

Status of B-to-D matrix elements William I. Jay (Fermilab) USQCD All Hands' Meeting – 30 April 2021

Outline

- Motivation and scope
- Kinematic setup / connection to experiment
- Approaches to heavy quarks
- Recent results (Focus on last ~ 5 years)
- Summary

Extracting CKM matrix elements

Tension in inclusive vs. exclusive determinations

- $IV_{cb}I$ from $B \rightarrow D^* \ell \nu$ has 3.3σ tension
- $IV_{cb}I$ from $B \rightarrow D\ell \nu$ has 2.0 σ tension
- $IV_{ub}I$ from $B \rightarrow \pi \ell \nu$ has 2.8 σ tension

Figures: Bouchard, Cao, Owen, arXiv:1902.09412

Testing lepton universality $R(D) = \mathcal{B}(B \to D\tau \bar{\nu}_{\tau}) / \mathcal{B}(B \to D\mu \bar{\nu}_{\mu})$

 $R(D^*)$ similar Combined 3.1 σ tension with SM prediction

 $R(J/\psi)$ ~2 σ

R(K) ~2.6σ

Figure: hflav.web.cern.ch

"Status of B-to-D matrix elements"

- Ultimate interest is quark-level physics: b-to-c and the CKM matrix element IV_{cb}I
- Many possible hadronic systems systems:

$$q^{2} = (p_{B} - p_{D})^{2}$$
$$= M_{B}^{2} + M_{D}^{2} - 2p_{B} \cdot p_{D}$$
$$= M_{B}^{2} + M_{D}^{2} - 2wM_{B}M_{D}$$
with $w \equiv v_{B} \cdot v_{D} = \frac{p_{B} \cdot p_{D}}{M_{B}M_{D}}$

Form factors — B to D

(decay rates) \propto (form factors) \propto (QCD matrix elements)

$$\frac{d\Gamma}{dw} \propto \mathcal{G}(w), \mathcal{F}(w) \propto \langle B | J | D \rangle$$

For B-D For B-D*

Form factors – B to D

$$\frac{\langle D | V^{\mu} | B \rangle}{\sqrt{m_B m_D}} = (v_B + v_D)^{\mu} h_+(w) + (v_B - v_D)^{\mu} h_-(w)$$

$$\frac{\langle D_{\alpha}^{\star} | V^{\mu} | B \rangle}{\sqrt{m_B m_{D^{\star}}}} = \epsilon^{\mu\nu\rho\sigma} v_B^{\nu} v_{D^{\star}}^{\rho} \epsilon_{\alpha}^{\star\sigma} h_V(w)$$

$$\frac{\langle D_{\alpha}^{\star} | A^{\mu} | B \rangle}{\sqrt{m_B m_{D^{\star}}}} = i \epsilon_{\alpha}^{\star \nu} \left[h_{A_1}(w) (1+w) g^{\mu \nu} - \left(h_{A_2}(w) v_B^{\mu} + h_{A_3}(w) v_{D^{\star}}^{\mu} \right) v_B^{\nu} \right]$$

$\mathcal{G}(w), \mathcal{F}(w) \Leftrightarrow$ certain linear combinations of the form factors h(w)

の非常ポーの非常ポー

The job for lattice QCD:

- Extract matrix elements
- Construct form factors
- Extrapolate to physical limit:
 - Continuum limit: $a \rightarrow 0$
 - Heavy quark limit: $m_b / m_d \rightarrow physical point$
 - Chiral extrap/interpolation: $m_{u/d} \rightarrow physical point$
- Parameterize results using z-expansion

の非常にもの非常に

The challenge of heavy quarks

Heavy quarks are hard: lattice artifacts grow like powers of $(am_h) - especially$ tricky for masses near or above the cutoff

- 1. Use an effective theory for heavy quarks (b, sometimes c)
 - "FNAL interpretation," NRQCD, RHQ, Oktay-Kronfeld
 - Good: Solves problem with artifacts (am_h)
 - No free lunch: EFTs require matching, which introduces systematic effects
- 2. Use highly-improved relativistic light-quark action on fine lattices
 - Good: advantageous renormalization, continuum limit
 - No free lunch: simulations still need am_h < 1 and often an extrapolation to the physical bottom mass

The challenge of heavy quarks

• Many different treatments used in the literature:

Group	Heavy valence		Sea	"Generation"
HPQCD	NRQCD	on	ASQTAD	I
HPQCD	NRQCD	on	HISQ	II
HPQCD	HISQ	on	HISQ	III
FNAL/MILC	Fermilab	on	ASQTAD	1
FNAL/MILC	Fermilab	on	HISQ	2
FNAL/MILC	HISQ	on	HISQ	3
JLQCD	Möbius DW	on	Möbius DW	
LANL/SWME	Oktay-Kronfeld	on	HISQ	
RBC/UKQCD	RHQ	on	DW	
ETMC	Twisted mass	on	Twisted mass	

HPQCD

HPQCD B→D

Ensembles: 5x (N_f=2+1) MILC asqtad

- Lattice spacings: 2 x in [0.09, 0.12] fm
- Light valence and charm: HISQ
- Heavy b: NRQCD
- Full physical q²
- R(D) = 0.300(8)
- G(1) = 1.035(40)

Type	Partial errors [%]	
lattice statistics	1.24	
chiral extrapolation	0.28	
discretization	1.08	
kinematic	1.61	
matching	1.03	
finite size effect	0.1	
total	2.54	

TABLE VI. Error budget table for R(D).

arXiv:1505.03925 PRD 92 (2015) 5, 054510

"Generation I"

$HPQCD B_{s} \rightarrow D_{s}$

Ensembles: 5x (N_f=2+1) MILC asqtad

- Lattice spacings: [0.09, 0.12] fm
- Light valence and charm: HISQ
- Heavy b: NRQCD
- Full physical q²
- G(1)=1.068(40)

TABLE VIII. Error budget for the form factors at zero momentum transfer, $f_0(0) = f_+(0)$, for the $B_s \to D_s \ell \nu$ semileptonic decay. We describe each source of uncertainty in more detail in the accompanying text.

Type	Partial uncertainty (%)
Statistical	1.22
Chiral extrapolation	0.80
Quark mass tuning	0.66
Discretization	2.47
Kinematic	0.71
Matching	2.21
total	3.70

"Generation I"

PRD 95 (2017) 11, 114506

arXiv:1703.09728

14

$HPQCD B_{(s)} \rightarrow D_{(s)} *$

• Ensembles: 8x (N_f=2+1+1) MILC HISQ

15

- Lattice spacings: [0.09, 0.12, 0.15] fm
- Light valence and charm: HISQ
- Heavy b: NRQCD
- h_{A1}(1) = 0.895(10)(24), B→D*
- $h_{A1}(1) = 0.883(12)(28), B_s \rightarrow D_s *$

TABLE IX: Partial errors (in percentages) for $h_{A_1}^{(s)}(1)$.

Uncertainty	$h_{A_1}(1)$	$h^s_{A_1}\!(1)$	$h_{A_1}(1)/h_{A_1}^s(1)$
α_s^2	2.1	2.5	0.4
$\alpha_s \Lambda_{ m QCD}/m_b$	0.9	0.9	0.0
$(\Lambda_{ m QCD}/m_b)^2$	0.8	0.8	0.0
a^2	0.7	1.4	1.4
$g_{D^*D\pi}$	0.2	0.03	0.2
Total systematic	2.7	3.2	1.7
Data	1.1	1.4	1.4
Total	2.9	3.5	2.2

arXiv:1711.11013 PRD 97 (2018) 5, 054502

"Generation II"

$HPQCD B_{s} \rightarrow D_{s} *$

- Ensembles: 4x (N_f=2+1+1) MILC HISQ
- Lattice spacings: [0.04, 0.06, 0.09] fm
- Valence quarks: all HISQ
- m_ha < 0.8 [close-to-physical b at 0.04 fm]
- Zero recoil only (w=1)
- $h_{A1}s(1) = 0.9020(96)(90)$

TABLE IV: Error budget for $h_{A_1}^s(1)$. Errors are given as a percentage of the final answer. The mass mistuning error includes that from valence strange and sea light and strange quarks; we find that taking a $\pm 10 \text{ MeV}$ uncertainty in the physical value of the η_b mass has a negligible effect.

Source	% Fractional Error
Statistics $+Z_A$	1.06
$a \rightarrow 0$	0.73
$m_h \rightarrow m_b$	0.69
mass mistuning	0.20
Total	1.45

arXiv:1904.02046 PRD 99 (2019) 11, 114512

"Generation III"

$HPQCD B_{s} \rightarrow D_{s}$

Ensembles: 4x (N_f=2+1+1) MILC HISQ

- Lattice spacings: [0.04, 0.06, 0.09] fm
- Valence quarks: all HISQ
- m_ha < 0.8
- Full physical q²
- $R(D_s) = 0.2987(46)$

Source	% Fractional Error
Statistics	1.11
$m_h \to m_b$ and $a \to 0$	1.20
Quark mistuning	0.58
Total	1.73

TABLE VI: Error budget for $f_0^s(q_{\max}^2)$.

arXiv:1906.00701

"Generation III"

PRD 101 (2020) 7, 074513

FNAL/MILC

FNAL/MILC $B \rightarrow D^*$ arXiv:1403.0635 PRD 89 (2014) 11, 114504

20

- Ensembles: 15x (N_f=2+1) MILC asqtad
- Lattice spacings: 5 x in [0.045 0.15] fm
- Light valence: asqtad staggered
- Heavy b/c: FNAL interpretation
- Zero recoil only (w=1)
- $h_{A1}(1) = F(1) = 0.906(4)(13)$ TABLE X. Final error budget for $h_{A_1}(1)$

Uncertainty	$h_{A_1}(1)$
Statistics	0.4%
Scale (r_1) error	0.1%
χPT fits	0.5%
$g_{D^*D\pi}$	0.3%
Discretization errors	1.0%
Perturbation theory	0.4%
Isospin	0.1%
Total	1.4%

"Generation 1

FNAL/MILC B→D

- Ensembles: 14x (N_f=2+1) MILC asqtad
- Lattice spacings: 4 x in [0.045 0.12] fm
- Light valence: asqtad staggered
- Heavy b/c: FNAL interpretation
- Full physical q²
- R(D) = 0.299(11)
- G(1) = 1.054(4)(8)

Source	$f_{+}(\%)$	$f_0(\%)$
Statistics+matching+ χ PT cont. extrap.	1.2	1.1
(Statistics)	(0.7)	(0.7)
(Matching)	(0.7)	(0.7)
$(\chi PT/cont. extrap.)$	(0.6)	(0.5)
Heavy-quark discretization	0.4	0.4
Lattice scale r_1	0.2	0.2
Total error	1.2	1.1

z

"Generation 1"

PRD 92 (2015) 3, 034506

arXiv:1503.07237

- FNAL/MILC $B \rightarrow D^*$
 - Ensembles: 5x (N_f=2+1) MILC asqtad
 - Lattice spacings: 5x in [0.045 0.15] fm
 - Light valence quarks: asqtad
 - Heavy valence charm/bottom: FNAL interpretation

22

 New results coming soon! Alex Vaquero is giving the Fermilab theory seminar on May 20 — stay tuned for unblinded results!

EPJ Web Conf. 175 (2018) 13003

arXiv:1710.09817

FNAL/MILC $B_{(s)} \rightarrow D_{(s)}(*)$

- 2nd Generation:
 - FNAL on $(N_f=2+1+1)$ MILC HISQ
 - Plan: joint correlated analysis on $B \rightarrow D$ and $B \rightarrow D^*$
 - Analysis underway by Alex Vaquero

- 3rd Generation:
 - HISQ on (Nf=2+1+1) MILC HISQ
 - Complete set: scalar, vector, and tensor currents
 - Broad range of momenta across kinematic range
 - $B_{(s)} \rightarrow D_{(s)}$ [+ many others, e.g., $B_{(s)}/D_{(s)} \rightarrow K/\pi$)
 - Analysis underway by WJ, Andrew Lytle

"Generation 2"

"Generation 3"

Ongoing work from other groups

arXiv:1912.11770 PoS LATTICE2019 (2019) 139

- Ensembles: 8 x (Nf=2+1) Möbius domain wall
- Lattice spacings: ~ [0.044, 0.055, 0.08] fm
- Valence quarks: Möbius domain wall (light+heavy)
- Work up to $m_h = 2.4 m_c$

LANL/SWME $B \rightarrow D(\star)$ arXiv:2003.09206 PoS LATTICE2019 (2020) 056

- Ensembles: 4x (Nf=2+1+1) MILC HISQ
- Lattice spacings: [0.09, 0.12] fm
- Light valence quarks: HISQ
- Heavy valence: Oktay-Kronfeld (OK) action

$\begin{array}{c} \text{arXiv:1903.02100} \\ \text{BBC/UKQCD} & B_S \rightarrow D_S \end{array} \begin{array}{c} \text{arXiv:1903.02100} \\ \text{PoS LATTICE2018 (2019) 290} \end{array} \end{array}$

- Ensembles: 5x (Nf=2+1) domain wall
- Lattice spacings: [0.07, 0.08, 0.11] fm
- Light valence quarks: domain wall
- Valence charm: Möbius domain wall
- Valence "bottom": RHQ

Summary

- Vibrant community effort to calculate B-to-D matrix elements
- Improved experimental measurements at LHCb and Belle II require commensurate improvements from LQCD
- Recent movement toward simulations with relativistic light-quark actions for charm and bottom
- Push to extend results for B→D* away from zero recoil (w=1)
- Future: QED corrections

Acknowledgements

FNAL/MILC All-HISQ working group:

- Carleton DeTar
- Aida El Khadra
- Elvira Gamiz
- Zech Gelzer
- Steve Gottlieb
- Andreas Kronfeld
- Andrew Lytle
- Jim Simone

Special thanks:

Alex Vaquero

<u>indico.fnal.gov/event/46246/</u> Snowmass workshop "Theory meets experiment on |V_{ub}| and |V_{cb}|

Andrew Lytle

Plenary review talk PoS LATTICE2019 (2020) arXiv:2004.01132

Backup

More results

$HPQCD B_{s} \rightarrow D_{s}$

arXiv:1808.09285 PRD 98 (2018) 11, 114509

- Ensembles: 5x (N_f=2+1) MILC asqtad
- Lattice spacings: [0.09, 0.12] fm
- Light valence quarks: asqtad/HISQ
- Heavy valence: HISQ (charm), NRQCD (bottom)

32

- Full physical q²
- $R(K)/R(D_s) = 2.02(12)$
- $f_0^{(K)}(0)/f_0^{(Ds)}(0) = 0.507(66)$

TABLE VI. Error budget for the form factor ratios at zero momentum transfer, Eq. (22). We describe each source of uncertainty in more detail in the accompanying text.

Type	Partial uncertainty (%)
Statistical	6.63
Chiral extrapolation	0.89
Quark mass tuning	2.18
Discretization	4.16
Kinematic	9.31
Matching	0.28
Total	13.03

"Generation I"

ETMC $B_{(s)} \rightarrow D_{(s)}$

arXiv:1310.5238 EPJ C 74 (2014) 5, 2861

- Ensembles: 3 x (Nf=2) ETMC twisted-mass
- Lattice spacings: 4 x in [0.05 0.1] fm
- Valence quarks: maximally twisted-mass
- Used scaling function to *interpolate* between the static limit and heavy masses near m_c
- G(1) = 1.033(95), B→D
- $G(1) = 1.052(46), B_s \rightarrow D_s$

Pedagogy / background

Decaying pseudoscalars

- B±, B⁰ ~ 5.3 GeV
- B_s ~ 5.4 GeV

Note: vectors are unstable at the physical point • $D_{(s)}^{*}-D_{(s)} \gtrsim M_{\pi}$ Daughter pseudoscalars

- D±, D⁰ ~ 1.9 GeV
- D_s ~ 2.0 GeV

Daughter vectors:

- D*±, D*0 ~ 2.0 GeV
- D*_s~2.1 GeV

- Momentum transfer q²:
 - $q^2 \rightarrow 0 \Leftrightarrow$ daughter meson carries away most energy
 - $q^2 \rightarrow q^2_{max}$

 \Leftrightarrow zero recoil by daughter meson

⇔ leptons carry away most energy

 $\Leftrightarrow w = 1 \ (= v_{B} \cdot v_{D})$

 $\frac{d\Gamma}{dw} = (\text{known}) \times |V_{cb}|^2 \times (\text{phase space}) \times (\text{form factors})$

$$\frac{d\Gamma(B \to D)}{dw} = (\mathrm{known})|V_{cb}|^2(w^2 - 1)^{3/2}|\mathcal{G}(w)|^2$$

$$\frac{d\Gamma(B \to D^{\star})}{dw} = (\mathrm{known})|V_{cb}|^2(w^2 - 1)^{1/2}\chi(w)|\mathcal{F}(w)|^2$$

Kinematic setup — B to D [pseudoscalar]

 $\frac{d\Gamma}{dw} = (\text{known}) \times |V_{cb}|^2 \times (\text{phase space}) \times (\text{form factors})$ Case 1: B_(s)→D_(s) [Decay to a pseudoscalar] (phase space) $\propto |\mathbf{p}_{D_{(s)}}|^3 \sim (w^2 - 1)^{3/2}$

- Phase-space suppression at low recoil \Leftrightarrow high q²
- Experimental precision lowest where lattice is best

Kinematic setup – B to D [vector]

 $\frac{d\Gamma}{dw} = (\text{known}) \times |V_{cb}|^2 \times (\text{phase space}) \times (\text{form factors})$

Case 2: $B_{(s)} \rightarrow D_{(s)}^{*}$ [Decay to a vector] (phase space) $\propto \left| \mathbf{p}_{D_{(s)}^{*}} \right| \sim (w^2 - 1)^{1/2}$

- Much better experimental efficiency for vectors
- Experimental precision lowest where lattice is best

観の装装や一個の装装やー

Connecting theory and experiment

- Much focus on the zero-recoil (w=1) limit:
 - Lattice calculations are most precise here
 - Certain expressions simplify at zero recoil
 - Experimental data is phase-space suppressed
- To bridge this gap, experiments parameterize form factors using the z-expansion, which exploits
 - Analyticity
 - Unitarity

Boyd, Grinstein, Lebed, PRL 74, 4603 (1995) [hep-ph/9412324] Boyd, Grinstein Lebed, PRD 56, 6895 (1997) [hep-ph/9705252] Grinstein, Kobach, Phys. Lett. B 771, 359 (2017) [arXiv:1703.08170]

Connecting theory and experiment

• Change variables using conformal map:

$$z = \frac{\sqrt{w+1} - \sqrt{2}}{\sqrt{w+1} - \sqrt{2}}$$

