physical sector, which serves as a strong
check of the newly-developed LSH formulation for the
1+1 D case. While e�cient classical simulations such as
those based on tensor networks have enabled studies of
SU(2) lattice gauge theories with a large number (hun-
dreds) of sites [16, 90–92], enabling the continuum limit
of the results to be taken systematically, such considera-
tions are not the focus of this work. Instead, the aim is

25

▽

▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽
◦ ◦

◦ ◦ ◦ ◦ ◦ ◦

◇

◇ ◇ ◇ ◇ ◇ ◇

0 2 4 6 8

-0.05

0.00

0.05

0.10

Λ

Δ
E n

/E
n

▽

▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽
◦ ◦

◦ ◦ ◦ ◦ ◦ ◦

◇

◇ ◇ ◇ ◇ ◇ ◇

0 2 4 6 8

-0.05

0.00

0.05

0.10

Λ

Δ
E n
/E
n ▽ 1st

◦ 21st

◇ 283rd

▽

▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽
◦ ◦

◦ ◦ ◦ ◦ ◦ ◦

◇

◇ ◇ ◇ ◇ ◇ ◇

0 2 4 6 8

-0.05

0.00

0.05

0.10

Λ

Δ
E n
/E
n ▽ 1st

◦ 21st

◇ 283rd

▽

▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽
◦ ◦

◦ ◦ ◦ ◦ ◦ ◦

◇

◇ ◇ ◇ ◇ ◇ ◇

0 2 4 6 8

-0.05

0.00

0.05

0.10

Λ

Δ
E n
/E
n ▽ 1st

◦ 21st

◇ 283rd

▽

▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽

◦
◦ ◦ ◦ ◦ ◦ ◦ ◦

◇

◇
◇

◇ ◇ ◇ ◇

0 2 4 6 8
-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

Λ

Δ
E n

/E
n

▽

▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽

◦
◦ ◦ ◦ ◦ ◦ ◦ ◦

◇

◇
◇

◇ ◇ ◇ ◇

0 2 4 6 8
-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

Λ

Δ
E n

/E
n

▽

▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽

◦
◦ ◦ ◦ ◦ ◦ ◦ ◦

◇

◇
◇

◇ ◇ ◇ ◇

0 2 4 6 8
-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

Λ

Δ
E n

/E
n

x = 1

x = 25

x = 100

x = 400

�
E

0 /
E

0

⇤

▽

▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽
◦ ◦

◦ ◦ ◦ ◦ ◦ ◦

◇

◇ ◇ ◇ ◇ ◇ ◇

0 2 4 6 8

-0.05

0.00

0.05

0.10

Λ

Δ
E n

/E
n
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of ⇤ for various values of x, and for the 1st, 21st, and 283rd
lowest-lying states in the spectrum of the KS Hamiltonian
in the physical Hilbert space with N = 6 and ⌫ = 1 with
PBC. E

0(⇤) is the scaled energy corresponding to the scaled
Hamiltonian in Eq. (89). The dashed lines denote the first
⇤ values at which the corresponding scaled energies become
equal or less than 10% of their values at ⇤ = 8 (which are
approximated as the ⇤ ! 1 values). When needed for pre-
sentational clarity, the points are artificially displaced along
the horizontal axis by a small amount. The numerical val-
ues associated with these plots are provided in Supplemental
Material.
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in the physical Hilbert space with N = 6 and ⌫ = 1 with
PBC. E

0(⇤) is the scaled energy corresponding to the scaled
Hamiltonian in Eq. (89). The asymptotic (x ! 1) values of
the quantity, r, are obtained from the fits to data points in
each case with an exponentially varying function of
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x, and

are denoted in the plots. The colored regions denote the
p
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values excluded from the fits. The numerical values associated
with these plots are provided in Supplemental Material.
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1+1 D case. While e�cient classical simulations such as
those based on tensor networks have enabled studies of
SU(2) lattice gauge theories with a large number (hun-
dreds) of sites [16, 90–92], enabling the continuum limit
of the results to be taken systematically, such considera-
tions are not the focus of this work. Instead, the aim is

25

▽

▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽
◦ ◦

◦ ◦ ◦ ◦ ◦ ◦

◇

◇ ◇ ◇ ◇ ◇ ◇

0 2 4 6 8

-0.05

0.00

0.05

0.10

Λ

Δ
E n

/E
n

▽

▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽
◦ ◦

◦ ◦ ◦ ◦ ◦ ◦

◇

◇ ◇ ◇ ◇ ◇ ◇

0 2 4 6 8

-0.05

0.00

0.05

0.10

Λ

Δ
E n
/E
n ▽ 1st

◦ 21st

◇ 283rd

▽

▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽
◦ ◦

◦ ◦ ◦ ◦ ◦ ◦

◇

◇ ◇ ◇ ◇ ◇ ◇

0 2 4 6 8

-0.05

0.00

0.05

0.10

Λ

Δ
E n
/E
n ▽ 1st

◦ 21st

◇ 283rd

▽

▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽
◦ ◦

◦ ◦ ◦ ◦ ◦ ◦

◇

◇ ◇ ◇ ◇ ◇ ◇

0 2 4 6 8

-0.05

0.00

0.05

0.10

Λ

Δ
E n
/E
n ▽ 1st

◦ 21st

◇ 283rd

▽

▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽

◦
◦ ◦ ◦ ◦ ◦ ◦ ◦

◇

◇
◇

◇ ◇ ◇ ◇

0 2 4 6 8
-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

Λ

Δ
E n

/E
n

▽

▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽

◦
◦ ◦ ◦ ◦ ◦ ◦ ◦

◇

◇
◇

◇ ◇ ◇ ◇

0 2 4 6 8
-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

Λ

Δ
E n

/E
n

▽

▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽

◦
◦ ◦ ◦ ◦ ◦ ◦ ◦

◇

◇
◇

◇ ◇ ◇ ◇

0 2 4 6 8
-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

Λ

Δ
E n

/E
n

x = 1

x = 25

x = 100

x = 400

�
E

0 /
E

0

⇤

▽

▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽
◦ ◦

◦ ◦ ◦ ◦ ◦ ◦

◇

◇ ◇ ◇ ◇ ◇ ◇

0 2 4 6 8

-0.05

0.00

0.05

0.10

Λ

Δ
E n

/E
n

FIG. 17. The quantity �E0

E0 ⌘
E0

(⇤)�E0
(⇤=8)

E0(⇤)
as a function

of ⇤ for various values of x, and for the 1st, 21st, and 283rd
lowest-lying states in the spectrum of the KS Hamiltonian
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0(⇤) is the scaled energy corresponding to the scaled
Hamiltonian in Eq. (89). The dashed lines denote the first
⇤ values at which the corresponding scaled energies become
equal or less than 10% of their values at ⇤ = 8 (which are
approximated as the ⇤ ! 1 values). When needed for pre-
sentational clarity, the points are artificially displaced along
the horizontal axis by a small amount. The numerical val-
ues associated with these plots are provided in Supplemental
Material.
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FIG. 18. The quantity �E0

E0 ⌘
E0

(⇤)�E0
(⇤=8)

E0(⇤)
as a function of

p
x for given values of ⇤ as denoted in the plots, and for the

1st and 21st states in the spectrum of the KS Hamiltonian
in the physical Hilbert space with N = 6 and ⌫ = 1 with
PBC. E

0(⇤) is the scaled energy corresponding to the scaled
Hamiltonian in Eq. (89). The asymptotic (x ! 1) values of
the quantity, r, are obtained from the fits to data points in
each case with an exponentially varying function of

p
x, and

are denoted in the plots. The colored regions denote the
p

x

values excluded from the fits. The numerical values associated
with these plots are provided in Supplemental Material.

tonian H
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H
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†(x)U(x) (x + 1) + h.c.
⇤
+

N2X
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†(x) (x), (89)

where x = 1

a2g2 , µ = 2m

g2a
, and N1, N2, and N3 are defined

in Sec. II. The limit x ! 0 corresponds to the strong-
coupling limit of the theory, while the limit x ! 1 at a
fixed m

g
provides a trajectory in parameter space along

which the continuum limit can be taken. The matrix el-
ements of this Hamiltonian can be formed using the KS
angular-momentum or LSH bases, giving rise to identical
results in the physical sector, which serves as a strong
check of the newly-developed LSH formulation for the
1+1 D case. While e�cient classical simulations such as
those based on tensor networks have enabled studies of
SU(2) lattice gauge theories with a large number (hun-
dreds) of sites [16, 90–92], enabling the continuum limit
of the results to be taken systematically, such considera-
tions are not the focus of this work. Instead, the aim is
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E0(⇤)
as a function

of ⇤ for various values of x, and for the 1st, 21st, and 283rd
lowest-lying states in the spectrum of the KS Hamiltonian
in the physical Hilbert space with N = 6 and ⌫ = 1 with
PBC. E

0(⇤) is the scaled energy corresponding to the scaled
Hamiltonian in Eq. (89). The dashed lines denote the first
⇤ values at which the corresponding scaled energies become
equal or less than 10% of their values at ⇤ = 8 (which are
approximated as the ⇤ ! 1 values). When needed for pre-
sentational clarity, the points are artificially displaced along
the horizontal axis by a small amount. The numerical val-
ues associated with these plots are provided in Supplemental
Material.
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(⇤=8)

E0(⇤)
as a function of

p
x for given values of ⇤ as denoted in the plots, and for the

1st and 21st states in the spectrum of the KS Hamiltonian
in the physical Hilbert space with N = 6 and ⌫ = 1 with
PBC. E

0(⇤) is the scaled energy corresponding to the scaled
Hamiltonian in Eq. (89). The asymptotic (x ! 1) values of
the quantity, r, are obtained from the fits to data points in
each case with an exponentially varying function of

p
x, and

are denoted in the plots. The colored regions denote the
p

x

values excluded from the fits. The numerical values associated
with these plots are provided in Supplemental Material.
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where x = 1

a2g2 , µ = 2m

g2a
, and N1, N2, and N3 are defined

in Sec. II. The limit x ! 0 corresponds to the strong-
coupling limit of the theory, while the limit x ! 1 at a
fixed m

g
provides a trajectory in parameter space along

which the continuum limit can be taken. The matrix el-
ements of this Hamiltonian can be formed using the KS
angular-momentum or LSH bases, giving rise to identical
results in the physical sector, which serves as a strong
check of the newly-developed LSH formulation for the
1+1 D case. While e�cient classical simulations such as
those based on tensor networks have enabled studies of
SU(2) lattice gauge theories with a large number (hun-
dreds) of sites [16, 90–92], enabling the continuum limit
of the results to be taken systematically, such considera-
tions are not the focus of this work. Instead, the aim is
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plots the relative systematic error induced by
the di↵erent digitization schemes for the data
shown in Fig. 6. The Polyakov loop is close to
zero in the confined phase, and so we see pre-
dominantly noise at lower �s. However, in the
deconfined phase, the curves in Fig. 7 appear
to be flat, indicating that the e↵ect of the dig-
itization for each � value is simply an overall
multiplication by a constant smaller than one.
Figure 8 shows the relative error averaged over
the range 2.4  �  2.6 as a function of bits-
per-link, making it clear that this multiplicative
constant approaches zero as the bits-per-link are
reduced, again consistent with our arguments
in Sec. III B. Figure 8 also shows convergence
to the undigitized result explicitly. Projection
with APR produces less error than with the L2
norm and appears to converge to the undigitized
value quicker, but our data are unable to deter-
mine whether any systematic error survives in
the limit of large bits-per-link for either scheme.
We see no error due to digitization and projec-
tion in the critical value of � where the system
deconfines, a positive indication as projection
should not change the phase dynamics.

Finally, we turn to the static potential. Fig. 9

shows the static potential aV (r) as a function of
distance r/a, computed in the usual lattice QCD
ultrafine digitization. Due to the large lattice
spacing of this ensemble (i.e., the strong bare
coupling), the potential is dominantly linear in
all distance scales in our simulation. Above
r/a ⇡ 6, the data become unreliable due to
the exponentially decreasing signal in the Wil-
son loop as shown in Eq. (5). We restrict our
subsequent discussion and figures to the region
r/a . 6.

Fig. 10 shows the digitization error in the
static potential as a function of distance. The
most interesting feature of this figure is the dis-
tance dependence. For any given mesh size,
within our statistical precision, the error induced
by digitizing V (r) decreases with distance until
saturating around r/a ⇡ 3 where our statistical
error becomes appreciable. It is also worth not-
ing that the static potential gets larger as the
bits-per-link gets smaller, a consequence of the
expectation values of Wilson loops approaching
zero for projections to coarser digitizations. The
APR projection outperforms the L2 projection
at short distances. At longer distances r/a & 3
the situation is not as clear: APR appears to
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charge − 1
3 e), while neutrons consist of one u-quark and

two d-quarks. In addition, protons and neutrons con-
tain a fluctuating number of gluons and quark-anti-
quark pairs. The non-Abelian vector potential, Gµ(x) =
ig Ga

µ(x)T a, describing the gluons is constructed from
real-valued fields Ga

µ(x) multiplying the N2 − 1 traceless
Hermitean generators T a of SU(N) — the group of uni-
tary N × N matrices with determinant 1. In the real world
the number of colors is N = 3. For N = 2 the genera-
tors T a = 1

2 σ a are given by the Pauli matrices, while for
N = 3 they are given by the Gell-Mann matrices T a =
1
2 λa. Here g is the strong coupling constant, i.e. the non-
Abelian analog of the elementary electric charge e. The
non-Abelian covariant derivative takes the form

Dµ = ∂µ + Gµ(x) ⇒

Dµi j = ∂µδi j + Gµi j (x) = ∂µδi j + ig Ga
µ(x)T a

i j , (25)

and the gluon field strength tensor is given by

Gµν(x) = ∂µGν(x) − ∂νGµ(x) + [Gµ(x), Gν(x)]. (26)

Unlike photons, which are electrically neutral, gluons
carry color charge. This manifests itself in the non-
Abelian commutator term in Gµν(x), which is absent in
QED. The QCD Lagrangian is invariant under color gauge
transformations &(x) ∈ SU(N) of the quark and gluon
fields

ψ f (x)′ = &(x)ψ f (x) ⇒ ψ f i(x)′ = &i j (x)ψ f j (x),

Gµ(x)′ = &(x)[Gµ(x) + ∂µ]&(x)† ⇒

Gµν(x)′ = &(x)Gµν(x)&(x)†. (27)

It should be pointed out that, unlike Fµν in Abelian gauge
theories, the non-Abelian field strength Gµν is not gauge
invariant. The gluon field couples to the color index i of
the quark field ψ f i(x), but does not distinguish between
quarks of different flavors f , which differ only in their
masses m f .

Quarks and anti-quarks are distinguished by their
baryon numbers B = ± 1

N . In the real world (with N =
3) three quarks form a baryon (e.g. a proton or neu-
tron), while three anti-quarks from an anti-baryon (e.g.
an anti-proton or anti-neutron). Under the global U(1)B

baryon number symmetry the quark fields transform as
ψ f i(x)′ = exp(iα)ψ f i(x), which leaves LQCD invariant. In
the absence of quark masses, i.e. for m f = 0, the QCD
Lagrangian has a global SU(Nf )L × SU(Nf )R chiral sym-
metry acting separately on the left- and right-handed
quark and anti-quark fields. At low temperature, chi-
ral symmetry is spontaneously broken to its vector sub-

group SU(Nf )L=R, known as isospin for Nf = 2. The or-
der parameter for this symmetry breaking is the chiral
condensate 〈ψψ〉 = 〈0|

∑
f,i ψ

f,i
(x)ψ f,i(x)|0〉. Here |0〉 is

the QCD vacuum state, the lowest energy eigenstate in
the sector with baryon number B = 0. According to the
Goldstone theorem, the spontaneous breakdown of chi-
ral symmetry gives rise to N2

f − 1 Goldstone bosons — 3
pions in the Nf = 2 case. In the real world, the masses mu

and md of the up and down quarks are small, but non-
zero, which turns the pions into light, but not exactly
massless, pseudo-Goldstone bosons. Besides the pions,
the QCD spectrum contains other mesons (states with
baryon number B = 0 that contain an equal number of
quarks and anti-quarks), as well as baryon resonances
that decay into nucleons (protons or neutrons) and pi-
ons. Most important, the QCD spectrum does not con-
tain states of isolated quarks or gluons, which are instead
permanently confined inside hadrons.

4.2 Lattice QCD

The standard formulation of lattice QCD is due to Wilson.
He represented the gluon field by parallel transporter
N × N unitary matrices Uxy of determinant 1, that take
values in the non-Abelian color gauge group SU(N), and
are associated with the link connecting nearest neigh-
bor lattice sites x and y. While Wilson originally con-
structed the theory in the Lagrangian formulation, it was
soon expressed by Kogut and Susskind in the Hamilto-
nian formulation [96]. In close analogy to lattice QED,
again using staggered fermions, the lattice QCD Hamil-
tonian takes the form

HQCD = −t
∑

〈xy〉
sxy

(
ψ†

xUxyψy + ψ†
yU†

xyψx
)
+ m

∑

x

sxψ
†
xψx

+ g 2

2

∑

〈xy〉

(
L2

xy + R2
xy

)
− 1

4g 2

∑

!
Tr

(
U! + U†

!
)

.

(28)

Here we are using one “flavor” of staggered fermions with
mass m. Due to fermion doubling, in the continuum limit
this will give rise to multiple fermion species. We have
suppressed the color indices, which in a hopping term
would appear as ψ

†
xUxyψy = ψ i

x
†Ui j

xyψ
j

y . As in the Abelian
case, the plaquette product U! = UwxUxyU†

zyU†
wz repre-

sents the color magnetic field. The color electric field is
described by the flux operators Lxy and Rxy, associated
with the left and right end of the link xy. These non-
Abelian analogs of Exy are operators that take appropri-
ate derivatives with respect to the matrix elements of Uxy.
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charge − 1
3 e), while neutrons consist of one u-quark and

two d-quarks. In addition, protons and neutrons con-
tain a fluctuating number of gluons and quark-anti-
quark pairs. The non-Abelian vector potential, Gµ(x) =
ig Ga

µ(x)T a, describing the gluons is constructed from
real-valued fields Ga

µ(x) multiplying the N2 − 1 traceless
Hermitean generators T a of SU(N) — the group of uni-
tary N × N matrices with determinant 1. In the real world
the number of colors is N = 3. For N = 2 the genera-
tors T a = 1

2 σ a are given by the Pauli matrices, while for
N = 3 they are given by the Gell-Mann matrices T a =
1
2 λa. Here g is the strong coupling constant, i.e. the non-
Abelian analog of the elementary electric charge e. The
non-Abelian covariant derivative takes the form

Dµ = ∂µ + Gµ(x) ⇒

Dµi j = ∂µδi j + Gµi j (x) = ∂µδi j + ig Ga
µ(x)T a

i j , (25)

and the gluon field strength tensor is given by

Gµν(x) = ∂µGν(x) − ∂νGµ(x) + [Gµ(x), Gν(x)]. (26)

Unlike photons, which are electrically neutral, gluons
carry color charge. This manifests itself in the non-
Abelian commutator term in Gµν(x), which is absent in
QED. The QCD Lagrangian is invariant under color gauge
transformations &(x) ∈ SU(N) of the quark and gluon
fields

ψ f (x)′ = &(x)ψ f (x) ⇒ ψ f i(x)′ = &i j (x)ψ f j (x),

Gµ(x)′ = &(x)[Gµ(x) + ∂µ]&(x)† ⇒

Gµν(x)′ = &(x)Gµν(x)&(x)†. (27)

It should be pointed out that, unlike Fµν in Abelian gauge
theories, the non-Abelian field strength Gµν is not gauge
invariant. The gluon field couples to the color index i of
the quark field ψ f i(x), but does not distinguish between
quarks of different flavors f , which differ only in their
masses m f .

Quarks and anti-quarks are distinguished by their
baryon numbers B = ± 1

N . In the real world (with N =
3) three quarks form a baryon (e.g. a proton or neu-
tron), while three anti-quarks from an anti-baryon (e.g.
an anti-proton or anti-neutron). Under the global U(1)B

baryon number symmetry the quark fields transform as
ψ f i(x)′ = exp(iα)ψ f i(x), which leaves LQCD invariant. In
the absence of quark masses, i.e. for m f = 0, the QCD
Lagrangian has a global SU(Nf )L × SU(Nf )R chiral sym-
metry acting separately on the left- and right-handed
quark and anti-quark fields. At low temperature, chi-
ral symmetry is spontaneously broken to its vector sub-

group SU(Nf )L=R, known as isospin for Nf = 2. The or-
der parameter for this symmetry breaking is the chiral
condensate 〈ψψ〉 = 〈0|

∑
f,i ψ

f,i
(x)ψ f,i(x)|0〉. Here |0〉 is

the QCD vacuum state, the lowest energy eigenstate in
the sector with baryon number B = 0. According to the
Goldstone theorem, the spontaneous breakdown of chi-
ral symmetry gives rise to N2

f − 1 Goldstone bosons — 3
pions in the Nf = 2 case. In the real world, the masses mu

and md of the up and down quarks are small, but non-
zero, which turns the pions into light, but not exactly
massless, pseudo-Goldstone bosons. Besides the pions,
the QCD spectrum contains other mesons (states with
baryon number B = 0 that contain an equal number of
quarks and anti-quarks), as well as baryon resonances
that decay into nucleons (protons or neutrons) and pi-
ons. Most important, the QCD spectrum does not con-
tain states of isolated quarks or gluons, which are instead
permanently confined inside hadrons.

4.2 Lattice QCD

The standard formulation of lattice QCD is due to Wilson.
He represented the gluon field by parallel transporter
N × N unitary matrices Uxy of determinant 1, that take
values in the non-Abelian color gauge group SU(N), and
are associated with the link connecting nearest neigh-
bor lattice sites x and y. While Wilson originally con-
structed the theory in the Lagrangian formulation, it was
soon expressed by Kogut and Susskind in the Hamilto-
nian formulation [96]. In close analogy to lattice QED,
again using staggered fermions, the lattice QCD Hamil-
tonian takes the form

HQCD = −t
∑

〈xy〉
sxy

(
ψ†

xUxyψy + ψ†
yU†

xyψx
)
+ m

∑
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†
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Here we are using one “flavor” of staggered fermions with
mass m. Due to fermion doubling, in the continuum limit
this will give rise to multiple fermion species. We have
suppressed the color indices, which in a hopping term
would appear as ψ

†
xUxyψy = ψ i

x
†Ui j

xyψ
j

y . As in the Abelian
case, the plaquette product U! = UwxUxyU†

zyU†
wz repre-

sents the color magnetic field. The color electric field is
described by the flux operators Lxy and Rxy, associated
with the left and right end of the link xy. These non-
Abelian analogs of Exy are operators that take appropri-
ate derivatives with respect to the matrix elements of Uxy.
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Suppressing the link index xy, the various operators obey
the commutation relations

[La, Lb] = 2i fabc Lc, [Ra, Rb] = 2i fabc Rc,

[La, Rb] = 0, [La, U] = −λaU, [Ra, U] = Uλa. (29)

Operators associated with different links commute
with each other. The Hermitean generators of SU(N)
obey the commutation relation [λa, λb] = 2i fabcλ

c, where
fabc are the structure constants of the SU(N) algebra
and Trλaλb = 2δab. By construction, the Hamiltonian
of Eq. (28) is gauge invariant, i.e. it commutes with
the infinitesimal generators of SU(N) gauge transfor-
mations

Ga
x = ψ i†

x λa
i jψ

j
x +

∑

k

(
La

x,x+k̂ + Ra
x−k̂,x

)
,

[
Ga

x, Gb
y

]
= 2iδxy fabcGc

x. (30)

Again, physical states |$〉 are gauge invariant and must
obey the Gauss law Ga

x|$〉 = 0. A general SU(N) gauge
transformation, %x = exp(iαa

xλ
a), is represented by the

unitary transformation V =
∏

x exp(iαa
x Ga

x), which acts
as

ψ ′
x = V †ψxV = %xψx, ψ†

x
′ = V †ψ†

x V = ψ†
x%

†
x,

U′
xy = V †Uxy V = %xUxy%

†
y. (31)

In Wilson’s lattice gauge theory, the commutation re-
lations of Eq. (29) are realized in an infinite-dimensional
Hilbert space per link. In fact, every link is analogous to
a quantum mechanical “particle” moving in the group
space SU(N), with L2

xy + R2
xy representing the corre-

sponding Laplacian.
In an SU(2) gauge theory the various operators can

be represented by harmonic oscillators [97] (also known
as prepotentials) using bosonic creation and annihila-
tion operators ai†

x,±k and ai
x,±k, which carry a color index

i ∈ {1, 2}. The bosonic operators are associated with the
left and right ends of a link and are labeled by a lattice
point x and a link direction ±k, and one can write

La
xy = ai†

x,+σ a
i ja

j
x,+, Ra

xy = ai†
y,−σ a

i ja
j
y,−,

Uxy = 1
Nxy

(
a2†

x,+ a1
x,+

−a1†
x,+ a2

x,+

) (
a1†

y,− a2†
y,−

a2
y,− −a1

y,−

)

= 1
Nxy

(
a2†

x,+a1†
y,− + a1

x,+a2
y,− a2†

x,+a2†
y,− − a1

x,+a1
y,−

−a1†
x,+a1†

y,− + a2
x,+a2

y,− −a1†
x,+a2†

y,− − a2
x,+a1

y,−

)

.

(32)

Here Nxy = ai†
x,+ai

x,+ = ai†
y,−ai

y,− counts the number of
bosons, which is the same at both ends of the link.
The link operator Uxy changes the number of bosons by
two, by either creating or annihilating a boson on each
end of a link. Since the link Hilbert space is infinite-
dimensional, the total number of bosons can be arbi-
trarily large. In SU(3) gauge theory the construction is
much more involved [98]. Instead of two, it involves four
species of colored bosons per link, which span a Hilbert
space that is larger than the one of the gauge theory. In
order to correct for this, the link operators are no longer
constructed as boson bilinears, but as polynomials of a
higher degree. Even then, the commutation relations of
Eq. (29) are satisfied only in the gauge theory subspace of
the bosonic Hilbert space, and it is not obvious how to re-
strict oneself to that subspace. While there are construc-
tions for quantum simulators using SU(2) prepotentials
[74, 75], it is difficult to imagine that the SU(3) prepoten-
tials of [98] can be implemented in ultracold matter.

Up to now, we have defined the theory on a lattice
with non-zero lattice spacing a, whose inverse 1

a serves as
an ultraviolet momentum cut-off. Ultimately, we want to
take the continuum limit a → 0. This is done by properly
adjusting the bare coupling constant g . We may fix the
overall energy scale by putting t = 1. When we set m = 0,
we are in the chiral limit of massless quarks, which will
lead to a massless Goldstone pion. The bare gauge cou-
pling g is then adjusted in order to take the continuum
limit. This can be done by considering any dimension-
ful physical quantity, for example, the nucleon mass. The
nucleon mass Mn = E1 − E0 is the energy difference be-
tween the ground states of HQCD in the baryon number
1 and 0 sectors. Let us consider the nucleon mass in lat-
tice units, i.e. Mna, as a function of g . Due to the prop-
erty of asymptotic freedom, in the g → 0 limit the nu-
cleon mass behaves as Mna ∼ exp(−β0/g 2), where β0 > 0
is the leading coefficient of the QCD β-function. Keeping
the physical quantity Mn fixed and sending g → 0, one
approaches the continuum limit a → 0. We have thus
traded the dimensionless bare coupling constant g for
a dimensionful physical scale — in this case Mn. In this
process of dimensional transmutation, the scale invari-
ance of the QCD Lagrangian in the massless chiral limit is
explicitly broken by the ultraviolet regulator 1

a . It should
be pointed out that massless QCD does not predict the
value of any dimensionful scale like the nucleon mass.
After all, the nucleon mass, e.g. in units of kilograms, re-
lies on a man-made convention, and essentially reduces
to the question how many protons and neutrons were
deposited near Paris, when the kilogram was defined a
long time ago. However, once an overall energy scale,
e.g. Mn, has been picked, QCD predicts the values of
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charge − 1
3 e), while neutrons consist of one u-quark and

two d-quarks. In addition, protons and neutrons con-
tain a fluctuating number of gluons and quark-anti-
quark pairs. The non-Abelian vector potential, Gµ(x) =
ig Ga

µ(x)T a, describing the gluons is constructed from
real-valued fields Ga

µ(x) multiplying the N2 − 1 traceless
Hermitean generators T a of SU(N) — the group of uni-
tary N × N matrices with determinant 1. In the real world
the number of colors is N = 3. For N = 2 the genera-
tors T a = 1

2 σ a are given by the Pauli matrices, while for
N = 3 they are given by the Gell-Mann matrices T a =
1
2 λa. Here g is the strong coupling constant, i.e. the non-
Abelian analog of the elementary electric charge e. The
non-Abelian covariant derivative takes the form

Dµ = ∂µ + Gµ(x) ⇒

Dµi j = ∂µδi j + Gµi j (x) = ∂µδi j + ig Ga
µ(x)T a

i j , (25)

and the gluon field strength tensor is given by

Gµν(x) = ∂µGν(x) − ∂νGµ(x) + [Gµ(x), Gν(x)]. (26)

Unlike photons, which are electrically neutral, gluons
carry color charge. This manifests itself in the non-
Abelian commutator term in Gµν(x), which is absent in
QED. The QCD Lagrangian is invariant under color gauge
transformations &(x) ∈ SU(N) of the quark and gluon
fields

ψ f (x)′ = &(x)ψ f (x) ⇒ ψ f i(x)′ = &i j (x)ψ f j (x),

Gµ(x)′ = &(x)[Gµ(x) + ∂µ]&(x)† ⇒

Gµν(x)′ = &(x)Gµν(x)&(x)†. (27)

It should be pointed out that, unlike Fµν in Abelian gauge
theories, the non-Abelian field strength Gµν is not gauge
invariant. The gluon field couples to the color index i of
the quark field ψ f i(x), but does not distinguish between
quarks of different flavors f , which differ only in their
masses m f .

Quarks and anti-quarks are distinguished by their
baryon numbers B = ± 1

N . In the real world (with N =
3) three quarks form a baryon (e.g. a proton or neu-
tron), while three anti-quarks from an anti-baryon (e.g.
an anti-proton or anti-neutron). Under the global U(1)B

baryon number symmetry the quark fields transform as
ψ f i(x)′ = exp(iα)ψ f i(x), which leaves LQCD invariant. In
the absence of quark masses, i.e. for m f = 0, the QCD
Lagrangian has a global SU(Nf )L × SU(Nf )R chiral sym-
metry acting separately on the left- and right-handed
quark and anti-quark fields. At low temperature, chi-
ral symmetry is spontaneously broken to its vector sub-

group SU(Nf )L=R, known as isospin for Nf = 2. The or-
der parameter for this symmetry breaking is the chiral
condensate 〈ψψ〉 = 〈0|

∑
f,i ψ

f,i
(x)ψ f,i(x)|0〉. Here |0〉 is

the QCD vacuum state, the lowest energy eigenstate in
the sector with baryon number B = 0. According to the
Goldstone theorem, the spontaneous breakdown of chi-
ral symmetry gives rise to N2

f − 1 Goldstone bosons — 3
pions in the Nf = 2 case. In the real world, the masses mu

and md of the up and down quarks are small, but non-
zero, which turns the pions into light, but not exactly
massless, pseudo-Goldstone bosons. Besides the pions,
the QCD spectrum contains other mesons (states with
baryon number B = 0 that contain an equal number of
quarks and anti-quarks), as well as baryon resonances
that decay into nucleons (protons or neutrons) and pi-
ons. Most important, the QCD spectrum does not con-
tain states of isolated quarks or gluons, which are instead
permanently confined inside hadrons.

4.2 Lattice QCD

The standard formulation of lattice QCD is due to Wilson.
He represented the gluon field by parallel transporter
N × N unitary matrices Uxy of determinant 1, that take
values in the non-Abelian color gauge group SU(N), and
are associated with the link connecting nearest neigh-
bor lattice sites x and y. While Wilson originally con-
structed the theory in the Lagrangian formulation, it was
soon expressed by Kogut and Susskind in the Hamilto-
nian formulation [96]. In close analogy to lattice QED,
again using staggered fermions, the lattice QCD Hamil-
tonian takes the form

HQCD = −t
∑

〈xy〉
sxy

(
ψ†

xUxyψy + ψ†
yU†

xyψx
)
+ m

∑

x

sxψ
†
xψx

+ g 2

2

∑

〈xy〉

(
L2

xy + R2
xy

)
− 1

4g 2

∑

!
Tr

(
U! + U†

!
)

.

(28)

Here we are using one “flavor” of staggered fermions with
mass m. Due to fermion doubling, in the continuum limit
this will give rise to multiple fermion species. We have
suppressed the color indices, which in a hopping term
would appear as ψ

†
xUxyψy = ψ i

x
†Ui j

xyψ
j

y . As in the Abelian
case, the plaquette product U! = UwxUxyU†

zyU†
wz repre-

sents the color magnetic field. The color electric field is
described by the flux operators Lxy and Rxy, associated
with the left and right end of the link xy. These non-
Abelian analogs of Exy are operators that take appropri-
ate derivatives with respect to the matrix elements of Uxy.
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charge − 1
3 e), while neutrons consist of one u-quark and

two d-quarks. In addition, protons and neutrons con-
tain a fluctuating number of gluons and quark-anti-
quark pairs. The non-Abelian vector potential, Gµ(x) =
ig Ga

µ(x)T a, describing the gluons is constructed from
real-valued fields Ga

µ(x) multiplying the N2 − 1 traceless
Hermitean generators T a of SU(N) — the group of uni-
tary N × N matrices with determinant 1. In the real world
the number of colors is N = 3. For N = 2 the genera-
tors T a = 1

2 σ a are given by the Pauli matrices, while for
N = 3 they are given by the Gell-Mann matrices T a =
1
2 λa. Here g is the strong coupling constant, i.e. the non-
Abelian analog of the elementary electric charge e. The
non-Abelian covariant derivative takes the form

Dµ = ∂µ + Gµ(x) ⇒

Dµi j = ∂µδi j + Gµi j (x) = ∂µδi j + ig Ga
µ(x)T a

i j , (25)

and the gluon field strength tensor is given by

Gµν(x) = ∂µGν(x) − ∂νGµ(x) + [Gµ(x), Gν(x)]. (26)

Unlike photons, which are electrically neutral, gluons
carry color charge. This manifests itself in the non-
Abelian commutator term in Gµν(x), which is absent in
QED. The QCD Lagrangian is invariant under color gauge
transformations &(x) ∈ SU(N) of the quark and gluon
fields

ψ f (x)′ = &(x)ψ f (x) ⇒ ψ f i(x)′ = &i j (x)ψ f j (x),

Gµ(x)′ = &(x)[Gµ(x) + ∂µ]&(x)† ⇒

Gµν(x)′ = &(x)Gµν(x)&(x)†. (27)

It should be pointed out that, unlike Fµν in Abelian gauge
theories, the non-Abelian field strength Gµν is not gauge
invariant. The gluon field couples to the color index i of
the quark field ψ f i(x), but does not distinguish between
quarks of different flavors f , which differ only in their
masses m f .

Quarks and anti-quarks are distinguished by their
baryon numbers B = ± 1

N . In the real world (with N =
3) three quarks form a baryon (e.g. a proton or neu-
tron), while three anti-quarks from an anti-baryon (e.g.
an anti-proton or anti-neutron). Under the global U(1)B

baryon number symmetry the quark fields transform as
ψ f i(x)′ = exp(iα)ψ f i(x), which leaves LQCD invariant. In
the absence of quark masses, i.e. for m f = 0, the QCD
Lagrangian has a global SU(Nf )L × SU(Nf )R chiral sym-
metry acting separately on the left- and right-handed
quark and anti-quark fields. At low temperature, chi-
ral symmetry is spontaneously broken to its vector sub-

group SU(Nf )L=R, known as isospin for Nf = 2. The or-
der parameter for this symmetry breaking is the chiral
condensate 〈ψψ〉 = 〈0|

∑
f,i ψ

f,i
(x)ψ f,i(x)|0〉. Here |0〉 is

the QCD vacuum state, the lowest energy eigenstate in
the sector with baryon number B = 0. According to the
Goldstone theorem, the spontaneous breakdown of chi-
ral symmetry gives rise to N2

f − 1 Goldstone bosons — 3
pions in the Nf = 2 case. In the real world, the masses mu

and md of the up and down quarks are small, but non-
zero, which turns the pions into light, but not exactly
massless, pseudo-Goldstone bosons. Besides the pions,
the QCD spectrum contains other mesons (states with
baryon number B = 0 that contain an equal number of
quarks and anti-quarks), as well as baryon resonances
that decay into nucleons (protons or neutrons) and pi-
ons. Most important, the QCD spectrum does not con-
tain states of isolated quarks or gluons, which are instead
permanently confined inside hadrons.

4.2 Lattice QCD

The standard formulation of lattice QCD is due to Wilson.
He represented the gluon field by parallel transporter
N × N unitary matrices Uxy of determinant 1, that take
values in the non-Abelian color gauge group SU(N), and
are associated with the link connecting nearest neigh-
bor lattice sites x and y. While Wilson originally con-
structed the theory in the Lagrangian formulation, it was
soon expressed by Kogut and Susskind in the Hamilto-
nian formulation [96]. In close analogy to lattice QED,
again using staggered fermions, the lattice QCD Hamil-
tonian takes the form

HQCD = −t
∑

〈xy〉
sxy

(
ψ†

xUxyψy + ψ†
yU†

xyψx
)
+ m

∑

x

sxψ
†
xψx

+ g 2

2

∑

〈xy〉
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L2

xy + R2
xy

)
− 1
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(
U! + U†

!
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(28)

Here we are using one “flavor” of staggered fermions with
mass m. Due to fermion doubling, in the continuum limit
this will give rise to multiple fermion species. We have
suppressed the color indices, which in a hopping term
would appear as ψ

†
xUxyψy = ψ i

x
†Ui j

xyψ
j

y . As in the Abelian
case, the plaquette product U! = UwxUxyU†

zyU†
wz repre-

sents the color magnetic field. The color electric field is
described by the flux operators Lxy and Rxy, associated
with the left and right end of the link xy. These non-
Abelian analogs of Exy are operators that take appropri-
ate derivatives with respect to the matrix elements of Uxy.
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Suppressing the link index xy, the various operators obey
the commutation relations

[La, Lb] = 2i fabc Lc, [Ra, Rb] = 2i fabc Rc,

[La, Rb] = 0, [La, U] = −λaU, [Ra, U] = Uλa. (29)

Operators associated with different links commute
with each other. The Hermitean generators of SU(N)
obey the commutation relation [λa, λb] = 2i fabcλ

c, where
fabc are the structure constants of the SU(N) algebra
and Trλaλb = 2δab. By construction, the Hamiltonian
of Eq. (28) is gauge invariant, i.e. it commutes with
the infinitesimal generators of SU(N) gauge transfor-
mations

Ga
x = ψ i†

x λa
i jψ

j
x +

∑

k

(
La

x,x+k̂ + Ra
x−k̂,x

)
,

[
Ga

x, Gb
y

]
= 2iδxy fabcGc

x. (30)

Again, physical states |$〉 are gauge invariant and must
obey the Gauss law Ga

x|$〉 = 0. A general SU(N) gauge
transformation, %x = exp(iαa

xλ
a), is represented by the

unitary transformation V =
∏

x exp(iαa
x Ga

x), which acts
as

ψ ′
x = V †ψxV = %xψx, ψ†

x
′ = V †ψ†

x V = ψ†
x%

†
x,

U′
xy = V †Uxy V = %xUxy%

†
y. (31)

In Wilson’s lattice gauge theory, the commutation re-
lations of Eq. (29) are realized in an infinite-dimensional
Hilbert space per link. In fact, every link is analogous to
a quantum mechanical “particle” moving in the group
space SU(N), with L2

xy + R2
xy representing the corre-

sponding Laplacian.
In an SU(2) gauge theory the various operators can

be represented by harmonic oscillators [97] (also known
as prepotentials) using bosonic creation and annihila-
tion operators ai†

x,±k and ai
x,±k, which carry a color index

i ∈ {1, 2}. The bosonic operators are associated with the
left and right ends of a link and are labeled by a lattice
point x and a link direction ±k, and one can write

La
xy = ai†

x,+σ a
i ja

j
x,+, Ra

xy = ai†
y,−σ a

i ja
j
y,−,

Uxy = 1
Nxy

(
a2†

x,+ a1
x,+

−a1†
x,+ a2

x,+

) (
a1†

y,− a2†
y,−

a2
y,− −a1

y,−

)

= 1
Nxy

(
a2†

x,+a1†
y,− + a1

x,+a2
y,− a2†

x,+a2†
y,− − a1

x,+a1
y,−

−a1†
x,+a1†

y,− + a2
x,+a2

y,− −a1†
x,+a2†

y,− − a2
x,+a1

y,−

)

.

(32)

Here Nxy = ai†
x,+ai

x,+ = ai†
y,−ai

y,− counts the number of
bosons, which is the same at both ends of the link.
The link operator Uxy changes the number of bosons by
two, by either creating or annihilating a boson on each
end of a link. Since the link Hilbert space is infinite-
dimensional, the total number of bosons can be arbi-
trarily large. In SU(3) gauge theory the construction is
much more involved [98]. Instead of two, it involves four
species of colored bosons per link, which span a Hilbert
space that is larger than the one of the gauge theory. In
order to correct for this, the link operators are no longer
constructed as boson bilinears, but as polynomials of a
higher degree. Even then, the commutation relations of
Eq. (29) are satisfied only in the gauge theory subspace of
the bosonic Hilbert space, and it is not obvious how to re-
strict oneself to that subspace. While there are construc-
tions for quantum simulators using SU(2) prepotentials
[74, 75], it is difficult to imagine that the SU(3) prepoten-
tials of [98] can be implemented in ultracold matter.

Up to now, we have defined the theory on a lattice
with non-zero lattice spacing a, whose inverse 1

a serves as
an ultraviolet momentum cut-off. Ultimately, we want to
take the continuum limit a → 0. This is done by properly
adjusting the bare coupling constant g . We may fix the
overall energy scale by putting t = 1. When we set m = 0,
we are in the chiral limit of massless quarks, which will
lead to a massless Goldstone pion. The bare gauge cou-
pling g is then adjusted in order to take the continuum
limit. This can be done by considering any dimension-
ful physical quantity, for example, the nucleon mass. The
nucleon mass Mn = E1 − E0 is the energy difference be-
tween the ground states of HQCD in the baryon number
1 and 0 sectors. Let us consider the nucleon mass in lat-
tice units, i.e. Mna, as a function of g . Due to the prop-
erty of asymptotic freedom, in the g → 0 limit the nu-
cleon mass behaves as Mna ∼ exp(−β0/g 2), where β0 > 0
is the leading coefficient of the QCD β-function. Keeping
the physical quantity Mn fixed and sending g → 0, one
approaches the continuum limit a → 0. We have thus
traded the dimensionless bare coupling constant g for
a dimensionful physical scale — in this case Mn. In this
process of dimensional transmutation, the scale invari-
ance of the QCD Lagrangian in the massless chiral limit is
explicitly broken by the ultraviolet regulator 1

a . It should
be pointed out that massless QCD does not predict the
value of any dimensionful scale like the nucleon mass.
After all, the nucleon mass, e.g. in units of kilograms, re-
lies on a man-made convention, and essentially reduces
to the question how many protons and neutrons were
deposited near Paris, when the kilogram was defined a
long time ago. However, once an overall energy scale,
e.g. Mn, has been picked, QCD predicts the values of
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FIG. 6. The number of states in the physical Hilbert space,
Nstates, within the KS (and LSH) formulation with PBC (a)
and OBC (b) is approximated by epN , and the coe�cient of
the lattice size, N , in the exponent is obtained from fits to the
N dependence of Nstates for several values of ⇤. The expo-
nents approach, with an exponential form, a fixed value, and
the empirical fit to this ⇤ dependence obtains the asymptotic
value of p denoted by the horizontal lines in the plots and
shown in the inset boxes. The uncertainty on these values is
estimated by variations in the fit values when each data point
is removed from the set, one at a time, and the remaining
points are refit. The numerical values associated with these
plots are listed in Appendix B.
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FIG. 7. The number of states in the physical Hilbert space,
Nstates, within the KS (and LSH) formulation with OBC is
approximated by eq⇤, and the coe�cient of the cuto↵ on the
electric-field excitations, ⇤(= 2Jmax), in the exponent is ob-
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in the plot and shown in the inset box. The uncertainty on
this value is estimated by variations in the fit values when
each data point is removed from the set, one at a time, and
the remaining points are refit. The numerical values associ-
ated with these plots are listed in Appendix B.

Hilbert space. The growth of the number of states
to this saturation value at a fixed N can be approx-
imated by an exponential form, Nstates ⇠ e

q⇤. The
coe�cient of ⇤ in the exponent for various values
of N is plotted in Fig. 7 and is seen to asymptote
to a constant value at large N . The fit to this
asymptotic value is shown in the plot. This value
can be used to approximate the number of states
in the physical Hilbert space for an arbitrary large
N and any ⇤. Similarly, the dependence of the
number of states in the physical Hilbert space on
the lattice size can be approximated by an expo-
nential form, Nstate ⇠ e

pN , for a fixed cuto↵, and
up to constant factors and higher order terms in
the exponent. The coe�cient of N in the exponent
asymptotes to a constant value at large ⇤, as shown
in Fig. 6-(b).

. The size of the full Hilbert space before implement-
ing physical constraints can be approximated by

N
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states
(N, ⇤) =
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44 ⇥
X

j

(2j + 1)2

3

5
N

, (68)

with PBC, where j = {0,
1

2
, 1, · · · ,

⇤

2
}. To com-

pare this with the number of states in the physical
Hilbert space with PBC, one can again write the
lattice-size dependence of the number of states as
e
pN . The coe�cient of N in this exponent as a

function of ⇤ can be plotted for both the full and
physical Hilbert space, as is shown in Fig. 8. As is
evident, even for small values of the cuto↵, the full
Hilbert space grows much faster with the system’s
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dence that our technique can also protect the simula-
tion against other types of temporally correlated errors,
such as the 1/f noise commonly found in solid-state de-
vices [11].

In addition, we draw a connection between our sym-
metry protection technique and the quantum Zeno ef-
fect [12–18]. In particular, the symmetry transforma-
tions, when chosen as powers of a unitary, approximately
project the error of simulation into the so-called quan-
tum Zeno subspaces, defined by the eigensubspaces of
the unitary. We prove a bound on the accuracy of this
approximation, exponentially improving a recent result
of Ref. [18].

The structure of the paper is as follows. In Section II,
we introduce the general technique and provides intu-
ition for the source of error reduction. In Section III, we
derive a bound on the error of Trotterization under sym-
metry protection. In Section IV, we then benchmark our
technique in simulating the dynamics of systems with the
Heisenberg interactions, including the XXZ Heisenberg
model with local disorder that displays a transition be-
tween thermalized and many-body localized phases, and
in simulating the Schwinger model in the context of lat-
tice field theories. In particular, we show that interweav-
ing the simulation with random gauge transformations
can significantly reduce the probability of a state leaking
to outside the physical subspace due to the simulation
error, extending the results of Ref. [19] to digital quan-
tum simulation. We then demonstrate in Section V how
our technique may protect the simulation against other
types of coherent, temporally correlated errors, such as
the low-frequency noise typically found in experiments.
Finally, we discuss several open questions in Section VI.

II. GENERAL FRAMEWORK

We consider the task of simulating the time dynam-
ics of a system under a time-independent Hamiltonian
H. Let Ut ⌘ exp(�iHt) denote the evolution unitary
generated by H for time t. Our technique applies to al-
gorithms that simulate Ut by first dividing the evolution
into many time steps (also known as Trotter steps), and
approximate the evolution within each time step by a
series of quantum gates. In this paper, we focus on the
first-order Trotterization algorithm for simplicity. To
be more precise, let r denote the number of steps and
�t = t/r denote the length of each time step. These
algorithms then simulate U�t by a series of elementary
quantum gates S�t, i.e.

Ut = Ur

�t
⇡ Sr

�t
. (1)

The approximation of U�t by S�t introduces an error that
is small for small �t. However, errors typically accumu-
late after many Trotter steps, resulting in a total additive
error kUt � Sr

�t
k that, in the worse case, scales linearly

with the number of Trotter steps r at fixed �t. Equiva-
lently, for a fixed total time t, to reduce the total error,

we would have to decrease the Trotter step size �t, ef-
fectively increasing the number of Trotter steps r, and
thus require more elementary quantum gates to run the
simulation.

We refer to the simulation in Eq. (1) as the raw simu-
lation. By exploiting symmetries of the system, we will
see that we can substantially reduce the total error " of
the simulation without significantly increasing the gate
count, ultimately resulting in faster quantum simulation
for the same total error budget. For that, we assume
that the Hamiltonian is invariant under a group of uni-
tary transformations, which we denote by S. Explicitly,
we assume that

[C,H] = 0 8 C 2 S. (2)

The group S represents a symmetry of the system. In-
stead of simply approximating U�t by the circuit S�t,
we “rotate” each implementation of S�t by a symmetry
transformation Ck 2 S (i = k, . . . , r) so that the approx-
imation in Eq. (1) now reads

Ut ⇡

rY

k=1

C†

k
S�tCk. (3)

We refer to Eq. (3) as a symmetry-protected (SP) simu-
lation. The right-hand side in Eq. (3) represents a cir-
cuit that, at first, looks more expensive than Eq. (1)
due to the additional implementation of the transforma-
tions Ck. However, for the same r, the total error in
Eq. (3) could be much smaller than the Eq. (1). E↵ec-
tively, to meet the same error tolerance, Eq. (3) may re-
quire a much smaller number of steps r, and hence fewer
implementations of S�t, than the raw approximation
in Eq. (1). Moreover, because many symmetries—the
gauge symmetries in lattice field theories for example—
are spatially local, each Ck only involves a small num-
ber of nearest-neighboring qubits and can be imple-
mented easily in most architectures of quantum com-
puters. Other symmetries, such as the one responsible
for the conservation of the total magnetization in the
Heisenberg model, are global but may be implemented
as a product of only single-qubit gates, which are usually
much “cheaper” to perform in experiments than their
multi-qubit counterparts.

In the remainder of this section, we provide some in-
tuition, using lowest-order arguments, for the error re-
duction in simulations under symmetry protection. We
later derive rigorous error bounds in Section III.

A. Lowest-order arguments

To build an intuition for the symmetry protection, we
consider the e↵ective Hamiltonian of the simulation. The
aim of digital quantum simulation is to simulate the time
evolution e�iHt of a Hamiltonian H. Assuming that the
simulation errors are coherent, we may end up with the
time evolution of a di↵erent Hamiltonian, say He↵, that
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This representation allows us to decompose the evolution

e�iH0�te�iH1�t ⇡ e�iH0�t
Y

i

e�
1
4 ix�tAiXiXi+1e�

1
4 ix�tÃiXiXi+1e�

1
4 ix�tAiYiYi+1e�

1
4 ix�tÃiXiXi+1

·e�
1
4 ix�tBiXiYi+1e�

1
4 ix�tB̃iXiYi+1e+

1
4 ix�tBiYiXi+1e+

1
4 ix�tB̃iYiXi+1 ⌘ S�t, (51)

into a product of three-qubit gates that can be readily implemented on quantum computers [34].

Note that the cost of simulating e�
1
4 ixtÃiXiXi+1 is that

of simulating e�
1
4 ixtAiXiXi+1 , plus the cost of simulating

Ui, U
†

i
:

e�
1
4 ix�tÃiXiXi+1 = U†

i
e�

1
4 ix�tAiXiXi+1Ui. (52)

The entire raw first-order Trotterization simulation of
e�iHt becomes

e�iHt
⇡ Sr

�t
. (53)

Similarly to the Heisenberg model, we could protect this
simulation by interweaving the Trotter steps with sym-
metry transformations of the system:

e�iHt
⇡

rY

k=1

C†

k
S�tCk, (54)

where Ck are generated by the gauge operators in
Eq. (46). Specifically, we choose Ck = Ck

0 , where

C0 =
nY

i=1

exp(�i�iGi), (55)

and the angles �i are independently and uniformly cho-
sen at random from [0, 2⇡].

In Fig. 6, we plot the leakage outside the physical sub-
space due to the Trotter error. We use the Schwinger
model with 4 sites and 3 links (all initialized in state
|0i) with and without symmetry protection. We repeat
the simulation 100 times, each with a di↵erent choice
of the transformation angles �i. The figure shows that
the symmetry protection can reduce the leakage by sev-
eral orders of magnitude. In addition, while the leakage
builds up in a raw simulation, it appears to be bounded
during the course of the symmetry-protected simulation.

V. ADDITIONAL PROTECTION AGAINST
EXPERIMENTAL ERRORS

So far, we have demonstrated that symmetries in
quantum systems can be used to suppress the simula-
tion error of the Trotterization algorithm. In this sec-
tion, we discuss how our technique may also protect the
simulation against other types of error, including the ex-
perimental errors that may arise in the implementation
of Trotterization.

In our earlier derivation, we show that the lowest-order
contribution to the total error is

kv0k =
1

r

�����

rX

k=1

C†

k
v0Ck

����� , (56)

where v0 is the lowest-order error from the simulation
algorithm. This derivation applies equally well for the
case when the error v0 comes from sources other than
the approximations in the simulation algorithms.

However, in our analysis, we require that v0 remains
the same for di↵erent steps of the simulation. In other
words, the error v0 for di↵erent Trotter steps are cor-
related in time. In particular, an error with temporal
correlation lengths being longer than the time step �t
would enable us to choose the symmetry transformations
such that the errors from several consecutive steps inter-
fere destructively. Therefore, we expect our technique to
help reduce low-frequency noises, such as the 1/f noise
typically found in solid-state qubit systems.

We provide numerical evidence for this argument by
adding temporally correlated errors to the simulation
of the Schwinger model. Specifically, after each step
k of the simulation, we apply single-qubit rotations
exp(�i⌘ ~� · n̂k) on the system, where ⌘ = 0.01 is a small
angle, around a random axis n̂k. These rotations mimic
the e↵ect of a depolarizing channel and violate the gauge
symmetries, resulting in the state leaking to the unphys-
ical subspace. To impart temporal correlations into this
noise model, we choose the random unit vectors n̂k again
only after every � consecutive Trotter steps. The param-
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Figure 6. The probability for the final state to leak outside
the physical subspace due to Trotter errors in simulating 4-
site Schwinger model. The three bosonic links are simulated
using 3, 4, and 3 qubits (or 8, 16, 8 in Hilbert space di-
mension) respectively. The blue dots are the leakage in the
simulation using the first-order Trotterization without any
symmetry protection. The orange ones correspond the me-
dian leakage in a protected simulation using random rotations
generated by the gauge operators. The orange bar represents
the 25%-75% percentile over 100 simulations.
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Simulating the dynamics of quantum systems is an important application of quantum computers
and has seen a variety of implementations on current hardware. We show that by introducing
quantum gates implementing unitary transformations generated by the symmetries of the system,
one can induce destructive interference between the errors from di↵erent steps of the simulation,
e↵ectively giving faster quantum simulation by symmetry protection. We derive rigorous bounds
on the error of a symmetry-protected simulation algorithm and identify conditions for optimal
symmetry protection. In particular, when the symmetry transformations are chosen as powers of
a unitary, the error of the algorithm is approximately projected to the so-called quantum Zeno
subspaces. We prove a bound on this approximation error, exponentially improving a recent result
of Burgarth, Facchi, Gramegna, and Pascazio. We apply our technique to the simulations of the
XXZ Heisenberg interactions with local disorder and the Schwinger model in quantum field theory.
For both systems, our algorithm can reduce the simulation error by several orders of magnitude over
the unprotected simulation. Finally, we provide numerical evidence suggesting that our technique
can also protect simulation against other types of coherent, temporally correlated errors, such as
the 1/f noise commonly found in solid-state experiments.

I. INTRODUCTION

Simulating the dynamics of quantum systems is a key
application of quantum computers. However, digitaliz-
ing the continuous time evolutions to enable execution
on gate-based and other programmable quantum com-
puters comes with simulation errors that cause the dy-
namics of the systems to deviate from ideal evolutions.
In particular, the errors may violate the symmetries in
the target Hamiltonian for simulation, resulting in un-
physical states at the end of the simulations. This dig-
italization error particularly a↵ects Trotterization—the
most common algorithm for near-term quantum simu-
lations [1–3]—and persists even in more sophisticated,
advanced quantum simulation algorithms [4–6].

In this paper, we propose an approach, using the sym-
metries of target Hamiltonians, to protect the dynamics
of the systems against simulation errors. Given a simula-
tion algorithm that decomposes the dynamics of the sys-
tem into many small time steps (e.g., Trotterization), we
interweave the simulations with unitary transformations
generated by the symmetries of the systems (Fig. 1).
While these additional unitary transformations increase
the gate complexity of the simulation, the error of the
simulation can sometimes be reduced by several orders
of magnitude, ultimately resulting in a faster quantum
simulation. In addition, depending on the symmetries,
the unitary transformations may be implemented using
only single-qubit gates, which are considered relatively
inexpensive for implementations on near-term quantum

computers.
Our technique is general and potentially applies to any

algorithms that simulate the time evolution of Hamilto-
nians with symmetries by splitting the evolution into
many time segments, including Trotterization and the
higher-order product formulas [4] and more advanced
algorithms such as those based on linear combinations
of unitaries [5, 6], Lieb-Robinson bounds [7, 8], and
randomized compilations [9, 10]. We also provide evi-

Figure 1. For algorithms that simulate the dynamics of quan-
tum systems by decomposing the evolutions into many time
steps, we interweave the corresponding simulation circuits
(blue) with unitary transformations generated by the symme-
tries of the systems (orange). These transformations protect
the simulations against errors that violate the symmetries,
resulting in faster and more accurate simulations.
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consider the e↵ective Hamiltonian of the simulation. The
aim of digital quantum simulation is to simulate the time
evolution e�iHt of a Hamiltonian H. Assuming that the
simulation errors are coherent, we may end up with the
time evolution of a di↵erent Hamiltonian, say He↵, that
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vices [11].
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metry protection technique and the quantum Zeno ef-
fect [12–18]. In particular, the symmetry transforma-
tions, when chosen as powers of a unitary, approximately
project the error of simulation into the so-called quan-
tum Zeno subspaces, defined by the eigensubspaces of
the unitary. We prove a bound on the accuracy of this
approximation, exponentially improving a recent result
of Ref. [18].

The structure of the paper is as follows. In Section II,
we introduce the general technique and provides intu-
ition for the source of error reduction. In Section III, we
derive a bound on the error of Trotterization under sym-
metry protection. In Section IV, we then benchmark our
technique in simulating the dynamics of systems with the
Heisenberg interactions, including the XXZ Heisenberg
model with local disorder that displays a transition be-
tween thermalized and many-body localized phases, and
in simulating the Schwinger model in the context of lat-
tice field theories. In particular, we show that interweav-
ing the simulation with random gauge transformations
can significantly reduce the probability of a state leaking
to outside the physical subspace due to the simulation
error, extending the results of Ref. [19] to digital quan-
tum simulation. We then demonstrate in Section V how
our technique may protect the simulation against other
types of coherent, temporally correlated errors, such as
the low-frequency noise typically found in experiments.
Finally, we discuss several open questions in Section VI.

II. GENERAL FRAMEWORK

We consider the task of simulating the time dynam-
ics of a system under a time-independent Hamiltonian
H. Let Ut ⌘ exp(�iHt) denote the evolution unitary
generated by H for time t. Our technique applies to al-
gorithms that simulate Ut by first dividing the evolution
into many time steps (also known as Trotter steps), and
approximate the evolution within each time step by a
series of quantum gates. In this paper, we focus on the
first-order Trotterization algorithm for simplicity. To
be more precise, let r denote the number of steps and
�t = t/r denote the length of each time step. These
algorithms then simulate U�t by a series of elementary
quantum gates S�t, i.e.

Ut = Ur

�t
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�t
. (1)

The approximation of U�t by S�t introduces an error that
is small for small �t. However, errors typically accumu-
late after many Trotter steps, resulting in a total additive
error kUt � Sr

�t
k that, in the worse case, scales linearly

with the number of Trotter steps r at fixed �t. Equiva-
lently, for a fixed total time t, to reduce the total error,

we would have to decrease the Trotter step size �t, ef-
fectively increasing the number of Trotter steps r, and
thus require more elementary quantum gates to run the
simulation.

We refer to the simulation in Eq. (1) as the raw simu-
lation. By exploiting symmetries of the system, we will
see that we can substantially reduce the total error " of
the simulation without significantly increasing the gate
count, ultimately resulting in faster quantum simulation
for the same total error budget. For that, we assume
that the Hamiltonian is invariant under a group of uni-
tary transformations, which we denote by S. Explicitly,
we assume that

[C,H] = 0 8 C 2 S. (2)

The group S represents a symmetry of the system. In-
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in Eq. (1). Moreover, because many symmetries—the
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ber of nearest-neighboring qubits and can be imple-
mented easily in most architectures of quantum com-
puters. Other symmetries, such as the one responsible
for the conservation of the total magnetization in the
Heisenberg model, are global but may be implemented
as a product of only single-qubit gates, which are usually
much “cheaper” to perform in experiments than their
multi-qubit counterparts.

In the remainder of this section, we provide some in-
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This representation allows us to decompose the evolution

e�iH0�te�iH1�t ⇡ e�iH0�t
Y

i

e�
1
4 ix�tAiXiXi+1e�

1
4 ix�tÃiXiXi+1e�

1
4 ix�tAiYiYi+1e�

1
4 ix�tÃiXiXi+1

·e�
1
4 ix�tBiXiYi+1e�

1
4 ix�tB̃iXiYi+1e+

1
4 ix�tBiYiXi+1e+

1
4 ix�tB̃iYiXi+1 ⌘ S�t, (51)

into a product of three-qubit gates that can be readily implemented on quantum computers [34].

Note that the cost of simulating e�
1
4 ixtÃiXiXi+1 is that

of simulating e�
1
4 ixtAiXiXi+1 , plus the cost of simulating

Ui, U
†

i
:

e�
1
4 ix�tÃiXiXi+1 = U†

i
e�

1
4 ix�tAiXiXi+1Ui. (52)

The entire raw first-order Trotterization simulation of
e�iHt becomes

e�iHt
⇡ Sr

�t
. (53)

Similarly to the Heisenberg model, we could protect this
simulation by interweaving the Trotter steps with sym-
metry transformations of the system:

e�iHt
⇡

rY

k=1

C†

k
S�tCk, (54)

where Ck are generated by the gauge operators in
Eq. (46). Specifically, we choose Ck = Ck

0 , where

C0 =
nY

i=1

exp(�i�iGi), (55)

and the angles �i are independently and uniformly cho-
sen at random from [0, 2⇡].

In Fig. 6, we plot the leakage outside the physical sub-
space due to the Trotter error. We use the Schwinger
model with 4 sites and 3 links (all initialized in state
|0i) with and without symmetry protection. We repeat
the simulation 100 times, each with a di↵erent choice
of the transformation angles �i. The figure shows that
the symmetry protection can reduce the leakage by sev-
eral orders of magnitude. In addition, while the leakage
builds up in a raw simulation, it appears to be bounded
during the course of the symmetry-protected simulation.

V. ADDITIONAL PROTECTION AGAINST
EXPERIMENTAL ERRORS

So far, we have demonstrated that symmetries in
quantum systems can be used to suppress the simula-
tion error of the Trotterization algorithm. In this sec-
tion, we discuss how our technique may also protect the
simulation against other types of error, including the ex-
perimental errors that may arise in the implementation
of Trotterization.

In our earlier derivation, we show that the lowest-order
contribution to the total error is

kv0k =
1

r

�����

rX

k=1

C†

k
v0Ck

����� , (56)

where v0 is the lowest-order error from the simulation
algorithm. This derivation applies equally well for the
case when the error v0 comes from sources other than
the approximations in the simulation algorithms.

However, in our analysis, we require that v0 remains
the same for di↵erent steps of the simulation. In other
words, the error v0 for di↵erent Trotter steps are cor-
related in time. In particular, an error with temporal
correlation lengths being longer than the time step �t
would enable us to choose the symmetry transformations
such that the errors from several consecutive steps inter-
fere destructively. Therefore, we expect our technique to
help reduce low-frequency noises, such as the 1/f noise
typically found in solid-state qubit systems.

We provide numerical evidence for this argument by
adding temporally correlated errors to the simulation
of the Schwinger model. Specifically, after each step
k of the simulation, we apply single-qubit rotations
exp(�i⌘ ~� · n̂k) on the system, where ⌘ = 0.01 is a small
angle, around a random axis n̂k. These rotations mimic
the e↵ect of a depolarizing channel and violate the gauge
symmetries, resulting in the state leaking to the unphys-
ical subspace. To impart temporal correlations into this
noise model, we choose the random unit vectors n̂k again
only after every � consecutive Trotter steps. The param-
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Figure 6. The probability for the final state to leak outside
the physical subspace due to Trotter errors in simulating 4-
site Schwinger model. The three bosonic links are simulated
using 3, 4, and 3 qubits (or 8, 16, 8 in Hilbert space di-
mension) respectively. The blue dots are the leakage in the
simulation using the first-order Trotterization without any
symmetry protection. The orange ones correspond the me-
dian leakage in a protected simulation using random rotations
generated by the gauge operators. The orange bar represents
the 25%-75% percentile over 100 simulations.
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Simulating the dynamics of quantum systems is an important application of quantum computers
and has seen a variety of implementations on current hardware. We show that by introducing
quantum gates implementing unitary transformations generated by the symmetries of the system,
one can induce destructive interference between the errors from di↵erent steps of the simulation,
e↵ectively giving faster quantum simulation by symmetry protection. We derive rigorous bounds
on the error of a symmetry-protected simulation algorithm and identify conditions for optimal
symmetry protection. In particular, when the symmetry transformations are chosen as powers of
a unitary, the error of the algorithm is approximately projected to the so-called quantum Zeno
subspaces. We prove a bound on this approximation error, exponentially improving a recent result
of Burgarth, Facchi, Gramegna, and Pascazio. We apply our technique to the simulations of the
XXZ Heisenberg interactions with local disorder and the Schwinger model in quantum field theory.
For both systems, our algorithm can reduce the simulation error by several orders of magnitude over
the unprotected simulation. Finally, we provide numerical evidence suggesting that our technique
can also protect simulation against other types of coherent, temporally correlated errors, such as
the 1/f noise commonly found in solid-state experiments.

I. INTRODUCTION

Simulating the dynamics of quantum systems is a key
application of quantum computers. However, digitaliz-
ing the continuous time evolutions to enable execution
on gate-based and other programmable quantum com-
puters comes with simulation errors that cause the dy-
namics of the systems to deviate from ideal evolutions.
In particular, the errors may violate the symmetries in
the target Hamiltonian for simulation, resulting in un-
physical states at the end of the simulations. This dig-
italization error particularly a↵ects Trotterization—the
most common algorithm for near-term quantum simu-
lations [1–3]—and persists even in more sophisticated,
advanced quantum simulation algorithms [4–6].

In this paper, we propose an approach, using the sym-
metries of target Hamiltonians, to protect the dynamics
of the systems against simulation errors. Given a simula-
tion algorithm that decomposes the dynamics of the sys-
tem into many small time steps (e.g., Trotterization), we
interweave the simulations with unitary transformations
generated by the symmetries of the systems (Fig. 1).
While these additional unitary transformations increase
the gate complexity of the simulation, the error of the
simulation can sometimes be reduced by several orders
of magnitude, ultimately resulting in a faster quantum
simulation. In addition, depending on the symmetries,
the unitary transformations may be implemented using
only single-qubit gates, which are considered relatively
inexpensive for implementations on near-term quantum

computers.
Our technique is general and potentially applies to any

algorithms that simulate the time evolution of Hamilto-
nians with symmetries by splitting the evolution into
many time segments, including Trotterization and the
higher-order product formulas [4] and more advanced
algorithms such as those based on linear combinations
of unitaries [5, 6], Lieb-Robinson bounds [7, 8], and
randomized compilations [9, 10]. We also provide evi-

Figure 1. For algorithms that simulate the dynamics of quan-
tum systems by decomposing the evolutions into many time
steps, we interweave the corresponding simulation circuits
(blue) with unitary transformations generated by the symme-
tries of the systems (orange). These transformations protect
the simulations against errors that violate the symmetries,
resulting in faster and more accurate simulations.
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dence that our technique can also protect the simula-
tion against other types of temporally correlated errors,
such as the 1/f noise commonly found in solid-state de-
vices [11].

In addition, we draw a connection between our sym-
metry protection technique and the quantum Zeno ef-
fect [12–18]. In particular, the symmetry transforma-
tions, when chosen as powers of a unitary, approximately
project the error of simulation into the so-called quan-
tum Zeno subspaces, defined by the eigensubspaces of
the unitary. We prove a bound on the accuracy of this
approximation, exponentially improving a recent result
of Ref. [18].

The structure of the paper is as follows. In Section II,
we introduce the general technique and provides intu-
ition for the source of error reduction. In Section III, we
derive a bound on the error of Trotterization under sym-
metry protection. In Section IV, we then benchmark our
technique in simulating the dynamics of systems with the
Heisenberg interactions, including the XXZ Heisenberg
model with local disorder that displays a transition be-
tween thermalized and many-body localized phases, and
in simulating the Schwinger model in the context of lat-
tice field theories. In particular, we show that interweav-
ing the simulation with random gauge transformations
can significantly reduce the probability of a state leaking
to outside the physical subspace due to the simulation
error, extending the results of Ref. [19] to digital quan-
tum simulation. We then demonstrate in Section V how
our technique may protect the simulation against other
types of coherent, temporally correlated errors, such as
the low-frequency noise typically found in experiments.
Finally, we discuss several open questions in Section VI.

II. GENERAL FRAMEWORK

We consider the task of simulating the time dynam-
ics of a system under a time-independent Hamiltonian
H. Let Ut ⌘ exp(�iHt) denote the evolution unitary
generated by H for time t. Our technique applies to al-
gorithms that simulate Ut by first dividing the evolution
into many time steps (also known as Trotter steps), and
approximate the evolution within each time step by a
series of quantum gates. In this paper, we focus on the
first-order Trotterization algorithm for simplicity. To
be more precise, let r denote the number of steps and
�t = t/r denote the length of each time step. These
algorithms then simulate U�t by a series of elementary
quantum gates S�t, i.e.

Ut = Ur

�t
⇡ Sr

�t
. (1)

The approximation of U�t by S�t introduces an error that
is small for small �t. However, errors typically accumu-
late after many Trotter steps, resulting in a total additive
error kUt � Sr

�t
k that, in the worse case, scales linearly

with the number of Trotter steps r at fixed �t. Equiva-
lently, for a fixed total time t, to reduce the total error,

we would have to decrease the Trotter step size �t, ef-
fectively increasing the number of Trotter steps r, and
thus require more elementary quantum gates to run the
simulation.

We refer to the simulation in Eq. (1) as the raw simu-
lation. By exploiting symmetries of the system, we will
see that we can substantially reduce the total error " of
the simulation without significantly increasing the gate
count, ultimately resulting in faster quantum simulation
for the same total error budget. For that, we assume
that the Hamiltonian is invariant under a group of uni-
tary transformations, which we denote by S. Explicitly,
we assume that

[C,H] = 0 8 C 2 S. (2)

The group S represents a symmetry of the system. In-
stead of simply approximating U�t by the circuit S�t,
we “rotate” each implementation of S�t by a symmetry
transformation Ck 2 S (i = k, . . . , r) so that the approx-
imation in Eq. (1) now reads

Ut ⇡

rY

k=1

C†

k
S�tCk. (3)

We refer to Eq. (3) as a symmetry-protected (SP) simu-
lation. The right-hand side in Eq. (3) represents a cir-
cuit that, at first, looks more expensive than Eq. (1)
due to the additional implementation of the transforma-
tions Ck. However, for the same r, the total error in
Eq. (3) could be much smaller than the Eq. (1). E↵ec-
tively, to meet the same error tolerance, Eq. (3) may re-
quire a much smaller number of steps r, and hence fewer
implementations of S�t, than the raw approximation
in Eq. (1). Moreover, because many symmetries—the
gauge symmetries in lattice field theories for example—
are spatially local, each Ck only involves a small num-
ber of nearest-neighboring qubits and can be imple-
mented easily in most architectures of quantum com-
puters. Other symmetries, such as the one responsible
for the conservation of the total magnetization in the
Heisenberg model, are global but may be implemented
as a product of only single-qubit gates, which are usually
much “cheaper” to perform in experiments than their
multi-qubit counterparts.

In the remainder of this section, we provide some in-
tuition, using lowest-order arguments, for the error re-
duction in simulations under symmetry protection. We
later derive rigorous error bounds in Section III.

A. Lowest-order arguments

To build an intuition for the symmetry protection, we
consider the e↵ective Hamiltonian of the simulation. The
aim of digital quantum simulation is to simulate the time
evolution e�iHt of a Hamiltonian H. Assuming that the
simulation errors are coherent, we may end up with the
time evolution of a di↵erent Hamiltonian, say He↵, that

2

dence that our technique can also protect the simula-
tion against other types of temporally correlated errors,
such as the 1/f noise commonly found in solid-state de-
vices [11].

In addition, we draw a connection between our sym-
metry protection technique and the quantum Zeno ef-
fect [12–18]. In particular, the symmetry transforma-
tions, when chosen as powers of a unitary, approximately
project the error of simulation into the so-called quan-
tum Zeno subspaces, defined by the eigensubspaces of
the unitary. We prove a bound on the accuracy of this
approximation, exponentially improving a recent result
of Ref. [18].

The structure of the paper is as follows. In Section II,
we introduce the general technique and provides intu-
ition for the source of error reduction. In Section III, we
derive a bound on the error of Trotterization under sym-
metry protection. In Section IV, we then benchmark our
technique in simulating the dynamics of systems with the
Heisenberg interactions, including the XXZ Heisenberg
model with local disorder that displays a transition be-
tween thermalized and many-body localized phases, and
in simulating the Schwinger model in the context of lat-
tice field theories. In particular, we show that interweav-
ing the simulation with random gauge transformations
can significantly reduce the probability of a state leaking
to outside the physical subspace due to the simulation
error, extending the results of Ref. [19] to digital quan-
tum simulation. We then demonstrate in Section V how
our technique may protect the simulation against other
types of coherent, temporally correlated errors, such as
the low-frequency noise typically found in experiments.
Finally, we discuss several open questions in Section VI.

II. GENERAL FRAMEWORK

We consider the task of simulating the time dynam-
ics of a system under a time-independent Hamiltonian
H. Let Ut ⌘ exp(�iHt) denote the evolution unitary
generated by H for time t. Our technique applies to al-
gorithms that simulate Ut by first dividing the evolution
into many time steps (also known as Trotter steps), and
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we would have to decrease the Trotter step size �t, ef-
fectively increasing the number of Trotter steps r, and
thus require more elementary quantum gates to run the
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see that we can substantially reduce the total error " of
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count, ultimately resulting in faster quantum simulation
for the same total error budget. For that, we assume
that the Hamiltonian is invariant under a group of uni-
tary transformations, which we denote by S. Explicitly,
we assume that
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The group S represents a symmetry of the system. In-
stead of simply approximating U�t by the circuit S�t,
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imation in Eq. (1) now reads
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We refer to Eq. (3) as a symmetry-protected (SP) simu-
lation. The right-hand side in Eq. (3) represents a cir-
cuit that, at first, looks more expensive than Eq. (1)
due to the additional implementation of the transforma-
tions Ck. However, for the same r, the total error in
Eq. (3) could be much smaller than the Eq. (1). E↵ec-
tively, to meet the same error tolerance, Eq. (3) may re-
quire a much smaller number of steps r, and hence fewer
implementations of S�t, than the raw approximation
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This representation allows us to decompose the evolution
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into a product of three-qubit gates that can be readily implemented on quantum computers [34].

Note that the cost of simulating e�
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4 ixtÃiXiXi+1 is that

of simulating e�
1
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e�iHt becomes

e�iHt
⇡ Sr

�t
. (53)

Similarly to the Heisenberg model, we could protect this
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where Ck are generated by the gauge operators in
Eq. (46). Specifically, we choose Ck = Ck
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and the angles �i are independently and uniformly cho-
sen at random from [0, 2⇡].

In Fig. 6, we plot the leakage outside the physical sub-
space due to the Trotter error. We use the Schwinger
model with 4 sites and 3 links (all initialized in state
|0i) with and without symmetry protection. We repeat
the simulation 100 times, each with a di↵erent choice
of the transformation angles �i. The figure shows that
the symmetry protection can reduce the leakage by sev-
eral orders of magnitude. In addition, while the leakage
builds up in a raw simulation, it appears to be bounded
during the course of the symmetry-protected simulation.

V. ADDITIONAL PROTECTION AGAINST
EXPERIMENTAL ERRORS

So far, we have demonstrated that symmetries in
quantum systems can be used to suppress the simula-
tion error of the Trotterization algorithm. In this sec-
tion, we discuss how our technique may also protect the
simulation against other types of error, including the ex-
perimental errors that may arise in the implementation
of Trotterization.

In our earlier derivation, we show that the lowest-order
contribution to the total error is
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k
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where v0 is the lowest-order error from the simulation
algorithm. This derivation applies equally well for the
case when the error v0 comes from sources other than
the approximations in the simulation algorithms.

However, in our analysis, we require that v0 remains
the same for di↵erent steps of the simulation. In other
words, the error v0 for di↵erent Trotter steps are cor-
related in time. In particular, an error with temporal
correlation lengths being longer than the time step �t
would enable us to choose the symmetry transformations
such that the errors from several consecutive steps inter-
fere destructively. Therefore, we expect our technique to
help reduce low-frequency noises, such as the 1/f noise
typically found in solid-state qubit systems.

We provide numerical evidence for this argument by
adding temporally correlated errors to the simulation
of the Schwinger model. Specifically, after each step
k of the simulation, we apply single-qubit rotations
exp(�i⌘ ~� · n̂k) on the system, where ⌘ = 0.01 is a small
angle, around a random axis n̂k. These rotations mimic
the e↵ect of a depolarizing channel and violate the gauge
symmetries, resulting in the state leaking to the unphys-
ical subspace. To impart temporal correlations into this
noise model, we choose the random unit vectors n̂k again
only after every � consecutive Trotter steps. The param-

10
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10
-7

10
-6

10
-5

Figure 6. The probability for the final state to leak outside
the physical subspace due to Trotter errors in simulating 4-
site Schwinger model. The three bosonic links are simulated
using 3, 4, and 3 qubits (or 8, 16, 8 in Hilbert space di-
mension) respectively. The blue dots are the leakage in the
simulation using the first-order Trotterization without any
symmetry protection. The orange ones correspond the me-
dian leakage in a protected simulation using random rotations
generated by the gauge operators. The orange bar represents
the 25%-75% percentile over 100 simulations.
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Simulating the dynamics of quantum systems is an important application of quantum computers
and has seen a variety of implementations on current hardware. We show that by introducing
quantum gates implementing unitary transformations generated by the symmetries of the system,
one can induce destructive interference between the errors from di↵erent steps of the simulation,
e↵ectively giving faster quantum simulation by symmetry protection. We derive rigorous bounds
on the error of a symmetry-protected simulation algorithm and identify conditions for optimal
symmetry protection. In particular, when the symmetry transformations are chosen as powers of
a unitary, the error of the algorithm is approximately projected to the so-called quantum Zeno
subspaces. We prove a bound on this approximation error, exponentially improving a recent result
of Burgarth, Facchi, Gramegna, and Pascazio. We apply our technique to the simulations of the
XXZ Heisenberg interactions with local disorder and the Schwinger model in quantum field theory.
For both systems, our algorithm can reduce the simulation error by several orders of magnitude over
the unprotected simulation. Finally, we provide numerical evidence suggesting that our technique
can also protect simulation against other types of coherent, temporally correlated errors, such as
the 1/f noise commonly found in solid-state experiments.

I. INTRODUCTION

Simulating the dynamics of quantum systems is a key
application of quantum computers. However, digitaliz-
ing the continuous time evolutions to enable execution
on gate-based and other programmable quantum com-
puters comes with simulation errors that cause the dy-
namics of the systems to deviate from ideal evolutions.
In particular, the errors may violate the symmetries in
the target Hamiltonian for simulation, resulting in un-
physical states at the end of the simulations. This dig-
italization error particularly a↵ects Trotterization—the
most common algorithm for near-term quantum simu-
lations [1–3]—and persists even in more sophisticated,
advanced quantum simulation algorithms [4–6].

In this paper, we propose an approach, using the sym-
metries of target Hamiltonians, to protect the dynamics
of the systems against simulation errors. Given a simula-
tion algorithm that decomposes the dynamics of the sys-
tem into many small time steps (e.g., Trotterization), we
interweave the simulations with unitary transformations
generated by the symmetries of the systems (Fig. 1).
While these additional unitary transformations increase
the gate complexity of the simulation, the error of the
simulation can sometimes be reduced by several orders
of magnitude, ultimately resulting in a faster quantum
simulation. In addition, depending on the symmetries,
the unitary transformations may be implemented using
only single-qubit gates, which are considered relatively
inexpensive for implementations on near-term quantum

computers.
Our technique is general and potentially applies to any

algorithms that simulate the time evolution of Hamilto-
nians with symmetries by splitting the evolution into
many time segments, including Trotterization and the
higher-order product formulas [4] and more advanced
algorithms such as those based on linear combinations
of unitaries [5, 6], Lieb-Robinson bounds [7, 8], and
randomized compilations [9, 10]. We also provide evi-

Figure 1. For algorithms that simulate the dynamics of quan-
tum systems by decomposing the evolutions into many time
steps, we interweave the corresponding simulation circuits
(blue) with unitary transformations generated by the symme-
tries of the systems (orange). These transformations protect
the simulations against errors that violate the symmetries,
resulting in faster and more accurate simulations.
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IN FACT MANY MANY MORE FORMULATIONS EXIST, EACH WITH ITS OWN PROS AND CONS:

Group-element representation

Zohar et al; Lamm et al

Manifold lattices 

Buser et al

Spin-dual representation 
and hydrogen atom basis

Mathur et al

Fermionic basis

Hamer et al; Martinez 
et al; Banuls et al

Bosonic basis

Cirac and Zohar

Link models and qubit regularization

Brower, Chandrasekharan, Wiese et al

Prepotential formulation

Mathur, Raychowdhury et al

Local irreducible representations

Byrnes and Yamamoto; 
Ciavarella, Klco, and Savage

Dual plaquette (magnetic) basis

Bender, Zohar et al; Kaplan and 
Styker; Unmuth-Yockey; Hasse et al

Gauge-field theories (Abelian and non-Abelian):

(Effective) models and light-front quantization

Ortega at al; Kreshchuk, Love et al.

Maximal tree and coupled-cluster basis

Cirac and Zohar

Loop-String-Hadron basis

Raychowdhury and Stryker



IN FACT MANY MANY MORE FORMULATIONS EXIST, EACH WITH ITS OWN PROS AND CONS:

Scalar field theory

Field basis

Jordan, Lee, and Preskill

Harmonic-oscillator basis

Klco and Savage

Single-particle basis

Barata , Mueller, Tarasov, and Venugopalan.

Continuous-variable basis

Pooser, Siopsis et al

Group-element representation

Zohar et al; Lamm et al

Manifold lattices 

Buser et al

Spin-dual representation 
and hydrogen atom basis

Mathur et al

Fermionic basis

Hamer et al; Martinez 
et al; Banuls et al
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Cirac and Zohar

Prepotential formulation

Mathur, Raychowdhury et al

Local irreducible representations

Byrnes and Yamamoto; 
Ciavarella, Klco, and Savage

Dual plaquette (magnetic) basis

Bender, Zohar et al; Kaplan and 
Styker; Unmuth-Yockey; Hasse et al

Gauge-field theories (Abelian and non-Abelian):

(Effective) models and light-front quantization

Ortega at al; Kreshchuk, Love et al.

Maximal tree and coupled-cluster basis

Cirac and Zohar

Loop-String-Hadron basis

Raychowdhury and Stryker

Link models and qubit regularization

Brower, Chandrasekharan, Wiese et al



OBSERVABLES TOO REQUIRE DEDICATED STUDIES TO BE CAST IN HAMILTONIAN LANGUAGE.

Structure functions and PDFs

Mueller, Tarasov, Venugopalan; 
Lamm, Lawrence, Yamauchi

Scattering and decay amplitudes

Jordan, Lee, Preskill; Ciavarella; 
Surace, Lerose; Gustafson, Meurice, et al

Viscosity and transport coefficients

Cohen, Lamm, Lawrence, Yamauchi

Dynamical phase transition and topological order

Zache, Mueller, Berges, et al

Thermalization and many-body localization

Brenes, Dalmonte, et al
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NORMALIZATION AND CONTINUUM LIMIT, TRUNCATION ERRORS, FINITE-VOLUME EFFECTS, 
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Finite-volume effects in Minkowski amplitudes

Briceno, Hansen, et al; ZD, Kadam

Renormalization and continuum limit

Klco, Savage; Mueller et al

Truncation effects in scalar and gauge theories

Hackett, et al; Klco, Savage; ZD, Raychowdhury, Shaw
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Zache, Mueller, Berges, et al
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Associated quantum circuit for Trotterized evolution:

Four-fermion site theory
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Dalmonte, Monz, Zoller, Blatt, Nature 534, 516-519 (2016)
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See also Yang et al, Physical Review A 94, 052321 (2016) for a 
phonon-ion based analog proposal of lattice Schwinger Model.

ZD, Hafezi, Monroe, Pagano, Seif and Shaw, Phys. Rev. R 2, 023015 (2020).



. . .. . .

. . . . . .

Collective normal modes 
used to perform two-ion 
entangling gates.

Lattice Schwinger model

Ions in a linear Paul trap

am
�j �j+1

 j+1 j

{Ej+1, Uj+1}{Ej , Uj}

Internal states of the ion are used to 
encode the dynamic of fermions.

Gauge DOF are eliminated 
in 1D by Gauss’s law and 
gauge transformation

mode index

ion index

!(t)
m /2⇡ [MHz]

��� ��� ��� ��� ��� ��� ���

ion index i

ion index j

H
(zz) J (zz)

i,j /2⇡ [kHz]

µIII,m0/2⇡
!T
m0/2⇡

⌘⌦(i)
III,m0/2⇡ [kHz]

Eight-fermion site theory

ZD, Hafezi, Monroe, Pagano, Seif and Shaw, Phys. Rev. R 2, 023015 (2020).
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Circuit and recourse analysis

Near term cost

|j⌘�1i
+1 �1...

|j0i H • • H H • • H S
† H • • H S S

† H • • H S

|ri • H • Rz(xt/4) • • Rz(xt/4) • H S
† H • Rz(�xt/4) • • Rz(�xt/4) • H • S

|r + 1i Rz(�xt/4) Rz(�xt/4) Rz(xt/4) Rz(xt/4)

Figure 3: A circuit to simulate the Schwinger model hopping terms,
r1

j=4 e≠iT (j)t/2
, in the order corresponding to

(50). The locality of the presented operator will be expanded to include ÷-distance CNOTs between qubits representing

fermionic degrees of freedom in quantum registers with one-dimensional connectivity. The gates labeled +1 and ≠1 are

the incrementer and decrementer circuits.

with S the “phase gate,” |0Í È0| + i |1Í È1|. To reduce clutter, these composite operators are denoted by

Gr := XrXr+1 + YrYr+1 and G̃r := XrYr+1 ≠ YrXr+1. (49)

To simulate a hopping term in the Trotter step V (t), we will employ the approximation

e≠i
xt

8 ((A+Ã)¢G+(B+B̃)¢G̃) ¥ e≠itT
(4)

/2e≠itT
(3)

/2e≠itT
(2)

/2e≠itT
(1)

/2, (50)

where

T (1) := x(A ¢ G)/4, (51)
T (2) := x(Ã ¢ G)/4, (52)
T (3) := x(B̃ ¢ G̃)/4, (53)
T (4) := x(B ¢ G̃)/4. (54)

A circuit representation of the right-hand side of (50) is given in Figure 3. This routine can be understood
in a simple way by first noting the similarity of the four T (i) operators:

T (2)
r

= S†
E,r

T (1)
r

SE,r (55)

T (3)
r

= S†
E,r

(Sb

0,r
Sf

r
)
1

≠T (1)
r

2
(Sb

0,r
Sf

r
)†SE,r (56)

T (4)
r

= (Sb

0,r
Sf

r
)
1

≠T (1)
2

(Sb

0,r
Sf

r
)† (57)

Consequently, the whole circuit is essentially just four applications of e≠itT
(1)

/2 along with appropriately inserted
basis transformations and rotation angle negations. The specific ordering of the T (i) chosen yields cancellations
that reduce the number of internal basis transformations that must be individually executed. A few single-
and two-qubit gates are also spared by additional cancellations. The remainder of this section addresses the
implementation of eûitT

(1)
/2.

To e�ect an application of e≠itT
(1)

/2, one can first transform to a basis in which X ¢ G is diagonal. (Recall
A is just X0 – a bit flip on the last bit of the bosonic register.) G is diagonalized by the so-called Bell states,

|—abÍ = |0 bÍ + (≠1)a |1 b̄ÍÔ
2

(58)

G |—abÍ = 2b(≠1)a |—abÍ (59)

with b̄ indicating the binary negation of b, while X is diagonalized by |±Í = (|0Í ± |1Í)/
Ô

2. From this, we have
that

e≠ ixt

8 X¢G |±Í |—00Í = |±Í |—00Í (60)

e≠ ixt

8 X¢G |±Í |—01Í = eû ixt

4 |±Í |—01Í (61)

e≠ ixt

8 X¢G |±Í |—10Í = |±Í |—10Í (62)

e≠ ixt

8 X¢G |±Í |—11Í = e± ixt

4 |±Í |—11Í . (63)

Thus, in the Bell basis, we implement rotations conditioned on a and b.
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Part of electric field 
interactions acting on 
gauge DOF registers

Sample gauge-fermion 
interaction block

|j0i Rz(20t) • • • • •

|j1i Rz(21t) Rz(21t) • • • •

|j2i Rz(22t) Rz(22t) Rz(23t) •
...

...
. . . . . .

|j⌘�2i Rz(2⌘�2t) Rz(2⌘�2t) Rz(2⌘�1t) • •

|j⌘�1i Rz(2⌘�1t) Rz(2⌘�1t) Rz(2⌘t) Rz(22⌘�3t)
(68)

Figure 4: Simplified circuit for simulating e≠iE2
r

t
in qubit limited setting. The circuit is shown acting on the product

state ¢÷≠1
k=0 |jkÍ to clearly mark which qubit each gate is intended to act upon although the circuit is valid for arbitrary

inputs.

The first two time slices of the circuit serve to change to the X ¢ G eigenbasis. The subsequent parallel Rz

rotations flanked by CNOTs implement the controlled rotations in the computational basis, taking

|zÍ |00Í æ |zÍ |00Í , (64)

|zÍ |01Í æ e(≠1)z̄ ixt

4 |zÍ |01Í , (65)
|zÍ |10Í æ |zÍ |10Í , (66)

|zÍ |11Í æ e(≠1)z ixt

4 |zÍ |11Í ; (67)

this is equivalent to acting with e≠ ixt

4 Z¢Z . After undoing the basis transformation, we will have e�ected
e≠ ixt

8 A¢G. Three similar operations are executed in the remainder of the circuit; an incrementer SE (denoted
by “+1”), the phase gates, and the overall minus sign on the rotations in the latter half of the circuit all stem
directly from the relations given in (55,56,57).

The above discussion is summarized below as a lemma for convenience.

Lemma 1. For any (evolution time) t œ R the operation

e≠itT
(4)

/2e≠itT
(3)

/2e≠itT
(2)

/2e≠itT
(1)

/2

can be performed using at most 8 + 2÷ single-qubit rotations, 4 ÷-qubit quantum Fourier transform circuits, 18
CNOT gates and no ancillary qubits.

3.2 Implementing (Diagonalized) Mass and Electric Energy Terms (D)
Lemma 2. The circuit provided in Figure 4 implements e≠iE

2
t on ÷ qubits exactly, up to an (e�ciently com-

putable) global phase, using (÷+2)(÷≠1)
2 CNOT operations and ÷(÷+1)

2 single-qubit rotations.

Proof. The time evolution associated with the electric energy can be exactly implemented utilizing the structure
of the operator. As defined in (14), E2 = diag[�2, (� ≠ 1)2, · · · , 1, 0, 1, · · · , (� ≠ 1)2], where � is the electric
field cuto�. Note that the diagonal elements are not distributed symmetrically—the first diagonal entry is �2

while the last entry is (� ≠ 1)2. This lack of symmetry is required to incorporate the gauge configuration with
zero electric field. However, symmetry can be leveraged by using the following operator identity:

E2 =
3

E + 1
2I

42
≠

3
E + I

2

4
+ I

4 (69)

The operator E+ 1
2 I = 1

2 diag[≠2�+1, · · · , ≠1, 1, · · · , 2�≠1] is skew persymmetric—containing positive-negative
pairs along the diagonal. We then have from (69) and since [Er, E2

r
] = 0 that

e≠iE
2
t = e≠i(E+ 1

2 I)2
tei(E+ 1

2 I)te≠it/4. (70)

Since unitaries are equivalent in quantum mechanics up to a global phase, we can ignore the last phase in the
computation (even if we didn’t want to ignore it, it can be e�ciently computed as t is a known quantity).
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See also Casanova et al, Phys. Rev. Lett. 108, 190502 (2012), Lamata et al, EPJ Quant. 
Technol. 1, 9 (2014), and Mezzacapo et al, Physical review let- ters 109, 200501 
(2012) for analog-digital approaches to other interacting fermion-boson theories.

See Yang et al, Physical Review A 94, 052321 (2016) for the 
highly-occupied bosonic model of the Schwinger model.

ZD, Linke, and Pagano 
arXiv:2104.09346 [quant-ph].



. . .. . .

. . . . . .

Collective normal modes 
used to perform two-ion 
entangling gates. Local transverse modes used to encode 

the dynamic of the gauge fields.

Lattice Schwinger model

Ions in a linear Paul trap

axj axj+1

am
�j �j+1

 j+1 j

{Ej+1, Uj+1}{Ej , Uj}

Fermion-gauge interactions

Fermion mass term

Gauge-field 
interactions

· · ·

· · ·

Analog-Digital

ZD, Linke, and Pagano 
arXiv:2104.09346 [quant-ph].



. . .. . .

. . . . . .

Collective normal modes 
used to perform two-ion 
entangling gates. Local transverse modes used to encode 

the dynamic of the gauge fields.

Lattice Schwinger model

Ions in a linear Paul trap

axj axj+1

am
�j �j+1

 j+1 j

{Ej+1, Uj+1}{Ej , Uj}

Let us compare the circuit structure of digital and 
analog-digital cases when gauge DOF are present: ZD, Linke, and Pagano 

arXiv:2104.09346 [quant-ph].



Conventional lattice field 
theory program


+

Classical computation

Theory developments

Algorithmic developments

Implementation and benchmark



time

va
cu

um
 p

ro
b.

e+

e�

e+

e�

Pre
lim
ina
ry

Nguyen, Shaw, Zhu, Huerta Alderete, ZD, Linke (2020)
Lu, Klco, Lukens, Morris, Bansal, Ekström, Hagen, Papenbrock, 
Weiner, Savage, Lougovski, Phys. Rev. A 100, 012320 (2019)

Martinez, Muschik, Schindler, Nigg, Erhard, Heyl, Hauke, 
Dalmonte, Monz, Zoller, Blatt, Nature 534, 516-519 (2016) Klco, Dumitrescu, McCaskey, Morris, Pooser, Sanz, Solano, 

Lougovski, Savage, Phys. Rev. A 98, 032331 (2018)

IBM, 2 qubits

Trapped ions, 4 qubits

Trapped ions, 4 qubits

Quantum 
Frequency 
Processor, 8 
fermion sites

DIGITAL EXAMPLES FOR SCHWINGER MODEL



3

The last term in the Hamiltonian corresponds to the
invariant Casimir operator of the theory and represents
color electric field energy stored in the gauge links. Here,
L̂

2

n “ ∞
a L̂

a
nL̂

a
n “ ∞

a R̂
a
nR̂

a
n where L̂a

n and R̂a
n (with

a “ x, y, z) are respectively the left and right color elec-
tric field components on the link n. For a non-Abelian
gauge group, the right and left color electric field are
different and are related via the adjoint representation
R̂a

n “ ∞
bpÛadj

n qabL̂b
n, where pÛadj

n qab “ 2Tr

”
ÛnT̂ aÛ :

nT̂
b
ı
,

T̂ a “ �̂a{2 are the three generators of the SU(2) algebra
and �̂a are the Pauli matrices [38].

Symmetries and non-Abelian physics By virtue
of its gauge invariance, the Hamiltonian in equation (1)
commutes with the local gauge transformation genera-
tors, also called the Gauss’s law operators, and are given
by Ĝa

n ” L̂a
n´R̂a

n´1´Q̂a
n, where the non-Abelian charges

Q̂a
n acting on the site n are defined as

Q̂a
n “

ÿ

ij

�̂i:
n pT̂ aqij �̂j

n, a “ x, y, z. (2)

More precisely, the so-called physical Hilbert space of the
theory is spanned by the eigenstates of the Gauss’s law
operators Ĝa

n. In the following, we choose to work in
the sector with no external charges which is specified by
Ĝn | y “ 0, @n, and in the neutral total charge sector
Q̂a

tot | y “ ∞N
n“1 Q̂

a
n | y “ 0, @a.

Remarkably, the non-Abelian nature of the model al-
lows the existence of gauge invariant singlet states which
are forbidden in the Abelian case due to symmetry con-
straints. To see this, we note that the total color
charges Q̂a

tot “ ∞N
n“1 Q̂

a
n are conserved quantities and

commute with the Hamiltonian. Besides the three non-
Abelian charges, the Hamiltonian also commutes with
the redness and greenness operators defined as R̂ “∞N

n“1 �̂
1:
n �̂1

n ´ N{2 and Ĝ “ ∞N
n“1 �̂

2:
n �̂2

n ´ N{2, which
respectively measure the red and green color charges. Be-
cause redness and greenness do not have convenient sym-
metry properties, it is more natural to use their difference
(which is purely within the SU(2) gauge symmetry, since
R̂´Ĝ

2 “ Q̂z
tot) and their sum (which is a global U(1) sym-

metry). We therefore define the baryon quantum number
of the model as B̂ “ R̂`Ĝ

2 “ 1
2

∞N
n“1 �̂

:
n�̂n ´ N{2 which

measures the matter-antimatter imbalance.
The existence of multiple conserved charges in the non-

Abelian theory has to be contrasted with the Abelian
Up1q case of quantum electrodynamics (QED), where the
electric charge is the only conserved quantity. In QED,
the total electric charge coincides with the baryon num-
ber B of the system [39], and the neutral charge con-
straint thus imposes the value of the matter-antimatter
imbalance to be zero. In other words, neutral gauge in-
variant states of QED must contain as many electrons as
positrons leading to meson-type singlet states only. On
the other hand, the constraint of neutral charge for the
SU(2) theory Q̂i

tot | y “ 0, @i does not enforce the value
of the baryon quantum number B, since these are differ-
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a VQE circuit to prepare baryon and vacuum states
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FIG. 2. VQE calculation of a baryon. We variationally
simulate an effective eight sites chain with the experimental
circuit shown in a. The boxes represent single qubit gates.
Grey boxes are fixed gates while the color coding indicates
dependence from three variational parameters. Their exact
implementation changes depending on the combination of the
parameter values, which is automatically compiled from the
original circuit shown in Fig. 3. This takes into account the
coupling topology of the IBMQ Casablanca processor, which,
together with the qubit identification for the B “ 0 sector are
shown on the left. The circuit yields the mass of the baryon
(errorbars are smaller than markers), an SU(2)-“proton” (see
inset), for a range of x and m̃ “ 1 as explained in the main
text.

ent quantum numbers. Therefore, it is possible to con-
struct color neutral gauge invariant singlets with B ‰ 0,
which are forbidden in QED. While the states in the
B “ 0 sector are similar to the neutral states of QED,
the states in the sector with B ‰ 0 have no equivalent
in Abelian theories. In particular, we will refer to the
ground state in the sector with B “ 1 as a baryon state,
the ground state in B “ 0 will be the vacuum and the
first excited state will be called a meson state. A pictorial
comparison of a meson and a baryon is given in Fig. 1b.

Elimination of the gauge fields and qubit for-
mulation To study energy spectrum of the SU(2) the-
ory on a quantum computer, we map the lattice Hamil-
tonian in equation (1) to a qubit system. In one spatial
dimension and with open boundary conditions, the gauge
degrees of freedom can be integrated out [40–44] (see
Supplementary Information for details). This approach
eliminates redundant degrees of freedom and allows us
to simulate our target model with a minimal number of
qubits. As a second step, a Jordan-Wigner transforma-
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FIG. 10. Two plaquettes with periodic boundary conditions and an arrow convention amenable to infinite extension in the
two-dimensional plane. Indices local to each end of each link characterize states in SU(3) e.g., the color isospin and hypercharge
indices.

previous algorithms, for example, Ref. [13].

Similar to the methods employed for the one-plaquette system, Gauss’s law can be explicitly satisfied in the global

wavefunctions by construction of the basis states. Using the dimensionality of the color irrep of each link, as shown in

Fig. 10, the basis states for the two-plaquette system are written as |�(R1,Q1,R2,R3,Q2,R4)i. The gauge invariant

lattice wavefunction for this two-plaquette system, as discussed in greater generality in Appendix A, is

|�(R1,Q1,R2,R3,Q2,R4)i =
1

dim(Q1) dim(Q2)

X

all

|R1, a, bi|Q1, c, di|R2, e, fi|R3, g, hi|Q2, i, ji|R4, k, `i

hR3, h, R̄1, a|Q̄2, ji�312 hR1, b, R̄3, g|Q̄1, di�131

hR4, `, R̄2, e|Q2, ii�422 hR2, f, R̄4, k|Q1, ci�241 , (34)

where |R, a, bi is a link-state in the electric basis and hRi, f,Rj , k|Qk, ci�ijk are SU(3) CG coe�cients.

The global wavefunctions of the two-plaquette system are formed from combinations of these basis states, consistent

with the global symmetries of the system such as: color-parity symmetry resulting from the sum of ⇤ + ⇤† in the

Hamiltonian, e.g., {Ri,Qi} $ {Ri,Qi}, translation invariance, and reflection symmetry. These symmetries lead to a

natural block-diagonalization of the Hamiltonian in these projected bases. Quantum numbers may be assigned to the

states in each block, ±1 for each of the symmetries in the case of two-plaquettes. In this section, we consider a global

basis in which dynamical quantum states are mapped to symmetry-projected configurations of the full two-plaquette

lattice. Two related local truncations in color space are used to explore the convergence of both local and global

truncations.

A. Two-Plaquette: {1,3,3} Local Truncation

In limiting the local link basis to color irreps {1,3,3} for the two-plaquette system without constraints and symmetries,

there are 36 independent basis states. Imposing Gauss’s law at each vertex reduces this number down to 27. Further

restricting to global singlet states, as is the strong coupling vacuum and preserved by the Hamiltonian, the dynamical

Hilbert space becomes 9 dimensional, which decomposes into sectors of dimensions (4, 2, 2, 1) under the discrete

symmetries of color parity and spatial translation. Focusing on the sector that contains the trivial vacuum, the basis

states in the ++ sector are,

| (133;++)
1 i = |�(1,1,1,1,1,1)i

| (133;++)
2 i =

1

2

⇥
|�(3,3,3,1,3,1)i+ |�(3,3,3,1,3,1)i+ |�(1,3,1,3,3,3)i+ |�(1,3,1,3,3,3)i

⇤

| (133;++)
3 i =

1
p
2

⇥
|�(3,1,3,3,1,3)i+ |�(3,1,3,3,1,3)i

⇤

24

circuit in Eq. (19), and the third can be implemented with the following circuit relation

ei(↵Ẑ⌦X̂+�X̂⌦Ẑ) =
H • H ei↵Ẑ H • H

ei�Ẑ
. (43)

The results of performing first order Trotter time steps with g = 1 beginning in the electric vacuum are shown in

Fig. 12. Two middle qubits were used to store the state of the system and, when the measurement error mitigation

is implemented through voting, the remaining three qubits were used to inform the post-selection described in Sec-

tion III B 1. As the results show, three Trotter steps are capable of reproducing the first maximum and minimum

in the evolution of the electric energy and calculations on the Athens quantum processor are in agreement with the

exact calculation.
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FIG. 12. The (trivial-) vacuum-to-vacuum persistence probability |h00| Û(t) |00i|2 (left panel) and the energy in the electric
field (right panel) of the two plaquette system in the color parity basis truncated locally at 3 and 3. Evolution is a 1st-order
Trotterization of the Hamiltonian in Eq. (39). Points correspond to quadratic extrapolations of results obtained from IBM’s
Athens quantum processor, with systematic and statistical uncertainties combined in quadrature.

B. Two-Plaquette: {1,3,3,8} Local Truncation

To further explore global wavefunctions and also to demonstrate a further complexity in such calculations, the dis-

cussion in Subsection IVA is here extended to include the 8 in the local link basis. The construction involves

an expanded basis that requires considering non-trivial multiplicities in the products of irreps, in particular in

8 ⌦ 8 = 27 � 10 � 10 � 8 � 8 � 1. Of the 46 states in this local basis, 109 of them satisfy Gauss’s law. Pro-

jecting further to the global color singlet states—the global color charge being a quantum number conserved by the

Hamiltonian—there are 41 distinct physical configurations potentially connected to the strong coupling vacuum.

These physical and global color singlet states combine into states with definite transformation properties under the

discrete symmetries of color parity, translation, and reflection, which is no longer redundant in this larger basis as

3 ⌦ 3 = 8 � 1 leads to configurations that can be odd under reflection. Focusing only on the + + + sector, the 15

independent states are,

| (1338;+++)
1 i = |�(1,1,1,1,1,1)i ,

| (1338;+++)
2a i =

1

2

⇥
|�(3,3,3,1,3,1)i+ |�(3,3,3,1,3,1)i+ |�(1,3,1,3,3,3)i+ |�(1,3,1,3,3,3)i

⇤
,

| (1338;+++)
2b i =

1
p
2

⇥
|�(3,1,3,3,1,3)i+ |�(3,1,3,3,1,3)i

⇤
,

| (1338;+++)
3 i =

1
p
2
[ |�(8,1,1,8,1,1)i+ |�(1,1,8,1,1,8)i ] ,

2

mentum vanish. In weak coupling, the magnetic con-
tributions dominate and a theory of dynamical loops
emerges. The angular momentum basis describes the
quantum state of a generic link by its irreducible repre-
sentation, j, and associated third-component projections
at the left and right end of the link in the 2 and 2̄ rep-
resentations, |j,m,m

0
i ⌘ |j,mi⌦ |j,m

0
i, respectively. In

one dimension, SU(2) lattice gauge theory can be spa-
tially discretized onto a string of plaquettes (see Fig. 1).
With periodic boundary conditions (PBCs), only three-
point vertices contribute to such a plaquette chain. To
form gauge singlets, components of the three links at each
vertex are contracted with an SU(2) Clebsch-Gordan co-
e�cient. The wavefunction at each vertex has the form

V ⇠

X

b,c,e

hj1, b, j2, e|q, ci |j1, a, bi ⌦ |q, c, di ⌦ |j2, e, fi , (3)

where indices b, c, and e are located at the vertex. By
focusing on a system with an even number of plaquettes,
matrix elements of the arbitrary plaquette operator may
be determined. The state of an even-length lattice in
one dimension with PBCs and with definite link angular
momenta is

|�i = N

X

{m}

LY

i=1

hj
t
i ,m

t
i,R, j

t
i+1,m

t
i+1,L|qi,m

t
qii (4)

hj
b
i ,m

b
i,R, j

b
i+1,m

b
i+1,L|qi,m

b
qii

|j
t
i ,m

t
i,L,m

t
i,Ri ⌦ |j

b
i ,m

b
i,L,m

b
i,Ri ⌦ |qi,m

t
qi ,m

b
qii

with jL+1 = j1, mL+1 = m1, and normalization N =Q
i(dim(qi))�1 with dim(q) = 2q + 1. Referring to the

plaquette string’s ladder structure, on links located as
rungs of the ladder, angular momentum values are la-
beled by q. Thus, a plaquette string is created by two
strings of j-type registers connected periodically by rungs
of q-type registers. The contraction with Clebsch-Gordan
coe�cients at each vertex ensures the local gauge singlet
structure required by Gauss’s law. The link operator acts
on the degrees of freedom at each end of a link and is a
source of j = 1/2 angular momentum,

Û↵� |j, a, bi =
X

�J

s
dim(j)

dim(J)
|J, a+ ↵, b+ �i

⇥ hj, a,
1

2
,↵|J, a+ ↵ihj, b,

1

2
,�|J, b+ �i , (5)

which contains non-vanishing contributions only for J =
j±

1
2 [59]. It follows that matrix elements of the plaquette

FIG. 1. (top) Diagram of the lattice distribution of
dlog2(2⇤j + 1)e-qubit registers and the action of ⇤̂ on SU(2)
plaquettes in one dimension. ⇤̂ operates on the four qubit
registers in the plaquette and is controlled by the four neigh-
boring qubit registers to enforce the Gauss’s law constraint.
(bottom) The plaquette operator with labeled angular mo-
mentum registers.

operator in one dimension are

h�··· ,jt,b` ,q`f ,j
t,b
af ,qrf ,j

t,b
r ,···|⇤̂|�··· ,jt,b` ,q`i,j

t,b
ai ,qri,j

t,b
r ,···i =

q
dim(jtai) dim(jtaf ) dim(jbai) dim(jbaf )

⇥

q
dim(q`i) dim(q`f ) dim(qri) dim(qrf ) (6)

⇥ (�1)j
t
`+jb`+jtr+jbr+2(jtaf+jbaf�q`i�qri)

⇥

⇢
j
t
` j

t
ai q`i

1
2 q`f j

t
af

�⇢
j
b
` j

b
ai q`i

1
2 q`f j

b
af

�⇢
j
t
r j

t
ai qri

1
2 qrf j

t
af

�⇢
j
b
r j

b
ai qri

1
2 qrf j

b
af

�

where the indices j
t,b
` , q`i, q`f , j

t,b
a , qri, qrf , and j

t,b
r are

used to indicate the j-values relevant for the single pla-
quette operator (as depicted in Fig. 1) and the brack-
ets indicate Wigner’s 6-j symbols. The four registers
j
t,b
`,r outside the plaquette are not modified by the ac-
tion of the plaquette operator. However, their inclusion
as control registers is necessary to maintain Gauss’s law.
The sums over alignment in each gauge-invariant space
yield a dramatically reduced Hilbert space to be mapped
onto a quantum device, characterized entirely by the |ji’s
(rather than the |j,m,m

0
i’s) incrementing naturally by

half-integers. The qubit representation of the periodic
plaquette string is shown on the top panel of Fig. 1, where
each link contains a dlog2(2⇤j + 1)e-qubit register with
⇤j the angular momentum truncation per link.
In the following, circuits are devised for the plaquette

operator with angular momentum truncation ⇤j = 1/2.
For time evolution beginning in the strong-coupling vac-
uum, the top and bottom j values are equivalent with this
cuto↵ due to SU(2) flux conservation. As a result, the
bottom j registers need not be mapped onto the quan-
tum device [94] and the plaquette operator reduces to a
five-qubit operator.
While matrix elements of the plaquette operator in the

physical space are critical, those in the unphysical space
are not. As long as the matrix elements mixing the two
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FIG. 4. (top) Expectation value of the electric energy contri-
bution of the first plaquette in the two-plaquette lattice with
PBCs and coupling g

2 = 0.2 computed on IBM’s Tokyo. The
dashed, dot-dashed, and thin gray lines are the NTrot = 1, 2, 3
Trotterized expectation values, while the thick gray line is the
exact time evolution. (bottom) Measured survival probability
to remain in the physical subspace. Uncertainties represent
statistical variation, as well as a systematic uncertainty esti-
mated from reproducibility measurements. The icons appear-
ing are defined in Ref. [41].

Real-time evolution of two plaquettes with PBCs (see
the right panel of Fig. 3) and truncation ⇤j = 1/2 has
been implemented on IBM’s quantum device Tokyo, se-
lected for its available connectivity of a four-qubit loop.
The top panel of Fig. 4 shows time-evolved expectation
values of the energy contributions from the first electric
plaquette calculated with one and two Trotter steps [95].
The electric contributions, being localized in their mea-
surement to the four-dimensional physical subspace, are
well determined after a small number of samples. In
contrast, measuring the energy contributions from the
magnetic Hamiltonian requires increased sampling due
to the operator’s natural representation in the Pauli-X
basis of the q`, ja, and qr qubit registers—distributing the
wavefunction’s amplitude throughout the Hilbert space.
Results have been corrected for measurement error by
the constrained inversion of a 16-dimensional calibration
matrix informed by preparation of each of the 16 com-
putational basis states prior to calculation. The result-
ing probabilities are linearly extrapolated in the presence
of CNOT gates, post-selected within the gauge-invariant
space, and renormalized. The linear extrapolation is in-
formed by r = 1, 2, where r = 1 is the circuit in Fig. 3
and r = 2 stochastically inserts a pair of CNOTs ac-
companying each of the three CNOTs either in the first
or second half of the plaquette operator. The combined

noise and gate fidelity of the device were found to limit
the ability to extrapolate further in CNOT noise, even
with a single Trotter step. It can be seen that these er-
ror mitigation techniques have allowed calculation of the
electric energy associated with the SU(2) gauge field to
the precision obtained after a single Trotter step.
It is important to determine the feasibility of retaining

gauge-invariant Hilbert spaces with near-term quantum
hardware. For our calculations on IBM’s Tokyo quan-
tum device, before CNOT extrapolation, the (NTrot, r) =
(1, 1) measurements were found to remain in the gauge
invariant space with a survival population of ⇠ 45%, as
shown in the bottom panel of Fig. 4. After linear extrap-
olation in the probabilities, this was increased to ⇠ 65%,
with survival population decreasing as evolution time in-
creases. The survival population for NTrot = 2 was found
to be ⇠ 25%, consistent with loss of quantum coherence
of a four-dimensional physical space embedded onto four
qubits, precluding CNOT extrapolation. This observable
is a diagnostic of the calculation. As it approaches the
decorrelated limit (25%), CNOT extrapolations become
less reliable leading to the underestimate of systematic
uncertainties in Fig. 4. Because neither the proposed
qubit representation, nor the subsequent Trotterization,
produce gauge-variant error contributions, the observed
decay of population in the physical subspace is a mea-
sure of the device’s ability to robustly isolate Hilbert
subspaces. This is likely to be an essential capability for
evolving lattice gauge theories and other systems with
conserved quantities, as well as for quantum error cor-
rection.
When increasing ⇤j , the plaquette operator must be

calculated and designed over 8 qubit registers, each con-
taining dlog2 (2⇤j + 1)e qubits. The classical compu-
tational resources required to define this operator with
Eq. (6) scales with the number of unique non-zero ma-
trix elements, which is polynomial in ⇤j . When con-
structing the time evolution operator for ⇤j > 1/2, the
combination of Trotterization and Pauli decomposition of
the 4-register operators in j`,r-controlled sectors gener-
ically generates interactions breaking gauge invariance
[56, 69, 96]. The breaking of gauge invariance will be im-
portant to control if this decomposition is used in future
calculations.
Developing quantum computation capabilities for non-

Abelian gauge field theories is a major objective of nu-
clear physics and high-energy physics research. One of
the challenges facing such calculations is that the map-
ping of the gauge theory onto a discretized lattice involves
a digitization of the gauge fields. We have presented cal-
culations of the dynamics of a one-dimensional SU(2) pla-
quette string with implementation on IBM’s Q Experi-
ence superconducting hardware. This was made feasible
by an improved mapping of the angular momentum ba-
sis states describing link variables. Our design of the pla-
quette operator for digital quantum devices requires local

DIGITAL EXAMPLES FOR NON-ABELIAN LGTs
q

q̄

q

q̄

Ciavarella, Klco, and Savage, 
arXiv:2101.10227 [quant-ph]

Real-time dynamic of pure SU(3) 
with global irrupts on IBM

Real-time dynamic of pure SU(2) with 
global irreps on IBM

Klco, Savage, and Stryker, Phys. 
Rev. D 101, 074512 (2020).

Low-lying spectrum of SU(2) 
with matter in 1+1 D on IBM

Atas et al, 
arXiv:2102.08920 [quant-ph]

See also another SU(2) study on 
D-wave by Rahman et al, 
arXiv:2103.08661 [hep-lat] 



Mil, Zache, Hegde, Xia, Bhatt, Oberthaler, Hauke, 
Berges, Jendrzejewski, Science 367, 1128-1130 (2020)

A realization of lattice Schwinger model within QLM with cold 
atoms in a trapping potential

e+

e�

e+

e�
ANALOG EXAMPLES FOR SCHWINGER MODEL



Mil, Zache, Hegde, Xia, Bhatt, Oberthaler, Hauke, 
Berges, Jendrzejewski, Science 367, 1128-1130 (2020)

A realization of lattice Schwinger model within QLM with cold 
atoms in a trapping potential

e+

e�

e+

e�
ANALOG EXAMPLES FOR SCHWINGER MODEL

More Abelian gauge theory analog proposals: Bazavov, 
Meurice, Tsai, Unmuth-Yockey, Zhang, Phys. Rev. D 
92, 076003 (2015). Luo, El-Khadra, et al, Phys. Rev. 
A 102, 032617 (2020).



4

FIG. 3: Density-density correlation. (a) Left: Idealized
sketches of the initial and final state. The domain length of
the final state equals to the distance between two unconverted
atoms, which are removed from the system before measure-
ment. Right: Measured interference patterns in initial and
final state (averaged over 523 and 1729 images, respectively).
The x-lattice defining the 1D chains is tilted by 4� relative to
the imaging plane. (b) Single-pixel sections along the x direc-
tion through the center of the patterns in a. In the final state,
additional peaks at ±0.5~k appear, indicating the emergence
of a new ordering.

J/U is ramped from 0.014 up to 0.065 and back to 0.019.
Simultaneously, we linearly lower the z-lattice potential
to ramp the on-site interaction U from 1.82(1) kHz to
1.35(1) kHz. This ramp corresponds to driving the sys-
tem from a large and negative m, through its critical
point at m ⇠ 0, to a large and positive value deep within
the C/P-broken phase.

To probe the system dynamics, we ramp up the lattice
barriers after evolution time t and extract the probabil-

ity distributions p
(m/g)
j (n) of the occupation number n.

With our optical resolution of ⇠1 µm, in situ observables
average the signal over a small region around site j. Our
measurements distinguish between even matter sites (m)
and odd gauge-field sites (g). We illustrate the procedure

for p(g)j (n). To extract it for n  3, we combine the three
schemes sketched in Fig. 2a (see Methods for a detailed

translation of (i)-(iii) to the p(m/g)
j (n)). (i) The mean oc-

cupation of gauge-field sites is recorded by in situ absorp-
tion imaging after applying a site-selective spin flip in the

superlattice, which gives n̄
(g) =

P
n np

(g)

j (n) with natu-
ral numbers n. (ii) We use a photoassociation (PA) laser
to project the occupancy into odd or even parity. Unlike
selecting out doublons via Feshbach resonances [25, 26],
the PA-excited molecule decays spontaneously and gains
kinetic energy to escape from the trap, with which the

residual atomic density is n̄
(g)

c =
P

n mod2(n)p
(g)

j (n).
(iii) A further engineering of atoms in DWs allows us to
measure the probabilities of occupancies larger than two.
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FIG. 4: Fulfillment of Gauss’s law. (a) Correlated mea-
surements detect gauge-invariant states |...nj�1njnj+1...i, j
even, within gauge-matter-gauge three-site units. For prob-
ing |...010...i, we first flip the hyperfine levels of the atoms
on odd sites. Then, we change the superlattice into two
kinds of DW structures and monitor the tunneling of the
middle atoms. For |...002...i and |...200...i, we split the dou-
blons into two sites and mark them by the hyperfine lev-
els. Their state populations correlate to the oscillation am-
plitudes of tunneling dynamics. (b) From the probabilities
of the gauge-invariant states, we extract the gauge violation
✏(t) = 1 �

�
p|...010...i + p|...002...i + p|...200...i

�
. While the in-

version between the Fock states after the phase transition is
stronger in the ideal QLM (exact numerics, orange and blue
curves), a high level of gauge invariance is retained through-
out. The experimental results are in quantitative agreement
with t-DMRG calculations for our isolated Bose–Hubbard sys-
tem (red curve).

We first clean the matter sites and then split the atoms
into DWs. After a subsequent parity projection via il-
lumination with PA light, the remaining atomic density

is n̄
(g)

c + 2p(g)j (2). From the population, we find that
high-energy excitations, such as n = 3, are negligible
throughout our experiment.

As the data for p(m/g)
j (n) in Fig. 2b-c shows, after the

ramp through the phase transition, on average 80(3)%
of the atoms have left the even sites and 39(2)% of dou-
ble occupancy is observed on the odd sites (we checked
the coherence and reversibility of the process by ramp-
ing back from the final state, see Methods). This cor-
responds to the annihilation of 78(5)% of particle–anti-

Schwinger model within quantum link model 
formulation…

…mapped to a 71-site Bose-Hubbard quantum 
simulator:

Gauss’s law violating effects are suppressed:

Yang et al, Nature 587 (2020) 7834, 392-396.

ANALOG EXAMPLES FOR SCHWINGER MODEL

e+

e�

e+

e�



4

FIG. 3: Density-density correlation. (a) Left: Idealized
sketches of the initial and final state. The domain length of
the final state equals to the distance between two unconverted
atoms, which are removed from the system before measure-
ment. Right: Measured interference patterns in initial and
final state (averaged over 523 and 1729 images, respectively).
The x-lattice defining the 1D chains is tilted by 4� relative to
the imaging plane. (b) Single-pixel sections along the x direc-
tion through the center of the patterns in a. In the final state,
additional peaks at ±0.5~k appear, indicating the emergence
of a new ordering.

J/U is ramped from 0.014 up to 0.065 and back to 0.019.
Simultaneously, we linearly lower the z-lattice potential
to ramp the on-site interaction U from 1.82(1) kHz to
1.35(1) kHz. This ramp corresponds to driving the sys-
tem from a large and negative m, through its critical
point at m ⇠ 0, to a large and positive value deep within
the C/P-broken phase.

To probe the system dynamics, we ramp up the lattice
barriers after evolution time t and extract the probabil-

ity distributions p
(m/g)
j (n) of the occupation number n.

With our optical resolution of ⇠1 µm, in situ observables
average the signal over a small region around site j. Our
measurements distinguish between even matter sites (m)
and odd gauge-field sites (g). We illustrate the procedure

for p(g)j (n). To extract it for n  3, we combine the three
schemes sketched in Fig. 2a (see Methods for a detailed

translation of (i)-(iii) to the p(m/g)
j (n)). (i) The mean oc-

cupation of gauge-field sites is recorded by in situ absorp-
tion imaging after applying a site-selective spin flip in the

superlattice, which gives n̄
(g) =

P
n np

(g)

j (n) with natu-
ral numbers n. (ii) We use a photoassociation (PA) laser
to project the occupancy into odd or even parity. Unlike
selecting out doublons via Feshbach resonances [25, 26],
the PA-excited molecule decays spontaneously and gains
kinetic energy to escape from the trap, with which the

residual atomic density is n̄
(g)

c =
P

n mod2(n)p
(g)

j (n).
(iii) A further engineering of atoms in DWs allows us to
measure the probabilities of occupancies larger than two.
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FIG. 4: Fulfillment of Gauss’s law. (a) Correlated mea-
surements detect gauge-invariant states |...nj�1njnj+1...i, j
even, within gauge-matter-gauge three-site units. For prob-
ing |...010...i, we first flip the hyperfine levels of the atoms
on odd sites. Then, we change the superlattice into two
kinds of DW structures and monitor the tunneling of the
middle atoms. For |...002...i and |...200...i, we split the dou-
blons into two sites and mark them by the hyperfine lev-
els. Their state populations correlate to the oscillation am-
plitudes of tunneling dynamics. (b) From the probabilities
of the gauge-invariant states, we extract the gauge violation
✏(t) = 1 �

�
p|...010...i + p|...002...i + p|...200...i

�
. While the in-

version between the Fock states after the phase transition is
stronger in the ideal QLM (exact numerics, orange and blue
curves), a high level of gauge invariance is retained through-
out. The experimental results are in quantitative agreement
with t-DMRG calculations for our isolated Bose–Hubbard sys-
tem (red curve).
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high-energy excitations, such as n = 3, are negligible
throughout our experiment.

As the data for p(m/g)
j (n) in Fig. 2b-c shows, after the

ramp through the phase transition, on average 80(3)%
of the atoms have left the even sites and 39(2)% of dou-
ble occupancy is observed on the odd sites (we checked
the coherence and reversibility of the process by ramp-
ing back from the final state, see Methods). This cor-
responds to the annihilation of 78(5)% of particle–anti-
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Some non-Abelian gauge theory analog proposals:

Zohar, Cirac, Reznik, Phys. Rev. A 88 023617 (2013).

Zohar, Cirac, Reznik, Phys. Rev. Lett. 110, 125304 
(2013), Phys. Rev. A 88 023617 (2013), Rep. Prog. Phys. 
79, 014401 (2016). González Cuadra, Zohar, Cirac, New 
J. Phys. 19 063038 (2017).Dasgupta and Raychowdhury, 
arXiv:2009.13969 [hep-lat].
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Conventional lattice field 
theory program


+

Classical computation

Theory developments

Algorithmic developments

Implementation and benchmark



EXAMPLE I: STATE PREPARATION ROUTINE FOR LATTICE GAUGE THEORIES

Harmalkar, Lamm, Lawrence1, arXiv:2001.11490 [hep-lat]

Gustafson and Lamm and Phys. Rev. D 103, 054507 (2021)

State preparation can be done using Monte Carlo methods if no sign or signal-to-noise problems 
occur, and time evolution can be ported to quantum hardware.

The use of VQE to 
generate optimized 
operators to in 
Monte Carlo 
simulation of lattice 
Schwinger model.

Avkhadiev, Shanahan, Young, Phys. Rev. Lett. 124, 
080501 (2020)

D(4) gauge theory



Hamiltonian under which the system evolves 
respects some symmetries of the original theory 
and is implemented in an analog fashion.

Kokail et al, Nature 569, 355 (2019).

See also Atas et al, 
arXiv:2102.08920 [quant-ph] for a VQE 
study of SU(2) hadrons.

EXAMPLE II: VARIATIONAL QUANTUM SIMULATION OF LATTICE SCHWINGER MODEL



Z(3) gauge theory in 2+1D with a PEPS ansatzSU(2) gauge theory coupled 
to matter in 1+1D with an 
MPS ansatz

EXAMPLE III: TENSOR NETWORKS FORM CLASSICAL TO QUANTUM COMPUTING

Emonts, Bañuls, Cirac, Zohar, Phys. Rev. D 102, 
074501 (2020)

Bañuls, Cichy, Cirac, Jansen, Kühn, Phys. 
Rev. X 7, 041046 (2017)

For a recent nice review see: Meurice, Sakai, Unmuth-Yockey, arXiv:2010.06539 [hep-lat]



OUTLOOK FOR USQCD

SUMMARY

Quantum computing holds the promise of 
enabling access to quantities which are 
intractable with our current techniques due 
to sign and signal-to-noise problem.

Even if scalable noise-resilient 
quantum computers were available 
today, we are still not ready to express 
our LGT simulations in their language.

Theory, algorithm, and implementation and 
benchmark on hardware define the pillars 
of the program now and in upcoming 
years. Hardware co-design and interactions 
with other disciplines will be crucial.

The rate of progress and magnitude of developments 
are significant and lattice gauge theorists, including 
USQCD physicists, are making impactful contributions.

USQCD has formed a sub-committee on QIS+QC 
(chair: Martin Savage, members: Bazavov, ZD, 
Hasenfratz, Kronfeld, Meurice, Osborn, Petreczky, 
Simone, and El-Khadra), but concrete activities are 
yet to be planned.

USQCD members, acting as conveners in 
the Snowmass process and representing 
QIS+QC in LGT, are: Catterall, ZD, 
Izubuchi, Neil, and Savage, and of course 
El-Khadra and Gottlieb as co-leaders of 
Theory and Comp. Frontiers.

A Snowmass whitepaper in Quantum Simulation for HEP is commissioned by the Comp. 
Frontier and with Theory Frontier representatives (editors: Brauer and ZD). We will try to define 
better the role of USQCD there.  
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So much for history. Now we are in a new era. Hopefully the efforts of the 
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