Quantum Computing and Lattice Field Theory Program

Zohreh Davoudi University of Maryland, College Park

5557 55

USQCD All-hands Meeting Hosted by USQCD/MIT May 1, 2021

OUR MOTIVATION FOR LEVERAGING QUANTUM TECHNOLOGIES

OUR MOTIVATION FOR LEVERAGING QUANTUM TECHNOLOGIES

ii) Real-time dynamics of matter (heavy-ion collisions, early universe...)

...and a wealth of dynamical response functions, transport properties, hadron distribution functions, and non-equilibrium physics of QCD.

Path integral formulation...

Hamiltonian evolution:

$$U(t) = e^{-iHt}$$

A RANGE OF QUANTUM SIMULATORS WITH VARING CAPACITY AND CAPABILITY IS AVAILABLE!

QUANTUM CHEMISTRY, CM vs. QUANTUM FIELD THEORY: SOME SIMILARITIES BUT MAJOR DIFFERENCES

Simulations based in Standard Model

Both bosonic and fermionic DOF are dynamical and coupled, exhibit both global and local (gauge) symmetries, relativistic hence non-conservation of particle number, vacuum state nontrivial in strongly interacting theories.

QUANTUM CHEMISTRY, CM vs. QUANTUM FIELD THEORY: SOME SIMILARITIES BUT MAJOR DIFFERENCES

Simulations based in Standard Model

Both bosonic and fermionic DOF are dynamical and coupled, exhibit both global and local (gauge) symmetries, relativistic hence non-conservation of particle number, vacuum state nontrivial in strongly interacting theories.

Attempts to cast QFT problems in a language closer to quantum chemistry and NR simulations: Kreshchuk, Kirby, Goldstein, Beauchemin, Love, arXiv:2002.04016 [quant-ph] Liu, Xin, arXiv:2004.13234 [hep-th] Barata , Mueller, Tarasov, Venugopalan (2020) QUANTUM SIMULATION OF QUANTUM FIELD THEORIES: A MULTI-PRONG EFFORT

QUANTUM SIMULATION OF GAUGE FIELD THEORIES: THEORY DEVELOPMENTS

Hamiltonian formalism maybe more natural than the path integral formalism for quantum simulation/computation:

Kogut and Susskind formulation:

$$H_{\text{QCD}} = -t \sum_{\langle xy \rangle} s_{xy} \left(\psi_x^{\dagger} U_{xy} \psi_y + \psi_y^{\dagger} U_{xy}^{\dagger} \psi_x \right) + m \sum_x s_x \psi_x^{\dagger} \psi_x + \frac{g^2}{2} \sum_{\langle xy \rangle} \left(L_{xy}^2 + R_{xy}^2 \right) - \frac{1}{4g^2} \sum_{\Box} \text{Tr} \left(U_{\Box} + U_{\Box}^{\dagger} \right).$$

Fermion hopping term
mass electric field Energy of color
magnetic field

QUANTUM SIMULATION OF GAUGE FIELD THEORIES: THEORY DEVELOPMENTS

Hamiltonian formalism maybe more natural than the path integral formalism for quantum simulation/computation:

Kogut and Susskind formulation:

$$H_{\text{QCD}} = -t \sum_{\langle xy \rangle} s_{xy} \left(\psi_x^{\dagger} U_{xy} \psi_y + \psi_y^{\dagger} U_{xy}^{\dagger} \psi_x \right) + m \sum_x s_x \psi_x^{\dagger} \psi_x + \frac{g^2}{2} \sum_{\langle xy \rangle} \left(L_{xy}^2 + R_{xy}^2 \right) - \frac{1}{4g^2} \sum_{\Box} \text{Tr} \left(U_{\Box} + U_{\Box}^{\dagger} \right).$$

Fermion hopping term
Fermion mass
Generator of infinitesimal gauge transformation

$$G_x^a = \psi_x^{i\dagger} \lambda_{ij}^a \psi_x^j + \sum_k \left(L_{x,x+k}^a + R_{x-k,x}^a \right) \implies G_x^i |\psi(\{q_x^{(i)}\})\rangle = q_x^{(i)} |\psi(\{q_x^{(i)}\})\rangle$$

QUANTUM SIMULATION OF GAUGE FIELD THEORIES: THEORY DEVELOPMENTS

Hamiltonian formalism maybe more natural than the path integral formalism for quantum simulation/computation:

Kogut and Susskind formulation:

$$H_{\text{QCD}} = -t \sum_{\langle xy \rangle} s_{xy} \left(\psi_x^{\dagger} U_{xy} \psi_y + \psi_y^{\dagger} U_{xy}^{\dagger} \psi_x \right) + m \sum_x s_x \psi_x^{\dagger} \psi_x + \frac{g^2}{2} \sum_{\langle xy \rangle} \left(L_{xy}^2 + R_{xy}^2 \right) - \frac{1}{4g^2} \sum_{\Box} \text{Tr} \left(U_{\Box} + U_{\Box}^{\dagger} \right).$$

Fermion hopping term
mass electric field
Energy of color
magnetic field

Generator of infinitesimal
$$G_x^a = \psi_x^{i\dagger} \lambda_{ij}^a \psi_x^j + \sum_k \left(L_{x,x+\hat{k}}^a + R_{x-\hat{k},x}^a \right) \implies G_x^i |\psi(\{q_x^{(i)}\})\rangle = q_x^{(i)} |\psi(\{q_x^{(i)}\})\rangle$$

gauge transformation

. . .

IDEAS TO SUPPRESS LEAKAGE TO UNPHYSICAL SECTOR IN THE SIMULATION

IDEAS TO SUPPRESS LEAKAGE TO UNPHYSICAL SECTOR IN THE SIMULATION

IDEAS TO SUPPRESS LEAKAGE TO UNPHYSICAL SECTOR IN THE SIMULATION

See also Stannigel, et al, Phys. Rev. Lett. 112, 120406, Lamm, Lawrence, Yamauchi, arXiv:2005.12688 [quant-ph], and Kasper et al, arXiv:2012.08620 [quant-ph] for similar symmetry-protection ideas.

The time complexity of classical Hamiltonian-simulation algorithms for various formulations

ZD, Raychowdhury, and Shaw, arXiv:2009.11802 [hep-lat]

Gauge-field theories (Abelian and non-Abelian):							
Group-element representation	Prepo	Prepotential formulation		Raychow	vdhury and Stryker		
Zohar et al; Lamm et al	Mathur, Raychowdhury et al		Bosonic basis				
Spin-dual representation F	Fermionic basis Hamer et al; Martinez			Cirac and Zohar			
and hydrogen atom basis			Maxim	Maximal tree and coupled-cluster ba			
Mathur et al	et al; Banuls et al Cirac ar			nd Zohar			
Link models and qubit regularizat	Local irreducible repres		sentations				
Brower, Chandrasekharan, Wiese et al		Byrnes and Yar	;	Ma	Manifold lattices		
		Ciavarella, Klco	avage	Bu	Buser et al		
Dual plaquette (magnetic) basis							
Bender, Zohar et al; Kaplan and		(Effective	and light-front quantization				
Styker; Unmuth-Yockey; Hasse e	et al	Ortega a	Ortega at al; Kresh		e et al.		

Gauge-field theories (Abelian and non-Abelian):							
Group-element representation	Prepotential formula	ntion	Raychowdh	vdhury and Stryker			
Zonar et al; Lamm et al	Formionic basis	ary et al	Bosonic basis Cirac and Zohar				
Spin-dual representation and hydrogen atom basis Mathur et al	Hamer et al; Martinez et al; Banuls et al	Maxima Cirac a	iximal tree and coupled-cluster basis ac and Zohar				
Link models and qubit regularization Brower, Chandrasekharan, Wiese	e et al Ciavarella, Klo	ole repres imamoto; co. and Sa	entations	Manifold lattices Buser et al			
Dual plaquette (magnetic) basi Bender, Zohar et al; Kaplan and Styker; Unmuth-Yockey; Hasse	is d (Effectiv et al Ortega	e) models at al; Kres	and light-front quantization hchuk, Love et al.				
Scalar field theory							
Field basis Jordan, Lee, and Pr	reskill Poos	inuous-va er, Siopsis	ariable basis s et al				
Harmonic-oscillator basis Klco and Savage	Single-parti Barata , Mu	cle basis eller, Tara	sov, and Venug	opalan.			

Structure functions and PDFs Mueller, Tarasov, Venugopalan; Lamm, Lawrence, Yamauchi

Scattering and decay amplitudes Jordan, Lee, Preskill; Ciavarella; Surace, Lerose; Gustafson, Meurice, et al Viscosity and transport coefficients Cohen, Lamm, Lawrence, Yamauchi

Thermalization and many-body localization Brenes, Dalmonte, et al

Dynamical phase transition and topological order Zache, Mueller, Berges, et al Structure functions and PDFs Mueller, Tarasov, Venugopalan; Lamm, Lawrence, Yamauchi

Scattering and decay amplitudes Jordan, Lee, Preskill; Ciavarella; Surace, Lerose; Gustafson, Meurice, et al Viscosity and transport coefficients Cohen, Lamm, Lawrence, Yamauchi

Thermalization and many-body localization Brenes, Dalmonte, et al

Dynamical phase transition and topological order Zache, Mueller, Berges, et al

NORMALIZATION AND CONTINUUM LIMIT, TRUNCATION ERRORS, FINITE-VOLUME EFFECTS, etc. ALL MUST BE UNDERSTOOD.

Renormalization and continuum limit Klco, Savage; Mueller et al

Finite-volume effects in Minkowski amplitudes Briceno, Hansen, et al; ZD, Kadam

Truncation effects in scalar and gauge theories Hackett, et al; Klco, Savage; ZD, Raychowdhury, Shaw

DIFFERENT APPROACHES TO QUANTUM SIMULATION

DIFFERENT APPROACHES TO QUANTUM SIMULATION

LET US PICK A PLATFORM (TRAPPED IONS) AND A MODEL (SCHWINGER MODEL) TO DEMONSTRATE FEATURES OF THESE APPROACHES:

Martinez, Muschik, Schindler, Nigg, Erhard, Heyl, Hauke, Dalmonte, Monz, Zoller, Blatt, Nature 534, 516-519 (2016)

See also Yang et al, Physical Review A 94, 052321 (2016) for a phonon-ion based analog proposal of lattice Schwinger Model.

ZD, Hafezi, Monroe, Pagano, Seif and Shaw, Phys. Rev. R 2, 023015 (2020).

arXiv:2104.09346 [quant-ph].

See Yang et al, Physical Review A 94, 052321 (2016) for the highly-occupied bosonic model of the Schwinger model.

See also Casanova et al, Phys. Rev. Lett. 108, 190502 (2012), Lamata et al, EPJ Quant. Technol. 1, 9 (2014), and Mezzacapo et al, Physical review let- ters 109, 200501 (2012) for analog-digital approaches to other interacting fermion-boson theories.

ANALOG EXAMPLES FOR SCHWINGER MODEL

Schwinger model within quantum link model formulation...

ANALOG EXAMPLES FOR SCHWINGER MODEL

Schwinger model within quantum link model formulation...

Some non-Abelian gauge theory analog proposals: Zohar, Cirac, Reznik, Phys. Rev. A 88 023617 (2013). Zohar, Cirac, Reznik, Phys. Rev. Lett. 110, 125304 (2013), Phys. Rev. A 88 023617 (2013), Rep. Prog. Phys. 79, 014401 (2016). González Cuadra, Zohar, Cirac, New J. Phys. 19 063038 (2017).Dasgupta and Raychowdhury, arXiv:2009.13969 [hep-lat].

Yang et al, Nature 587 (2020) 7834, 392-396.

Gauss's law violating effects are suppressed:

EXAMPLE I: STATE PREPARATION ROUTINE FOR LATTICE GAUGE THEORIES

State preparation can be done using Monte Carlo methods if no sign or signal-to-noise problems occur, and time evolution can be ported to quantum hardware.

Gustafson and Lamm and Phys. Rev. D 103, 054507 (2021)

EXAMPLE II: VARIATIONAL QUANTUM SIMULATION OF LATTICE SCHWINGER MODEL

EXAMPLE III: TENSOR NETWORKS FORM CLASSICAL TO QUANTUM COMPUTING

For a recent nice review see: Meurice, Sakai, Unmuth-Yockey, arXiv:2010.06539 [hep-lat]

SUMMARY

Quantum computing holds the promise of enabling access to quantities which are intractable with our current techniques due to sign and signal-to-noise problem.

Even if scalable noise-resilient quantum computers were available today, we are still not ready to express our LGT simulations in their language.

OUTLOOK FOR USQCD

Theory, algorithm, and implementation and benchmark on hardware define the pillars of the program now and in upcoming years. Hardware co-design and interactions with other disciplines will be crucial.

The rate of progress and magnitude of developments are significant and lattice gauge theorists, including USQCD physicists, are making impactful contributions.

USQCD has formed a **sub-committee on QIS+QC** (chair: Martin Savage, members: Bazavov, ZD, Hasenfratz, Kronfeld, Meurice, Osborn, Petreczky, Simone, and El-Khadra), but concrete activities are yet to be planned. USQCD members, acting as conveners in the **Snowmass process** and representing QIS+QC in LGT, are: Catterall, ZD, Izubuchi, Neil, and Savage, and of course El-Khadra and Gottlieb as co-leaders of Theory and Comp. Frontiers.

A **Snowmass whitepaper in Quantum Simulation for HEP** is commissioned by the Comp. Frontier and with Theory Frontier representatives (editors: Brauer and ZD). We will try to define better the role of USQCD there.

We begin with a cross country trip in 1967, from Brooklyn NY to Palo Alto CA.

The George Washington Bridge

My GTO

i ne Golden Gale Bridge

So much for history. Now we are in a new era. Hopefully the efforts of the past will inspire great progress in the next era of Quantum Computin

This is a new field, full of workers with "fire in the belly". That great! You remind of the characters in this story.

Taken from a nice recent presentation by J. Kogut.

InQubator for Quantum Simulation

Quantum Simulation of Strong Interactions (QuaSI) Workshop 1: **Theoretical Strategies for Gauge Theories** DATE

Apr 06 - 12 2021

Organizers: Christian Bauer (LBNL), Zohreh Davoudi (UMD), Natalie Klco (Caltech) and Erez Zohar (Jerusalem).

We begin with a cross country trip in 1967, from Brooklyn NY to Palo Alto CA.

The George Washington Bridge

My GTO

i ne Golden Gale Bridge

So much for history. Now we are in a new era. Hopefully the efforts of the past will inspire great progress in the next era of Quantum Computin

This is a new field, full of workers with "fire in the belly". That great! You remind of the characters in this story.

Taken from a nice recent presentation by J. Kogut.

THANK YOU

InQubator for Quantum Simulation

Quantum Simulation of Strong Interactions (QuaSI) Workshop 1: **Theoretical Strategies for Gauge Theories**

Apr 06 - 12 2021

Organizers: Christian Bauer (LBNL), Zohreh Davoudi (UMD), Natalie Klco (Caltech) and Erez Zohar (Jerusalem).