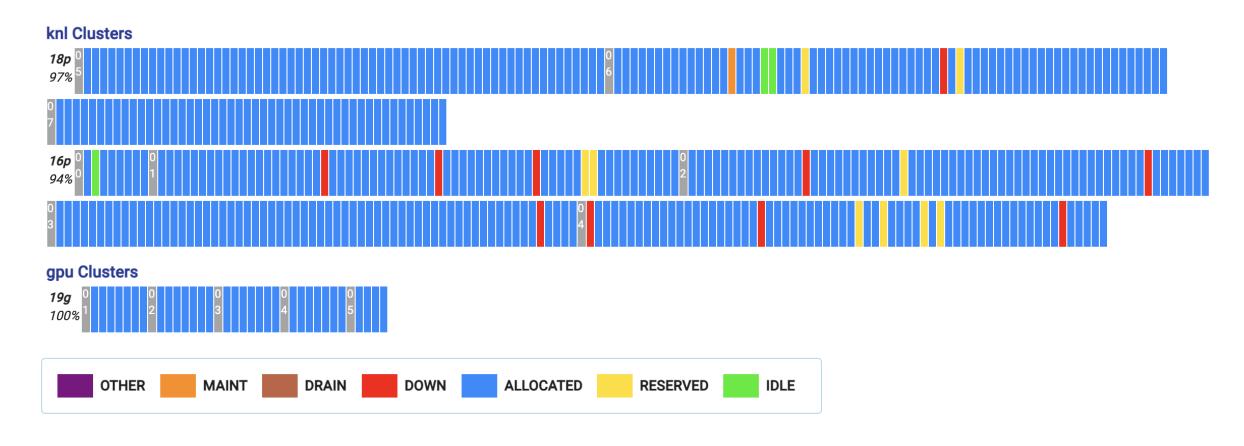
Jefferson Lab LQCD Computing April 2021 All Hands Meeting

Bryan Hess, bhess@jlab.org - Scientific Computing Operations Group

Facility Topics

- Status of Clusters
- Data Center Network Upgrade
- Lustre Upgrade
- Tape Library Upgrade and Status
- Significant Operational Events from the year
- System Administration and Change Control

Current resources – Clusters


- JLab continues to operate two flavors of cluster, KNL and GPU.
- 440 node Xeon Phi / KNL cluster ("16p/18p")
 - Single socket 64 core KNL (with AVX-512 8 double / 16 single precision)
 - 192 (98) GB main memory / node 16p (18p)
 - 16GB high bandwidth on package memory (6x higher bandwidth)
 - 100 Gbps bi-directional Omnipath network fabric (total 25 GB/s/node)
 - 32 nodes / switch, 16 up-links to core / switch
 - total: 3.168 M node-hours = 202.75 M KNL-core-hours
- 32-node GeForce GPU cluster ("19g")
 - Eight-GPU RTX-2080 nodes
 - 8 GByte memory per GPU, 192 GByte memory per node.
 - Each on 100g OmniPath Fabric
 - Total: 230.4 K node-hours = 1.84 M RTX2080-GPU-hours
- The 12k cluster was decommissioned in July 2020.
- 21g procurement has been awarded More on this from Amitoj Singh shortly

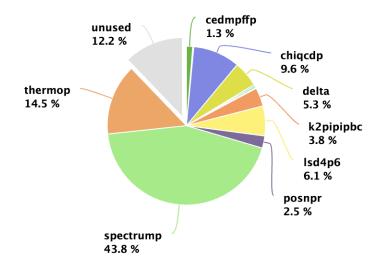
Current resources - clusters

LQCD Cluster Node Status

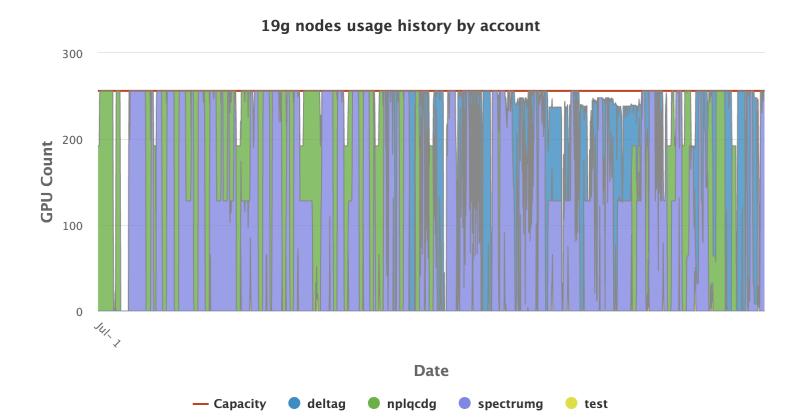
(Click each bar to get individual Node Status Information)

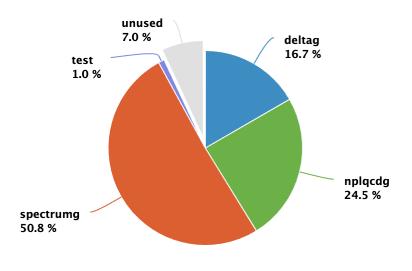
User Allocation statistics – from lqcd.jlab.org

USQCD Project Allocation Usage (20-21)


Project Allocation	Project Report	Cluster Utilization	Usage Chart	Monthly Report	Summary Report			
Name	Allocation (KHr)	Used (KHr)	Annual Pace	Month Pace	Adjustment (KHr)*	Remaining (KHr)	Overused (KHr)	
thermop	40,000	29,719	92.2%	77.7%	-1,042	9,239	0	
Spectrump	37,000	84,611	283.9%	191.7%	19,078	0	28,533	
Delta	31,500	10,581	41.7%	83.5%	-5,862	15,057	0	
K2pipiPBC	23,000	7,682	41.5%	36.0%	-4,500	10,818	0	
chiQCDp	21,000	19,619	116.0%	332.3%	-1,314	67	0	
NeutrinoDWF	18,500	0	00.0%	00.0%	-3,476	15,024	0	
LSD4p6	13,200	12,243	115.2%	00.0%	-986	0	29	
cedmpffp	11,500	2,648	28.6%	00.2%	-2,182	6,670	0	
posnpr	7,000	4,943	87.7%	03.9%	235	2,292	0	
flowRG	250	640	318.0%	00.0%	206	0	184	
	202,950	172,687	105.6%	101.8%	157	59,167	28,746	
K hours (KHr) for each cluster are converted to 19-20 weight unit hours based upon measured relative performance.								
Name	Allocation (KHr)	Used (KHr)	Annual Pace	Month Pace	Adjustment (KHr)**	Remaining (KHr)	Overused (KHr)	
Spectrumg	880	920	129.8%	70.3%	41	1	0	
Deltag	500	293	72.8%	166.3%	-72	135	0	
NPLQCDg	460	439	118.5%	126.1%	31	52	0	
	1,840	1,652	111.5%	110.4%	0	188	0	

KNL Cluster Usage (16p + 18p) 7/1/2020 - 4/21/2021


all-phi nodes usage history by account



19g Cluster Usage 7/1/2020 - 4/21/2021

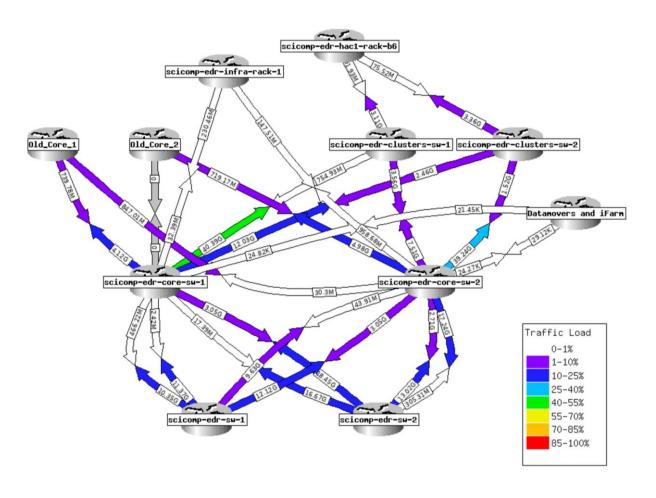
GPU Health Monitoring

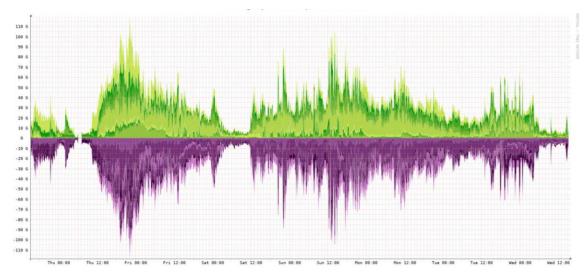
JLab GPU Information

Jefferson Lab Scientific Computing Group deploys and operates several GPU clusters using GPUs from NVIDIA. Currently, there are **32** hosts utilizing GPUs mostly belonging to the following different types:

Cluster	RTX 2080	K20m	K20Xm	K40m	Total
19g	256	0	0	0	256

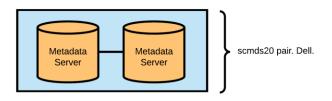
Host View (Click a host to get the latest GPU test results on the host)



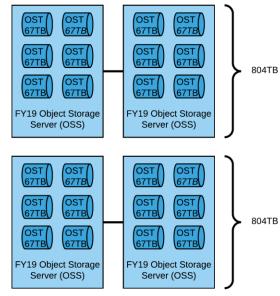

Network Upgrade – from QDR to managed EDR

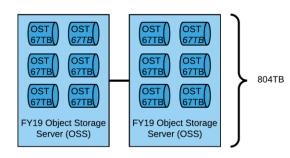
- Clusters are on OmniPath
- Connected to the IB core via LNET routers
- The IB Core was recently upgraded from an unmanaged QDR core to a managed EDR core
- Improvements include
 - Lustre on managed switches with switchport speeds better matched to the clusters
 - Clear roles for switches and interconnects
 - Clean tolopology
 - Monitoring and alerting on error conditions including speed mismatch, drops, and down links
- Internet Bandwidth now 20Gbit/sec due to routing improvements

Network Management and Alerting for IB – Faster Response to Faults



- Network monitoring identifies problems more quickly
- IB core interconnects clusters, tape storage, disk storage, and servers.
- Deprecated QDR core on top left
- User-visible services (including Lustre) dualconnected for redundancy


Lustre Upgrade – Lustre 20 upgrade Completed April 2021


LQCD Lustre20 refresh - /cache and /volatile for LQCD

Notes:

- · All Hardware the same vintage (new!)
- · All OSSes in failover pairs (new!)
- 2.4PB visible
- 1.9PB usable (~20% lustre overhead)

- The Legacy Lustre filesystem has been replaced by a dedicated system for LQCD, lustre20
- Significant Improvements
 - No longer shared with the HTC cluster
 - All hardware the same specification to avoid hot spots
 - All servers in failover-pairs to eliminate single points of failure in hardware components
 - Lustre Upgraded to latest stable release with increased logging and root squash for compute nodes
 - Managed EDR switches to monitor performance and match cluster speed for 20g
- New Capability: Testbed Hardware for testing and staging changes

Disk Storage Summary

Filesystem	Filesystem type	Backup	Quota	Deletion Policy
/work	NFS	None	Per project quota	User managed
/home	NFS	Weekly backups	Per user quota	User managed
/cache	Lustre	Flush to tape within two weeks for files sizes between 3MB and 300GB.	Per project quota	Auto-deletion based on least recently used once on tape
/volatile	Lustre	Not backed up	Per project quota	Auto-deletion based on LRU
/scratch	local to worker node	none	none	Scrubbed after each job

12

Disk Issue: July 9th Lustre deletion event

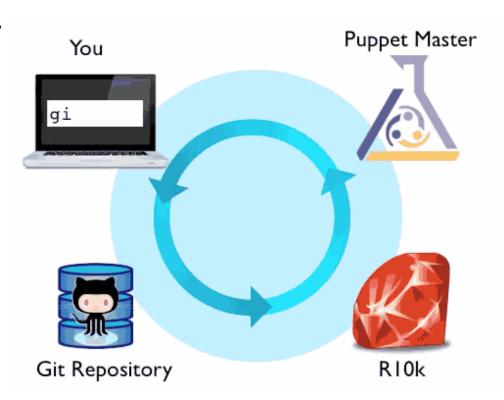
- Two filesystems, /cache and /volatile, are Lustre resident, and not backed up by design.
- On Thursday, July 9th at 4:23 pm, a software process began deleting files in the Jefferson Lab LQCD Lustre area, removing the contents of /volatile and /cache
- The Lustre system, dating from 2014, had insufficient logging to determine the source of the I/O. Additionally, root access was enabled from many compute nodes for legacy support reasons.
- Although /cache is backed by tape write, /volatile is not, and the content was lost.
- This is a Community supported Lustre system; There is no support contract with a vendor.

Lustre deletion event lessons learned, mitigations

- We apologize for the loss and interruptions, and have taken measures to limit future events
 - —Root access is now limited to select administrative hosts (root squash)
 - The Lustre system has been replaced with a newer one capable logging additional information in the changelog
 - —Access to the Lustre system has been trimmed to the essential systems
 - -The legacy system build process has been retired.
 - -A new change control system has been put in place (more on this)

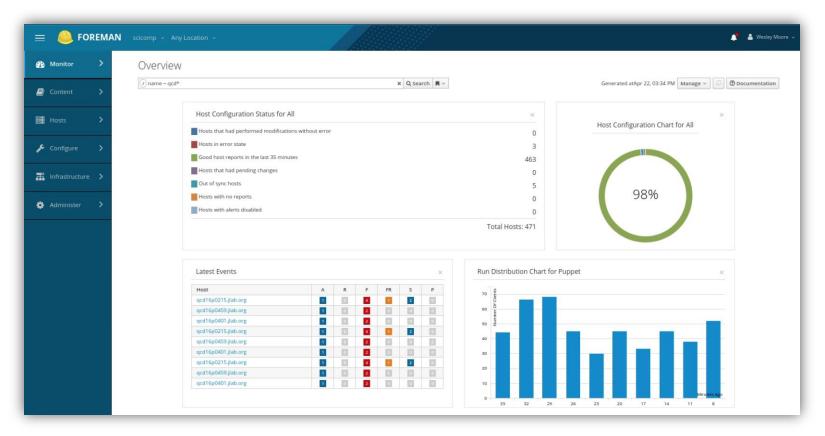
Configuration Management

- A follow-on activity from the Lustre event was an increased emphasis on the configuration management upgrade
- Replaced SaltStack Legacy System
 - Limited on-site expertise
 - No dashboard, no fine-grained monitoring of change deployments
 - Loose version control
- Migrated to Puppet
 - Leveraged on-site expertise and common tools
 - Foreman used for dashboard (Upstream project of RedHat's Satellite)
 - Easily test/stage changes using Puppet environments
 - *Mandatory* version control (completely driven from GitLab)



Formalized change control with Puppet, Git, Foreman

Mandatory version control for uniformity of compute nodes:


- Fully automated, triggered by "git push"
- GitLab server allows for syntax checking before deployment
- Deploys to a cluster of Puppet servers, prioviding load-balancing
- Git and Puppet development environments are useful for testing configurations

Administration Dashboard – quickly identifies irregularities in the clusters

- Same services used for HTC cluster at JLab
- Dashboard for with status of Puppet runs, patching, check-in times
- Provides Yum repository for all rpms available to the nodes
- Easy remote command execution for individual nodes or batches

Current status – Tape Library

- Tape Storage increased bandwidth
 - Data is now written to LTO8 media using a 20 LTO8 drives
 - In November, the two tape libraries were consolidated into a single TS4500 library, and 5 additional tape drives were added to improve bandwidth to tape.
 - LQCD accumulated tape storage for this project year is 1.7PB
 - 1.5PB on lattice-p "permanent"
 - 0.2PB on lattice-t "temporary"
 - Tape storage for lattice-t USQCD (non-JLab) allocations are retained at Jefferson lab for 18 months after the allocation year ends, then the tapes are re-used.
 - LQCD accumulated tape storage for all years is 9.94PB
 - 9.06PB lattice-p
 - 0.88PB lattice-t

Tape Verification and Recovery

Analysis

- Two problematic drives were torn down for electron microscope evaluation and chemical analysis
- This work pointed to humidity as the primary contributing factor for the head corrosion

Monitoring

- We are validating checksums on all data written to LTO8 media to find tapes with read errors.

Progress

- Because this is an ongoing process, we have established a database of the files that are offline and in the queue for recovery at https://lqcdtest.jlab.org/lqcd/badTapeFile
- Files that are recovered will be removed from this list.
- Files that are not recoverable will be reported here: https://lqcd.jlab.org/lqcd/lostFile

Prevention of a repeat

- We have installed additional environmental monitors in the tape library and are working with facilities management to on new monitoring and controls.

COVID-19 Era Work Adaptations

- On-site data center work proved challenging in the early months of the pandemic because of personnel distancing limitations
 - Installing and removing heavy disk shelves and servers required close work, which was initially prohibited
 - After delays, close work was allowed with N95 masks and training
 - —Work coordinaation, PPE supplies, and policies have improved over the year
- Over the summer we had minimal staffing in the data center
- By the autumn we transitioned to a schedule where there was always staff on site during business hours
- Though the lab is operating at "maximum telework" we now have at least two system administrators on site every weekday

Summary

- Working remotely has been challenging for installations, but protocols are in place now.
- Cluster operations have continued at pace
- Lessons Learned and new practices stemming from two user-impacting events
- Significant improvments to the facility infrastructure
 - Repliced the dated lustre system
 - New managed IB network
 - Increased tape library bandwidth
 - Change control system for system management
 - Improved system monitoring
 - Upgraded slurm and system software
- Preparing for 21g cluster
- Thank you!

