Theory of Quasi-Free Reactions

TECHNISCHE UNIVERSITAT
DARMSTADT

Stefan Typel

$4^{\text {th }}$ International Workshop on Quantitative Challenges in Short-Range Correlations and the EMC Effect Research

CEA Paris-Saclay
Orme des Merisiers site Gif-sur-Yvette, France

January 30 - February 3, 2023

Outline

- General Reaction Theory
- Cross Sections
- T-Matrix Elements
- Plane-Wave Impulse Approximation for Quasi-Free Reactions
- Deuteron Knockout Reactions
- Conclusions

General Reaction Theory

Preliminary Remarks

- reaction theory
- lecture with reminder of basic facts
- non-relativistic description
- no explicit treatment of antisymmetrisation
- spin and isospin variables mostly suppressed

Preliminary Remarks

- reaction theory
- lecture with reminder of basic facts
- non-relativistic description
- no explicit treatment of antisymmetrisation
- spin and isospin variables mostly suppressed
- quasi-free reactions
- focus on (p,pd) reactions
- specific features

Preliminary Remarks

- reaction theory
- lecture with reminder of basic facts
- non-relativistic description
- no explicit treatment of antisymmetrisation
- spin and isospin variables mostly suppressed
- quasi-free reactions
- focus on ($p, p d$) reactions
- specific features
- application
- recent publication:
'Importance of deuteron breakup in the deuteron knockout reaction'
Y. Chazono, K. Yoshida, K. Ogata

Phys. Rev. C 106 (2022) 064613

Quantal Description of Reactions

- determine scattering wave function ψ of many-body system \Rightarrow solve Schrödinger equation with given Hamiltonian \hat{H}

Quantal Description of Reactions

- determine scattering wave function ψ of many-body system \Rightarrow solve Schrödinger equation with given Hamiltonian \hat{H}
- time-dependent description $i \hbar \frac{\partial}{\partial t} \Psi=\hat{H} \psi$
\Rightarrow time evolution of wave packet
- stationary problem $E \psi=\hat{H} \psi$ \Rightarrow fixed energy, two formulations:
- partial differential equations
- integral equations

Quantal Description of Reactions

- determine scattering wave function ψ of many-body system \Rightarrow solve Schrödinger equation with given Hamiltonian \hat{H}
- time-dependent description $i \hbar \frac{\partial}{\partial t} \psi=\hat{H} \psi$
\Rightarrow time evolution of wave packet
- stationary problem $E \psi=\hat{H} \psi$ \Rightarrow fixed energy, two formulations:
- partial differential equations
- integral equations
- boundary conditions
 'plane wave + outgoing (incoming) spherical waves'

Quantal Description of Reactions

- determine scattering wave function ψ of many-body system \Rightarrow solve Schrödinger equation with given Hamiltonian \hat{H}
- time-dependent description $i \hbar \frac{\partial}{\partial t} \psi=\hat{H} \psi$
\Rightarrow time evolution of wave packet
- stationary problem $E \Psi=\hat{H} \psi$ \Rightarrow fixed energy, two formulations:
- partial differential equations
- integral equations
- boundary conditions

'plane wave + outgoing (incoming) spherical waves'
- asymptotic states: different channels
- partitions, quantum numbers, energy, momentum, ...
- relevant quantities: cross sections (from comparison of fluxes)

Operator Formalism

- example: two-body scattering with interaction V
- explicit form of scattering wave function

$$
\Psi_{i}^{(\pm)}(\vec{r})=\Phi_{i}(\vec{r})+\int d^{3} r G_{0}^{(\pm)}\left(\vec{r}, \vec{r}^{\prime}\right) V\left(\vec{r}^{\prime}\right) \Psi_{i}^{(\pm)}\left(\vec{r}^{\prime}\right) \quad \Phi_{i}(\vec{r})=\exp \left(i \vec{k}_{i} \cdot \vec{r}\right)
$$

with Green's function $G_{0}^{(\pm)}\left(\vec{r}, \vec{r}^{\prime}\right)=-\frac{2 \mu}{\hbar^{2}} \frac{\exp \left(\pm i k_{i}\left|\vec{r}-\vec{r}^{\prime}\right|\right)}{4 \pi\left|\vec{r}-\vec{r}^{\prime}\right|}$

Operator Formalism

- example: two-body scattering with interaction V
- explicit form of scattering wave function

$$
\Psi_{i}^{(\pm)}(\vec{r})=\Phi_{i}(\vec{r})+\int d^{3} r G_{0}^{(\pm)}\left(\vec{r}, \vec{r}^{\prime}\right) V\left(\vec{r}^{\prime}\right) \Psi_{i}^{(\pm)}\left(\vec{r}^{\prime}\right) \quad \Phi_{i}(\vec{r})=\exp \left(i \vec{k}_{i} \cdot \vec{r}\right)
$$

with Green's function $G_{0}^{(\pm)}\left(\vec{r}, \vec{r}^{\prime}\right)=-\frac{2 \mu}{\hbar^{2}} \frac{\exp \left(\pm i k_{i}\left|\vec{r}-\vec{r}^{\prime}\right|\right)}{4 \pi\left|\vec{r} \vec{r}^{\prime}\right|}$

- scattering amplitude $f_{f i}=-\frac{\mu}{2 \pi \hbar^{2}}\left\langle\Phi_{f}\right| \hat{V}\left|\Psi_{i}^{(+)}\right\rangle$ \Rightarrow differential cross section $\frac{d \sigma}{d \Omega}=\frac{v_{f}}{v_{i}}\left|f_{f i}\right|^{2}$

Operator Formalism

- example: two-body scattering with interaction V
- explicit form of scattering wave function

$$
\Psi_{i}^{(\pm)}(\vec{r})=\Phi_{i}(\vec{r})+\int d^{3} r G_{0}^{(\pm)}\left(\vec{r}, \vec{r}^{\prime}\right) V\left(\vec{r}^{\prime}\right) \Psi_{i}^{(\pm)}\left(\vec{r}^{\prime}\right) \quad \Phi_{i}(\vec{r})=\exp \left(i \vec{k}_{i} \cdot \vec{r}\right)
$$

with Green's function $G_{0}^{(\pm)}\left(\vec{r}, \vec{r}^{\prime}\right)=-\frac{2 \mu}{\hbar^{2}} \frac{\exp \left(\pm i k_{i}\left|\vec{r}-\vec{r}^{\prime}\right|\right)}{4 \pi\left|\vec{r} \vec{r}^{\prime}\right|}$

- scattering amplitude $f_{f i}=-\frac{\mu}{2 \pi \hbar^{2}}\left\langle\Phi_{f}\right| \hat{V}\left|\Psi_{i}^{(+)}\right\rangle$
\Rightarrow differential cross section $\frac{d \sigma}{d \Omega}=\frac{v_{f}}{v_{i}}\left|f_{f}\right|^{2}$
- define T matrix $T_{f i}=\left\langle\Phi_{f}\right| \hat{V}\left|\Psi_{i}^{(+)}\right\rangle=\left\langle\Phi_{f}\right| \hat{T}\left|\Phi_{i}\right\rangle=\left\langle\Psi_{f}^{(-)}\right| \hat{V}\left|\Phi_{i}\right\rangle$
with transition operator \hat{T} from $\hat{T}=\hat{V}+\hat{V} \mathcal{G} \hat{T}$ with $\mathcal{G}=\left(E-\hat{H}_{0}+\epsilon\right)^{-1}$
\Rightarrow all information in $T_{f i}$

Cross Sections

Coordinates, Momenta

- three-body system with coordinates \vec{r}_{i} and momenta $p_{i}(i=a, b, c)$
- Jacobi coordinates (one of 3 possibilities)

$$
\begin{aligned}
& \vec{r}_{a b}=\vec{r}_{a}-\vec{r}_{b} \quad \vec{R}_{a b}=\frac{m_{a} \vec{r}_{a}+m_{b} \vec{r}_{b}}{M_{a b}} \\
& \vec{r}_{c(a b)}=\vec{r}_{c}-\vec{R}_{a b} \quad \vec{R}=\frac{m_{c} \vec{r}_{c}+M_{a b} \vec{R}_{a b}}{M_{a b c}}
\end{aligned}
$$

Coordinates, Momenta

- three-body system with coordinates \vec{r}_{i} and momenta $p_{i}(i=a, b, c)$
- Jacobi coordinates and momenta (one of 3 possibilities)

$$
\begin{aligned}
& \vec{r}_{a b}=\vec{r}_{a}-\vec{r}_{b} \quad \vec{R}_{a b}=\frac{m_{a} \vec{a}_{a}+m_{b} \vec{r}_{b}}{M_{a b}} \\
& \vec{r}_{c(a b)}=\vec{r}_{c}-\vec{R}_{a b} \quad \vec{R}=\frac{m_{a} \vec{c}_{c}+M_{a b} \vec{R}_{a b}}{M_{a b c}} \\
& \vec{p}_{a b}=\mu_{a b}\left(\frac{\vec{p}_{a}}{m_{a}}-\frac{\vec{p}_{b}}{m_{b}}\right) \quad \vec{P}_{a b}=\vec{p}_{a}+\vec{p}_{b} \\
& \vec{p}_{c(a b)}=\mu_{c(a b)}\left(\frac{\vec{p}_{c}}{m_{c}}-\frac{\vec{P}_{a b}}{M_{a b}}\right) \quad \vec{P}=\vec{p}_{c}+\vec{P}_{a b}
\end{aligned}
$$

Coordinates, Momenta

- three-body system with coordinates \vec{r}_{i} and momenta $p_{i}(i=a, b, c)$
- Jacobi coordinates and momenta (one of 3 possibilities)

$$
\begin{aligned}
& \vec{r}_{a b}=\vec{r}_{a}-\vec{r}_{b} \quad \vec{R}_{a b}=\frac{m_{a} \vec{a}_{a}+m_{b} \vec{r}_{b}}{M_{a b}} \\
& \vec{r}_{c(a b)}=\vec{r}_{c}-\vec{R}_{a b} \quad \vec{R}=\frac{m_{c} \vec{r}_{c}+M_{a b} \vec{R}_{a b}}{M_{a b c}} \\
& \vec{p}_{a b}=\mu_{a b}\left(\frac{\vec{p}_{a}}{m_{a}}-\frac{\vec{p}_{b}}{m_{b}}\right) \quad \vec{P}_{a b}=\vec{p}_{a}+\vec{p}_{b} \\
& \vec{p}_{c(a b)}=\mu_{c(a b)}\left(\frac{\vec{p}_{c}}{m_{c}}-\frac{\vec{p}_{a b}}{M_{a b}}\right) \quad \vec{P}=\vec{p}_{c}+\vec{P}_{a b}
\end{aligned}
$$

- total and reduced masses

$$
\begin{aligned}
& M_{a b}=m_{a}+m_{b} \quad M_{a b c}=m_{c}+M_{a b} \\
& \mu_{a b}=\frac{m_{a} m_{b}}{M_{a b}} \quad \mu_{c(a b)}=\frac{m_{c} M_{a b}}{M_{a b c}}
\end{aligned}
$$

Energies and Transformations

- three-body system with coordinates \vec{r}_{i} and momenta $p_{i}(i=a, b, c)$
- kinetic energies

$$
\begin{aligned}
& E_{i}=\vec{p}_{i}^{2} /\left(2 m_{i}\right) \quad E_{a b}=\vec{p}_{a b}^{2} /\left(2 \mu_{a b}\right) \\
& E_{c(a b)}=\vec{p}_{c(a b)}^{2} /\left(2 \mu_{c(a b)}\right) \quad E=\vec{P}^{2} /\left(2 M_{a b c}\right)
\end{aligned}
$$

Energies and Transformations

- three-body system with coordinates \vec{r}_{i} and momenta $p_{i}(i=a, b, c)$
- kinetic energies

$$
\begin{aligned}
& E_{i}=\vec{p}_{i}^{2} /\left(2 m_{i}\right) \quad E_{a b}=\vec{p}_{a b}^{2} /\left(2 \mu_{a b}\right) \\
& E_{c(a b)}=\vec{p}_{c(a b)}^{2} /\left(2 \mu_{c(a b)}\right) \quad E=\vec{P}^{2} /\left(2 M_{a b c}\right)
\end{aligned}
$$

- useful identities

$$
\begin{aligned}
& \vec{p}_{a} \cdot \vec{r}_{a}+\vec{p}_{b} \cdot \vec{r}_{b}+\vec{p}_{c} \cdot \vec{r}_{c} \\
& =\vec{p}_{a b} \cdot \vec{r}_{a b}+\vec{p}_{c(a b)} \cdot \vec{r}_{c(a b)}+\vec{P} \cdot \vec{R} \\
& E_{a}+E_{b}+E_{c} \\
& =E_{a b}+E_{c(a b)}+E
\end{aligned}
$$

\Rightarrow separation of cm motion possible

Reactions with Two Particles in Final State $\mathbf{a}+\mathbf{b} \rightarrow \mathbf{c}+\mathrm{d}$

- general form of differential cross section

$$
\begin{aligned}
d \sigma^{(2)}= & \frac{2 \pi}{\hbar} \frac{\mu_{\mathrm{ab}}}{p_{\mathrm{ab}}} \frac{1}{\left(2 J_{a}+1\right)\left(2 J_{b}+1\right)} \sum_{M_{a}, M_{b}} \sum_{M_{c}, M_{d}} \\
& \int \frac{d^{3} p_{c}}{(2 \pi \hbar)^{3}} \frac{d^{3} p_{d}}{(2 \pi \hbar)^{3}}\left|T_{f i}^{(2)}\right|^{2} \delta\left(Q_{2}+E^{(i)}-E^{(f)}\right)(2 \pi \hbar)^{3} \delta\left(\vec{P}^{(i)}-\vec{P}^{(f)}\right)
\end{aligned}
$$

with Q value $Q_{2}=m_{a}+m_{b}-m_{c}-m_{d}$
and T-matrix element $T_{f i}^{(2)}=(2 \pi \hbar)^{3} \delta\left(\vec{P}^{(i)}-\vec{P}^{(f)}\right)\left\langle\Phi_{f}\right| \hat{T}^{(2)}\left|\Phi_{i}\right\rangle$

Reactions with Two Particles in Final State a + b $\rightarrow \mathbf{c}+\mathrm{d}$

- general form of differential cross section

$$
\begin{aligned}
d \sigma^{(2)}= & \frac{2 \pi}{\hbar} \frac{\mu_{\mathrm{ab}}}{p_{\mathrm{ab}}} \frac{1}{\left(2 J_{a}+1\right)\left(2 J_{b}+1\right)} \sum_{M_{a}, M_{b}} \sum_{M_{c}, M_{d}} \\
& \int \frac{d^{3} p_{\mathrm{c}}}{(2 \pi \hbar)^{3}} \frac{d^{3} p_{d}}{(2 \pi \hbar)^{3}}\left|T_{f i}^{(2)}\right|^{2} \delta\left(Q_{2}+E^{(i)}-E^{(f)}\right)(2 \pi \hbar)^{3} \delta\left(\vec{P}^{(i)}-\vec{P}^{(f)}\right)
\end{aligned}
$$

with Q value $Q_{2}=m_{a}+m_{b}-m_{c}-m_{d}$
and T-matrix element $T_{f i}^{(2)}=(2 \pi \hbar)^{3} \delta\left(\vec{P}^{(i)}-\vec{P}^{(f)}\right)\left\langle\Phi_{f}\right| \hat{T}^{(2)}\left|\Phi_{i}\right\rangle$

- change to Jacobi momenta, momentum integration

$$
d \sigma^{(2)}=\frac{2 \pi}{\hbar} \frac{\mu_{a b}}{p_{a b}} \frac{1}{\left(2 J_{a}+1\right)\left(2 J_{b}+1\right)} \sum_{M_{a}, M_{b}} \sum_{M_{c}, M_{d}} \int \frac{d^{3} p_{c d}}{(2 \pi \hbar)^{3}}\left|T_{f i}^{(2)}\right|^{2} \delta\left(Q_{2}+E^{(i)}-E^{(f)}\right)
$$

Reactions with Two Particles in Final State $\mathbf{a}+\mathbf{b} \rightarrow \mathbf{c}+\mathrm{d}$

- general form of differential cross section

$$
\begin{aligned}
d \sigma^{(2)}= & \frac{2 \pi}{\hbar} \frac{\mu_{a b}}{p_{a b}} \frac{1}{\left(2 J_{a}+1\right)\left(2 J_{b}+1\right)} \sum_{M_{a}, M_{b}} \sum_{M_{c}, M_{d}} \\
& \int \frac{d^{3} p_{c}}{(2 \pi \hbar)^{3}} \frac{d^{3} p_{d}}{(2 \pi \hbar)^{3}}\left|T_{f i}^{(2)}\right|^{2} \delta\left(Q_{2}+E^{(i)}-E^{(f)}\right)(2 \pi \hbar)^{3} \delta\left(\vec{P}^{(i)}-\vec{P}^{(f)}\right)
\end{aligned}
$$

with Q value $Q_{2}=m_{a}+m_{b}-m_{c}-m_{d}$
and T-matrix element $T_{f i}^{(2)}=(2 \pi \hbar)^{3} \delta\left(\vec{P}^{(i)}-\vec{P}^{(f)}\right)\left\langle\Phi_{f}\right| \hat{T}^{(2)}\left|\Phi_{i}\right\rangle$

- change to Jacobi momenta, momentum integration

$$
d \sigma^{(2)}=\frac{2 \pi}{\hbar} \frac{\mu_{\mathrm{ab}}}{p_{a b}} \frac{1}{\left(2 J_{a}+1\right)\left(2 J_{b}+1\right)} \sum_{M_{a}, M_{b}} \sum_{M_{c}, M_{d}} \int \frac{d^{3} p_{c d}}{(2 \pi \hbar)^{3}}\left|T_{f i}^{(2)}\right|^{2} \delta\left(Q_{2}+E^{(i)}-E^{(f)}\right)
$$

- energy integration (with $d^{3} p_{c d}=\mu_{c d} p_{c d} d E_{c d} d \Omega_{c d}$)

$$
\frac{d^{2} \sigma^{(2)}}{d \Omega_{c d}}=\frac{\mu_{\mathrm{ab}} \mu_{c d}}{(2 \pi)^{2} \hbar^{4}} \frac{p_{c d}}{p_{a b}} \frac{1}{\left(2 J_{a}+1\right)\left(2 J_{b}+1\right)} \sum_{M_{a}, M_{b}} \sum_{M_{c}, M_{d}}\left|T_{f i}^{(2)}\right|^{2}
$$

with dependence on 2 angles in final state

Reactions with Three Particles in Final State I a + b \rightarrow c + d + e

- general form of differential cross section

$$
\begin{aligned}
d \sigma^{(3)}= & \frac{2 \pi}{\hbar} \frac{\mu_{a b}}{p_{a b}} \frac{1}{\left(2 J_{a}+1\right)\left(2 J_{b}+1\right)} \sum_{M_{a}, M_{b} M_{c}, M_{d}, M_{e}} \\
& \int \frac{d^{3} p_{c}}{(2 \pi \hbar)^{3}} \frac{d^{3} p_{d}}{(2 \pi \hbar)^{3}} \frac{d^{3} p_{e}}{(2 \pi \hbar)^{3}}\left|T_{f i}^{(3)}\right|^{2} \delta\left(Q_{3}+E^{(i)}-E^{(f)}\right)(2 \pi \hbar)^{3} \delta\left(\vec{P}^{(i)}-\vec{P}^{(f)}\right)
\end{aligned}
$$

with Q value $Q_{3}=m_{a}+m_{b}-m_{c}-m_{d}-m_{e}$ and T-matrix element $T_{f i}^{(3)}=(2 \pi \hbar)^{3} \delta\left(\vec{P}^{(i)}-\vec{P}^{(f)}\right)\left\langle\Phi_{f}\right| \hat{T}^{(3)}\left|\Phi_{i}\right\rangle$

Reactions with Three Particles in Final State I a + b \rightarrow c + d + e

- general form of differential cross section

$$
\begin{aligned}
d \sigma^{(3)}= & \frac{2 \pi}{\hbar} \frac{\mu_{\mathrm{ab}}}{p_{\mathrm{ab}}} \frac{1}{\left(2 J_{a}+1\right)\left(2 J_{b}+1\right)} \sum_{M_{a}, M_{b}} \sum_{M_{c}, M_{d}, M_{e}} \\
& \int \frac{d^{3} p_{\mathrm{c}}}{(2 \pi \hbar)^{3}} \frac{d^{3} p_{d}}{(2 \pi \hbar)^{3}} \frac{d^{3} p_{e}}{(2 \pi \hbar)^{3}}\left|T_{f f}^{(3)}\right|^{2} \delta\left(Q_{3}+E^{(i)}-E^{(f)}\right)(2 \pi \hbar)^{3} \delta\left(\vec{P}^{(i)}-\vec{P}^{(f)}\right)
\end{aligned}
$$

with Q value $Q_{3}=m_{a}+m_{b}-m_{c}-m_{d}-m_{e}$ and T-matrix element $T_{f i}^{(3)}=(2 \pi \hbar)^{3} \delta\left(\vec{P}^{(i)}-\vec{P}^{(f)}\right)\left\langle\Phi_{f}\right| \hat{T}^{(3)}\left|\Phi_{i}\right\rangle$

- different choices for further integration, e.g.,
- change to Jacobi momenta (see below)

Reactions with Three Particles in Final State I $\mathbf{a}+\mathrm{b} \rightarrow \mathbf{c}+\mathrm{d}+\mathrm{e}$

- general form of differential cross section

$$
\begin{aligned}
d \sigma^{(3)}= & \frac{2 \pi}{\hbar} \frac{\mu_{a b}}{p_{a b}} \frac{1}{\left(2 J_{a}+1\right)\left(2 J_{b}+1\right)} \sum_{M_{a}, M_{b}} \sum_{M_{c}, M_{d}, M_{e}} \\
& \int \frac{d^{3} p_{c}}{(2 \pi \hbar)^{3}} \frac{d^{3} p_{d}}{(2 \pi \hbar)^{3}} \frac{d^{3} p_{e}}{(2 \pi \hbar)^{3}}\left|T_{f i}^{(3)}\right|^{2} \delta\left(Q_{3}+E^{(i)}-E^{(f)}\right)(2 \pi \hbar)^{3} \delta\left(\vec{P}^{(i)}-\vec{P}^{(f)}\right)
\end{aligned}
$$

with Q value $Q_{3}=m_{a}+m_{b}-m_{c}-m_{d}-m_{e}$
and T-matrix element $T_{f i}^{(3)}=(2 \pi \hbar)^{3} \delta\left(\vec{P}^{(i)}-\vec{P}^{(f)}\right)\left\langle\Phi_{f}\right| \hat{T}^{(3)}\left|\Phi_{i}\right\rangle$

- different choices for further integration, e.g.,
- change to Jacobi momenta (see below)
- introduce variables $\quad x=\frac{1}{\sqrt{3}}\left(E_{d}-E_{e}\right) \quad y=\frac{1}{3}\left(2 E_{c}-E_{d}-E_{c}\right)$

$$
\Rightarrow E_{c}=\frac{1}{3} E+y \quad E_{d}=\frac{1}{3} E-\frac{1}{2} y+\frac{\sqrt{3}}{2} x \quad E_{e}=\frac{1}{3} E-\frac{1}{2} y-\frac{\sqrt{3}}{2} x
$$

\Rightarrow all allowed states lie in 2-dim. hyperplane (x, y) in first octant of (E_{c}, E_{d}, E_{e}) space for given $E=E_{c}+E_{d}+E_{e}$
\Rightarrow Dalitz plot

Reactions with Three Particles in Final State II $a+b \rightarrow c+d+e$

- change to Jacobi momenta, momentum integration

$$
\begin{aligned}
d \sigma^{(3)}= & \frac{2 \pi}{\hbar} \frac{\mu_{a b}}{p_{a b}} \frac{1}{\left(2 J_{a}+1\right)\left(2 J_{b}+1\right)} \sum_{M_{a}, M_{b}} \sum_{M_{c}, M_{d}, M_{e}} \\
& \int \frac{d^{3} p_{c d}}{(2 \pi \hbar)^{3}} \frac{d^{3} p_{e(c d)}}{(2 \pi \hbar)^{3}}\left|T_{f i}^{(3)}\right|^{2} \delta\left(Q_{3}+E^{(i)}-E^{(f)}\right)
\end{aligned}
$$

Reactions with Three Particles in Final State II $a+b \rightarrow c+d+e$

- change to Jacobi momenta, momentum integration

$$
\begin{aligned}
d \sigma^{(3)}= & \frac{2 \pi}{\hbar} \frac{\mu_{\mathrm{ab}}}{p_{\mathrm{ab}}} \frac{1}{\left(2 J_{a}+1\right)\left(2 J_{b}+1\right)} \sum_{M_{a}, M_{b}} \sum_{M_{c}, M_{d}, M_{e}} \\
& \int \frac{d^{3} p_{c d}}{(2 \pi \hbar)^{3}} \frac{d^{3} p_{\mathrm{e}(c d)}}{(2 \pi \hbar)^{3}}\left|T_{f i}^{(3)}\right|^{2} \delta\left(Q_{3}+E^{(i)}-E^{(f)}\right)
\end{aligned}
$$

\square energy integration (with $d^{3} p_{c d}=\mu_{c d} p_{c d} d E_{c d} d \Omega_{c d}$ and $\left.d^{3} p_{e(c d)}=\mu_{e(c d)} p_{e(c d)} d E_{e(c d)} d \Omega_{e(c d)}\right)$

$$
\frac{d^{5} \sigma^{(3)}}{d E_{c d} d \Omega_{c d} d \Omega_{e(c d)}}=\frac{\mu_{a b} \mu_{c d} \mu_{e(c d)}}{(2 \pi)^{5} \hbar^{7}} \frac{p_{c d} p_{e(c d)}}{p_{a b}} \frac{1}{\left(2 J_{a}+1\right)\left(2 J_{b}+1\right)} \sum_{M_{a}, M_{b} M_{c}, M_{d}, M_{e}} \sum_{f i}\left|T^{(3)}\right|^{2}
$$

\Rightarrow differential cross section depends on $5(=3 \cdot 3-3-1)$ variables in final state

T-Matrix Elements

Transformation of T-Matrix Elements

- impulse approximation (see below)

Transformation of T-Matrix Elements

- impulse approximation (see below)
- reformulation with distorted waves
- introduce optical potentials $U_{i, f}$ with known solutions $\chi_{i, f}^{(\pm)}$of Schrödinger equations $\left(\hat{H}_{0}^{(i,)}+\hat{U}_{i, f}\right) \chi_{i, f}^{(\pm)}=E_{i, f} \chi_{i, f}^{(\pm)}$
($\chi_{i, f}^{(\pm)}$sometimes approximated by eikonal wave functions in high-energy scattering)

Transformation of T-Matrix Elements

- impulse approximation (see below)
- reformulation with distorted waves
- introduce optical potentials $U_{i, f}$ with known solutions $\chi_{i, f}^{(\pm)}$of Schrödinger equations $\left(\hat{H}_{0}^{(i)}+\hat{U}_{i, f}\right) \chi_{i, f}^{(\pm)}=E_{i, f} \chi_{i, f}^{(\pm)}$
($\chi_{i, f}^{(\pm)}$sometimes approximated by eikonal wave functions in high-energy scattering)
- apply Gell-Mann-Goldberger relation/two-potential formula

$$
T_{f i}=\left\langle\phi_{f} \Phi_{0}^{(f)}\right| \hat{U}_{i}\left|\phi_{i} \chi_{i}^{(\pm)}\right\rangle+\left\langle\phi_{f} \chi_{f}^{(-)}\right| \hat{V}_{f}-\hat{U}_{f}\left|\Psi_{i}^{(+)}\right\rangle
$$

(ϕ_{i}, ϕ_{f} : internal wave functions of particles, $\Phi_{0}^{(i, f)}:$ plane waves)

Transformation of T-Matrix Elements

- impulse approximation (see below)
- reformulation with distorted waves
- introduce optical potentials $U_{i, f}$ with known solutions $\chi_{i, f}^{(\pm)}$of Schrödinger equations $\left(\hat{H}_{0}^{(i)}+\hat{U}_{i, f}\right) \chi_{i, f}^{(\pm)}=E_{i, f} \chi_{i, f}^{(\pm)}$
($\chi_{i, f}^{(\pm)}$sometimes approximated by eikonal wave functions in high-energy scattering)
- apply Gell-Mann-Goldberger relation/two-potential formula

$$
T_{f i}=\left\langle\phi_{f} \Phi_{0}^{(f)}\right| \hat{U}_{i}\left|\phi_{i} \chi_{i}^{(\pm)}\right\rangle+\left\langle\phi_{f} \chi_{f}^{(-)}\right| \hat{V}_{f}-\hat{U}_{f}\left|\Psi_{i}^{(+)}\right\rangle
$$

(ϕ_{i}, ϕ_{f} : internal wave functions of particles, $\phi_{0}^{(i, f)}$: plane waves)

- for rearrangement reactions $\left(i \neq f \Rightarrow\left\langle\phi_{f} \Phi_{0}^{(f)}\right| \hat{U}_{i}\left|\phi_{i} \chi_{i}^{(\pm)}\right\rangle=0\right)$
- 'post' form: $T_{f i}=\left\langle\phi_{f} \chi_{f}^{(-)}\right| \hat{V}_{f}-\hat{U}_{f}\left|\Psi_{i}^{(+)}\right\rangle$
- 'prior' form: $T_{f i}=\left\langle\Psi_{f}^{(-)}\right| \hat{V}_{i}-\hat{U}_{i}\left|\phi_{i} \chi_{i}^{(+)}\right\rangle$
still exact but problem to find full solutions $\Psi_{i, f}^{(\pm)}$remains!

Approximations of T-Matrix Elements

- distorted-wave Born approximation (DWBA):
replace full solutions $\psi_{i, f}^{(\pm)}$with distorted waves $\chi_{i, f}^{(\pm)}$
- 'post' form: $T_{f i}=\left\langle\phi_{f} \chi_{f}^{(-)}\right| \hat{V}_{f}-\hat{U}_{f}\left|\phi_{i} \chi_{i}^{(+)}\right\rangle$
- 'prior' form: $T_{f i}=\left\langle\phi_{f} \chi_{f}^{(-)}\right| \hat{V}_{i}-\hat{U}_{i}\left|\phi_{i} \chi_{i}^{(+)}\right\rangle$
no longer identical!

Approximations of T-Matrix Elements

- distorted-wave Born approximation (DWBA): replace full solutions $\psi_{i, f}^{(\pm)}$with distorted waves $\chi_{i, f}^{(\pm)}$
- 'post' form: $T_{f i}=\left\langle\phi_{f} \chi_{f}^{(-)}\right| \hat{V}_{f}-\hat{U}_{f}\left|\phi_{i} \chi_{i}^{(+)}\right\rangle$
- 'prior' form: $T_{f i}=\left\langle\phi_{f} \chi_{f}^{(-)}\right| \hat{V}_{i}-\hat{U}_{i}\left|\phi_{i} \chi_{i}^{(+)}\right\rangle$
no longer identical!
- use coupled-channel (CC) approximation for full solution with boundary condition
$\Psi_{i}^{(+)} \rightarrow \delta_{c 0} \phi_{i}^{(c)} \exp \left(i \vec{p}_{i}^{(c)} \cdot \vec{r}_{i} / \hbar\right)+\sum_{c} f_{i}^{(c)} \phi_{i}^{(c)} \xlongequal{\exp \left(i p_{i}^{(c)} r_{i} / \hbar\right)} r_{i} \quad$ for $r_{i} \rightarrow \infty$
with different internal channel wave functions $\phi_{i}^{(c)}$ in initial state i
- particular realisation: continuum-discretized coupled channel (CDCC) approximation

Plane-Wave Impulse Approximation for Quasi-Free Reactions

Quasi-Free (p,pd) Reactions

- detection of deuteron-like $n+p$ correlation in nuclei by proton scattering
- consider reaction $p+T \rightarrow p+d+S$ with target nucleus T and residual nucleus S
- assume that T contains d as $n+p$ correlation

Quasi-Free (p,pd) Reactions

- detection of deuteron-like $n+p$ correlation in nuclei by proton scattering
- consider reaction $p+T \rightarrow p+d+S$ with target nucleus T and residual nucleus S
- assume that T contains d as $n+p$ correlation
\square find relation of cross sections for $p+T \rightarrow p+d+S$ reaction and quasi-free reaction $p+d \rightarrow p+d$ inside T

Quasi-Free (p,pd) Reactions

- detection of deuteron-like $n+p$ correlation in nuclei by proton scattering
- consider reaction $p+T \rightarrow p+d+S$ with target nucleus T and residual nucleus S
- assume that T contains d as $n+p$ correlation
\square find relation of cross sections for $p+T \rightarrow p+d+S$ reaction and quasi-free reaction $p+d \rightarrow p+d$ inside T
- establish relation between T-matrices

$$
\begin{aligned}
& T_{f i}^{(3)}=\left\langle\Phi_{p d S}\left(\vec{p}_{p d}, \vec{p}_{S(p d)}\right)\right| \hat{T}^{(3)}\left|\Phi_{p T}\left(\vec{p}_{p T}\right)\right\rangle \\
& \text { with } \Phi_{p T}\left(\vec{p}_{p T}\right)=\phi_{p} \phi_{T} \exp \left[i\left(\vec{p}_{p T} \cdot \vec{r}_{p T}\right) / \hbar\right] \\
& \text { and } \Phi_{p d S}\left(\vec{p}_{p d}, \vec{p}_{S(p d)}\right)=\phi_{p} \phi_{d} \phi_{S} \exp \left[i\left(\vec{p}_{p d} \cdot \vec{r}_{p d}+\vec{p}_{S(p d)} \cdot \vec{r}_{S(p d}\right) / \hbar\right]
\end{aligned}
$$

Quasi-Free (p,pd) Reactions

- detection of deuteron-like $n+p$ correlation in nuclei by proton scattering
- consider reaction $p+T \rightarrow p+d+S$ with target nucleus T and residual nucleus S
- assume that T contains d as $n+p$ correlation
\square find relation of cross sections for $p+T \rightarrow p+d+S$ reaction and quasi-free reaction $p+d \rightarrow p+d$ inside T
- establish relation between T-matrices
$T_{f i}^{(3)}=\left\langle\Phi_{p d S}\left(\vec{p}_{p d}, \vec{p}_{S(p d)}\right)\right| \hat{T}^{(3)}\left|\Phi_{p T}\left(\vec{p}_{p T}\right)\right\rangle$
with $\Phi_{p T}\left(\vec{p}_{p T}\right)=\phi_{p} \phi_{T} \exp \left[i\left(\vec{p}_{p T} \cdot \vec{r}_{p T}\right) / \hbar\right]$
and $\Phi_{p d S}\left(\vec{p}_{p d}, \vec{p}_{S(p d)}\right)=\phi_{p} \phi_{d} \phi_{S} \exp \left[i\left(\vec{p}_{p d} \cdot \vec{r}_{p d}+\vec{p}_{S(p d)} \cdot \vec{r}_{S(p d}\right) / \hbar\right]$
$\quad T_{f i}^{(2)}=\left\langle\Phi_{p d}\left(\vec{p}_{p d}^{(f)}\right)\right| \hat{T}^{(2)}\left|\Phi_{p d}\left(\vec{p}_{p d}^{(i)}\right)\right\rangle$
with $\Phi_{p d}\left(p_{p d}^{(i / f)}\right)=\phi_{p} \phi_{d} \exp \left[i\left(\vec{p}_{p d}^{(i / f)} \cdot \vec{r}_{p T}\right) / \hbar\right]$

Transformation of T-Matrix I

TECHNISCHE UNIVERSITÄT DARMSTADT

- assumption: target wave-function ϕ_{T} contains deuteron-like cluster correlation ϕ_{d}
- consider overlap function with momentum space wave function $\chi_{d s}$

$$
\varphi_{T}^{d S}\left(\vec{r}_{d S}\right)=\left\langle\phi_{d} \phi_{S} \mid \phi_{T}\right\rangle=\int \frac{d^{3} Q_{d S}}{(2 \pi \hbar)^{3}} \chi_{d S}\left(\vec{Q}_{d S}\right) \exp \left(-i \vec{Q}_{d S} \cdot \vec{r}_{d S} / \hbar\right)
$$

(norm of $\varphi_{T}^{d S} \rightarrow$ 'deuteron spectroscopic factor')

Transformation of T-Matrix I

- assumption: target wave-function ϕ_{T} contains deuteron-like cluster correlation ϕ_{d}
- consider overlap function with momentum space wave function $\chi_{d s}$

$$
\varphi_{T}^{d S}\left(\vec{r}_{d S}\right)=\left\langle\phi_{d} \phi_{S} \mid \phi_{T}\right\rangle=\int \frac{d^{3} Q_{d S}}{(2 \pi \hbar)^{3}} \chi_{d S}\left(\vec{Q}_{d S}\right) \exp \left(-i \vec{Q}_{d S} \cdot \vec{r}_{d S} / \hbar\right)
$$

(norm of $\varphi_{T}^{d S} \rightarrow$ 'deuteron spectroscopic factor')

- rewrite initial-state wave function

$$
\begin{aligned}
\Phi_{p T}\left(\vec{p}_{p T}\right) & =\phi_{P} \phi_{T} \exp \left[i\left(\vec{p}_{p T} \cdot \vec{r}_{p T}\right) / \hbar\right. \\
& =\phi_{p} \phi_{d} \phi_{S} \int \frac{d^{3} Q}{(2 \pi \hbar)^{3}} \chi_{d S}(\vec{Q}) \exp \left[i\left(\vec{p}_{p T} \cdot \vec{r}_{p T}-\vec{Q} \cdot \vec{r}_{d S}\right) / \hbar\right]
\end{aligned}
$$

Transformation of T-Matrix I

- assumption: target wave-function ϕ_{T} contains deuteron-like cluster correlation ϕ_{d}
- consider overlap function with momentum space wave function $\chi_{d s}$

$$
\varphi_{T}^{d S}\left(\vec{r}_{d S}\right)=\left\langle\phi_{d} \phi_{S} \mid \phi_{T}\right\rangle=\int \frac{d^{3} Q_{d S}}{(2 \pi \hbar)^{3}} \chi_{d S}\left(\vec{Q}_{d S}\right) \exp \left(-i \vec{Q}_{d S} \cdot \vec{r}_{d S} / \hbar\right)
$$

(norm of $\varphi_{T}^{d S} \rightarrow$ 'deuteron spectroscopic factor')

- rewrite initial-state wave function

$$
\begin{aligned}
\Phi_{p T}\left(\vec{p}_{p T}\right) & =\phi_{p} \phi_{T} \exp \left[i\left(\vec{p}_{p T} \cdot \vec{r}_{p}\right) / \hbar\right. \\
& =\phi_{p} \phi_{d} \phi_{S} \int \frac{d^{3} Q}{(2 \pi \hbar)^{3}} \chi_{d S}(\vec{Q}) \exp \left[i\left(\vec{p}_{p T} \cdot \vec{r}_{p} T-\vec{Q} \cdot \vec{r}_{d S}\right) / \hbar\right]
\end{aligned}
$$

- change of Jacobi variables in initial state of T-matrix element $T_{f i}^{(3)}$ from $\vec{r}_{p T}$ and $\vec{r}_{d S}$ to $\vec{r}_{p d}$ and $\vec{r}_{S(p d)}$

Transformation of T-Matrix II

- apply plane-wave impulse approximation (PWIA)
- neglect interaction of residual nucleus S with p and d \Rightarrow approximation of transition operator $\hat{T}^{(3)} \approx \hat{T}^{(2)}$ in $T_{f}^{(3)}$

Transformation of T-Matrix II

- apply plane-wave impulse approximation (PWIA)
- neglect interaction of residual nucleus S with p and d
\Rightarrow approximation of transition operator $\hat{T}^{(3)} \approx \hat{T}^{(2)}$ in $T_{f i}^{(3)}$
\Rightarrow integration over $\vec{r}_{S(p d)}$ possible
$\Rightarrow \delta$ function with \vec{Q} appears
\Rightarrow integration over \vec{Q} possible
\Rightarrow determines arguments in reduced matrix element $T_{f i}^{(3)}$

Transformation of T-Matrix II

- apply plane-wave impulse approximation (PWIA)
- neglect interaction of residual nucleus S with p and d
\Rightarrow approximation of transition operator $\hat{T}^{(3)} \approx \hat{T}^{(2)}$ in $T_{f i}^{(3)}$
\Rightarrow integration over $\vec{r}_{S(p d)}$ possible
$\Rightarrow \delta$ function with \vec{Q} appears
\Rightarrow integration over \vec{Q} possible
\Rightarrow determines arguments in reduced matrix element $T_{f i}^{(3)}$
- momentum transfer to residual (= spectator) nucleus S

$$
\vec{Q}=\vec{p}_{S(p d)}+\frac{m_{S}}{M_{d S}} \vec{p}_{p T}=\vec{p}_{S(p d)}-\frac{m_{S}}{m_{T}} \vec{p}_{T p}
$$

(argument of deuteron wave function in momentum space)

- initial-state momentum in T-matrix element

$$
\vec{q}_{p d}^{(i)}=\vec{p}_{p T}+\frac{m_{p}}{M_{p d}} \vec{p}_{S(p d)}
$$

Relation of Cross Sections

- approximation of T-matrix element

$$
T_{f i}^{(3)} \approx \chi_{d s}(\vec{Q})\left\langle\Phi_{p d}\left(\vec{p}_{p d}^{(f)}\right)\right| \hat{T}^{(2)}\left|\Phi_{p d}\left(\vec{q}_{p d}^{(i)}\right)\right\rangle \Rightarrow \text { factorization! }
$$

Relation of Cross Sections

- approximation of T-matrix element

$$
T_{f i}^{(3)} \approx \chi_{d S}(\vec{Q})\left\langle\Phi_{p d}\left(\vec{p}_{p d}^{(f)}\right)\right| \hat{T}^{(2)}\left|\Phi_{\rho d}\left(\vec{q}_{p d}^{(i)}\right)\right\rangle \Rightarrow \text { factorization! }
$$

- differential cross section of reaction $p+T \rightarrow p+d+S$

$$
\frac{d^{5} \sigma^{(3)}}{d E_{p d} d \Omega_{p d} d \Omega_{S(p d)}} \approx K W(\vec{Q}) \frac{d^{2} \sigma^{(2) H O E S}}{d \Omega_{p d}}
$$

Relation of Cross Sections

- approximation of T-matrix element

$$
T_{f i}^{(3)} \approx \chi_{d s}(\vec{Q})\left\langle\Phi_{p d}\left(\vec{p}_{p d}^{(f)}\right)\right| \hat{T}^{(2)}\left|\Phi_{p d}\left(\vec{q}_{p d}^{(i)}\right)\right\rangle \Rightarrow \text { factorization! }
$$

- differential cross section of reaction $p+T \rightarrow p+d+S$

$$
\frac{d^{5} \sigma^{(3)}}{d E_{p d} d \Omega_{p d} d \Omega_{S(p d)}} \approx K W(\vec{Q}) \frac{d^{2} \sigma^{(2) H O E S}}{d \Omega_{p d}}
$$

with

- kinematic factor $K=\frac{2 J_{S}+1}{(2 \pi \hbar)^{3}} \frac{\mu_{\rho T} \mu_{p(d S)} \mu_{d S}}{\mu_{p d}^{2}} \frac{q_{p d}^{(i)}}{p_{p d}^{(t)}} \frac{p_{p(d S)} p_{d S}}{p_{p T}}$
- momentum distribution $W(\vec{Q})=\left|\chi_{d s}(\vec{Q})\right|^{2}$
- half-off-energy-shell cross section $\frac{d^{2} \sigma^{(2) H O E S}}{d \Omega_{p d}}$ of reaction $d+p \rightarrow d+p$

$$
\left(\text { in general } \frac{\left[q_{q d p}^{(i)}\right]^{2}}{2 \mu_{p d}}+Q_{2} \neq \frac{\left[\left[_{p d}^{(f)}\right]^{2}\right.}{2 \mu_{p d}}\right)
$$

Kinematics of Quasi-Free (p,pd) Reactions

- quasi-free scattering condition $\vec{Q}=\vec{p}_{S(p d)}-\frac{m_{s}}{m_{T}} \vec{p}_{T p}=0$
- no momentum transfer to residual $=$ spectator nucleus S
- correlation of final-state momenta (angles and energies)

Kinematics of Quasi-Free (p,pd) Reactions

- quasi-free scattering condition $\vec{Q}=\vec{p}_{S(p d)}-\frac{m_{S}}{m_{T}} \vec{p}_{T p}=0$
- no momentum transfer to residual = spectator nucleus S
- correlation of final-state momenta (angles and energies)

Kinematics of Quasi-Free (p,pd) Reactions

$$
\text { quasi-free scattering condition } \vec{Q}=\vec{p}_{S(p d)}-\frac{m_{s}}{m_{T}} \vec{p}_{T p}=0
$$

- no momentum transfer to residual $=$ spectator nucleus S
- correlation of final-state momenta (angles and energies)

Deuteron Knockout Reaction

Proton-Induced Deuteron Knockout Reaction T(p,pd)S

- fragility of deuteron
\Rightarrow final state can be reached via different processes, e.g.,
- $p_{1}+d \rightarrow p_{1}+d$ elastic scattering (quasi-free process)
- $p_{1}+d \rightarrow p_{1}+\left(p_{2}+n\right) \rightarrow p_{1}+d$ breakup and reformation
- $p_{1}+d \rightarrow p_{1}+\left(p_{2}+n\right) \rightarrow p_{2}+d$ exchange of protons
transition between deuteron bound and breakup states
\Rightarrow action of final-state interaction (FSI)

Proton-Induced Deuteron Knockout Reaction T(p,pd)S

- fragility of deuteron
\Rightarrow final state can be reached via different processes, e.g.,
- $p_{1}+d \rightarrow p_{1}+d$ elastic scattering (quasi-free process)
- $p_{1}+d \rightarrow p_{1}+\left(p_{2}+n\right) \rightarrow p_{1}+d$ breakup and reformation
- $p_{1}+d \rightarrow p_{1}+\left(p_{2}+n\right) \rightarrow p_{2}+d$ exchange of protons
transition between deuteron bound and breakup states
\Rightarrow action of final-state interaction (FSI)
- new reaction model presented in recent publication: 'Importance of deuteron breakup in the deuteron knockout reaction' (Y. Chazono, K. Yoshida, K. Ogata. Phys. Rev. C 106 (2022) 064613)
- application for 250 MeV protons on targets ${ }^{16} \mathrm{O},{ }^{40} \mathrm{Ca},{ }^{56} \mathrm{Ni}$ in normal kinematics
- general kinematic conditions, not only quasi-free scattering

Reaction Model I

- combination of different methods
- distorted-wave impulse approximation (DWIA): replace plane waves in PWIA with distorted waves in initial and final state of $T_{f i}^{(3)}$
\Rightarrow takes proton-target interaction explicitly into account

Reaction Model I

- combination of different methods
- distorted-wave impulse approximation (DWIA): replace plane waves in PWIA with distorted waves in initial and final state of $T_{f i}^{(3)}$
\Rightarrow takes proton-target interaction explicitly into account
- continuum-discretized coupled channel (CDCC) approach: \Rightarrow takes breakup and reformation of deuteron in final state into account

Reaction Model I

- combination of different methods
- distorted-wave impulse approximation (DWIA): replace plane waves in PWIA with distorted waves in initial and final state of $T_{f i}^{(3)}$
\Rightarrow takes proton-target interaction explicitly into account
- continuum-discretized coupled channel (CDCC) approach:
\Rightarrow takes breakup and reformation of deuteron in final state into account
\Rightarrow CDCCIA method with T-matrix element (prior form)

$$
T_{f i}^{(3)}=\left\langle\chi_{p S}^{(-)}\left(\vec{r}_{p S}\right) \Psi_{d S}^{(-)}\left(\vec{r}_{d S}\right)\right| \hat{T} \mathcal{A}\left|\chi_{p T}^{(+)}\left(r_{p T}^{\overrightarrow{ }}\right) \phi_{d} \varphi_{T}^{d S}\left(\vec{r}_{d S}\right)\right\rangle
$$

Reaction Model I

- combination of different methods
- distorted-wave impulse approximation (DWIA): replace plane waves in PWIA with distorted waves in initial and final state of $T_{f i}^{(3)}$
\Rightarrow takes proton-target interaction explicitly into account
- continuum-discretized coupled channel (CDCC) approach:
\Rightarrow takes breakup and reformation of deuteron in final state into account
\Rightarrow CDCCIA method with T-matrix element (prior form)

$$
T_{f i}^{(3)}=\left\langle\chi_{p S}^{(-)}\left(\vec{r}_{p S}\right) \Psi_{d S}^{(-)}\left(\vec{r}_{d S}\right)\right| \hat{T}_{\mathcal{A}}\left|\chi_{p T}^{(+)}\left(r_{p T}^{\vec{~}}\right) \phi_{d} \varphi_{T}^{d S}\left(\vec{r}_{d S}\right)\right\rangle
$$

- distorted waves $\chi_{p T}^{(+)}, \chi_{p S}^{(-)}$for $p+T$ and $p+S$ scattering
- wave function for $d+S$ scattering $\Psi_{d S}^{(-)}$in CDCC approach (only S waves)
- internal deuteron ground-state wave function ϕ_{d}
- deuteron wave function in target $\varphi_{T}^{d S}$
- \mathcal{A} antisymmetrization operator

Reaction Model II

- interactions

- pn interaction in deuteron system
one-range Gaussian form $v_{p n}(r)=v_{0} \exp \left(-r^{2} / r_{0}^{2}\right)$ to reproduce binding energy and radius (T. Ohmura et al., Prog. Theor. Phys. 43 (1970) 347)

Reaction Model II

- interactions

- pn interaction in deuteron system
one-range Gaussian form $v_{p n}(r)=v_{0} \exp \left(-r^{2} / r_{0}^{2}\right)$ to reproduce binding energy and radius
(T. Ohmura et al., Prog. Theor. Phys. 43 (1970) 347)
- interaction of deuteron with residual nucleus in target

Woods-Saxon form $V(R)=-V_{0}\left\{1+\exp \left[\left(R-R_{0}\right) / a_{0}\right]\right\}^{-1}$ (parameters adjusted to reproduce deuteron separation energies)

Reaction Model II

- interactions

- pn interaction in deuteron system
one-range Gaussian form $v_{p n}(r)=v_{0} \exp \left(-r^{2} / r_{0}^{2}\right)$ to reproduce binding energy and radius
(T. Ohmura et al., Prog. Theor. Phys. 43 (1970) 347)
- interaction of deuteron with residual nucleus in target

Woods-Saxon form $V(R)=-V_{0}\left\{1+\exp \left[\left(R-R_{0}\right) / a_{0}\right]\right\}^{-1}$ (parameters adjusted to reproduce deuteron separation energies)

- T operator in impulse approximation: $\hat{T}=\hat{t}_{p p}+\hat{t}_{p n}$ effective pp and pn potentials for pd interaction (M. A. Franey and W. G. Love, PRC 31 (1985) 488)

Reaction Model II

- interactions

- pn interaction in deuteron system
one-range Gaussian form $v_{p n}(r)=v_{0} \exp \left(-r^{2} / r_{0}^{2}\right)$ to reproduce binding energy and radius
(T. Ohmura et al., Prog. Theor. Phys. 43 (1970) 347)
- interaction of deuteron with residual nucleus in target

Woods-Saxon form $V(R)=-V_{0}\left\{1+\exp \left[\left(R-R_{0}\right) / a_{0}\right]\right\}^{-1}$ (parameters adjusted to reproduce deuteron separation energies)

- T operator in impulse approximation: $\hat{T}=\hat{t}_{p p}+\hat{t}_{p n}$ effective pp and pn potentials for pd interaction (M. A. Franey and W. G. Love, PRC 31 (1985) 488)
- potentials to generate distorted waves

Dirac phenomenology, EDAD1 parameter set (S. Hama et al., PRC 41 (1990) 297; ...)

Reaction Model II

- interactions

- pn interaction in deuteron system
one-range Gaussian form $v_{p n}(r)=v_{0} \exp \left(-r^{2} / r_{0}^{2}\right)$ to reproduce binding energy and radius
(T. Ohmura et al., Prog. Theor. Phys. 43 (1970) 347)
- interaction of deuteron with residual nucleus in target

Woods-Saxon form $V(R)=-V_{0}\left\{1+\exp \left[\left(R-R_{0}\right) / a_{0}\right]\right\}^{-1}$
(parameters adjusted to reproduce deuteron separation energies)

- T operator in impulse approximation: $\hat{T}=\hat{t}_{p p}+\hat{t}_{p n}$ effective pp and pn potentials for pd interaction (M. A. Franey and W. G. Love, PRC 31 (1985) 488)
- potentials to generate distorted waves Dirac phenomenology, EDAD1 parameter set (S. Hama et al., PRC 41 (1990) 297; ...)
- mismatch of arguments in distorted waves
- asymptotic momentum approximation (AMA)

$$
\chi^{(\pm)}(\vec{p}, \vec{r}+\Delta \vec{r}) \approx \chi^{(\pm)}(\vec{p}, \vec{r}) \exp (\pm i \vec{p} \cdot \Delta \vec{r} / \hbar)
$$

Elastic p+d Scattering and d(p,p)pn Breakup Reaction

- differential cross sections
for proton energies:
$120,135,155,170,190,250 \mathrm{MeV}$

Elastic p+d Scattering and d(p,p)pn Breakup Reaction

- differential cross sections for proton energies:
$120,135,155,170,190,250 \mathrm{MeV}$
- comparison to experimental p-d elastic scattering data
(K. Ermisch et al., PRC 71 (2005) 064004
K. Kuroda et al., Phys. Lett. 13 (1964) 67
K. Hatanaka et al. PRC 66 (2002) 044002)

Elastic p+d Scattering and d(p,p)pn Breakup Reaction

- differential cross sections for proton energies:
120, 135, 155, 170, 190, 250 MeV
- comparison to experimental p-d elastic scattering data
(K. Ermisch et al., PRC 71 (2005) 064004
K. Kuroda et al., Phys. Lett. 13 (1964) 67
K. Hatanaka et al. PRC $66(2002)$ 044002)
- correction factor $C \approx 0.69$
for cross sections
- needed to reproduce forward-angle elastic $\mathrm{p}+\mathrm{d}$ scattering
- also used in calculation of (p, pd) reactions

Differential Cross Sections for (p,pd) Reactions

- 250 MeV protons, targets: ${ }^{16} \mathrm{O},{ }^{40} \mathrm{Ca},{ }^{56} \mathrm{Ni}$, dependence on energy of outgoing proton T_{1}^{L}

Differential Cross Sections for (p,pd) Reactions

- 250 MeV protons, targets: ${ }^{16} \mathrm{O},{ }^{40} \mathrm{Ca},{ }^{56} \mathrm{Ni}$, dependence on energy of outgoing proton T_{1}^{ι}
- full CDCCIA calculation (red)
- EL: without reformation path in CDCCIA (blue)
- RF: only deuteron reformation path in CDCCIA (pink)
- NB: no breakup of deuteron (black)

Conclusions

Conclusions

- general reaction theory: transparent formulation for
- cross sections
- T-matrix elements
- plane-wave impulse approximation (PWIA)
- factorization of differential cross section:
kinematic factor \times momentum distribution \times HOES two-body cross section
- quasi-free reactions
- specific kinematic correlations of particles in final state
- suppression of other reaction mechanism
- fragility of deuteron in (p,pd) reactions
- possible effects of deuteron breakup and reformation
- reactions with three particles
- full Faddeev approach required \Rightarrow future

Thank You for Your Attention!

